
SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 8, pp. 3830–3859

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER
MESSAGE LOSS∗

MAXIM GUREVICH† AND IDIT KEIDAR‡

Abstract. Due to their simplicity and effectiveness, gossip-based membership protocols have
become the method of choice for maintaining partial membership in large peer-to-peer systems. A
variety of gossip-based membership protocols were proposed. Some were shown to be effective em-
pirically, lacking analytic understanding of their properties. Others were analyzed under simplifying
assumptions, such as lossless and delayless network. It is not clear whether the analysis results hold
in dynamic networks, where both nodes and network links can fail. In this paper we try to bridge
this gap. We first enumerate the desirable properties of a gossip-based membership protocol, such as
view uniformity, independence, and load balance. We then propose a simple send & forget protocol,
and show that even in the presence of message loss, it achieves the desirable properties.

Key words. peer-to-peer, membership, gossip, random sampling

AMS subject classifications. 68M14, 68M15, 68W15, 68W40

DOI. 10.1137/090769752

1. Introduction. Large-scale dynamic systems are now being deployed in many
places, including peer-to-peer networks over the Internet, in data centers, and in com-
putation grids. Such systems are subject to churn; i.e., their membership constantly
changes as nodes dynamically join and leave. Moreover, such systems are often com-
posed of unreliable components, where nodes can fail and message losses are frequent.

In order to allow nodes to communicate with each other, each node must know
the ids (for example, IP addresses and ports) of some other nodes. Such ids are stored
at each node in a local view (sometimes called membership), or view for short. In
large systems, it is uncommon to store full views including all nodes in the system,
not only because of the amount of memory this would require, but also because of
the high maintenance overhead that churn would induce. Instead, one typically stores
small views, e.g., logarithmic in system size [13, 2]. Local views are maintained by a
distributed group membership protocol.

The views of all nodes induce a membership graph (overlay network), over which
communication takes place. Two nodes are neighbors if one of their views includes
the id of the other. The properties of local views have significant consequences for the
respective graph’s diameter, connectivity, load balance, and robustness. Our goal in
this paper is to mathematically analyze the properties of such views and, in particular,
to understand the impact that message loss has on these properties.

We begin in section 2 by identifying the goals that a membership service strives
to achieve: First, to bound the load on each node, each node has to maintain a small
view and have a bounded degree (number of neighbors). Additionally, the “holy grail”

∗Received by the editors September 2, 2009; accepted for publication (in revised form) September
10, 2010; published electronically December 14, 2010. A preliminary version of this paper appeared
in the proceedings of the Twenty-Eighth Annual ACM Symposium on the Principles of Distributed
Computing (PODC) [21]. This work was partially supported by the Technion Security Research
Fund and by the Israeli Ministry of Industry, Trade, and Labor.

http://www.siam.org/journals/sicomp/39-8/76975.html
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. Current address: Yahoo!

Research, 4401 Great America Parkway, Santa Clara, CA 95054 (maximg@yahoo-inc.com). This
author’s work was partially supported by the Eshkol Fellowship of the Israeli Ministry of Science.

‡Department of Electrical Engineering, Technion, Haifa 32000, Israel (idish@ee.technion.ac.il).

3830

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3831

for a membership service is to choose view entries independently of each other (we call
this spatial independence) and uniformly at random [13, 29, 9]. Indeed, such choices
result in an expander graph, with good connectivity, robustness, and low diameter [15],
ensuring fast and reliable communication. Note that in a dynamic system subject to
churn, local views must evolve to reflect joining nodes and exclude ones that left
or failed, and the system should converge to independent uniform views from any
sufficiently connected initial topology resulting from joins, leaves, and failures.

Beyond maintaining the membership graph for communication, independent ran-
dom node id samples are useful for a variety of additional applications, such as gath-
ering statistics, gossip-based aggregation, and choosing locations for data caching [25,
18, 5]. Such applications constantly require fresh random node ids, independent of
past views, which requires views to evolve even in the absence of churn or failures. We
thus identify an additional goal for a membership service: temporal independence—
evolving into new graphs whose dependence on the past decays rapidly.

The most common approach to maintaining small local views is using gossip-based
membership protocols [17, 13, 2, 34, 23]. In such protocols, nodes exchange (“gossip
about”) ids from their views with their neighbors and use this information to update
their views (see section 3.1). Such protocols make random choices, and their evolution
is therefore a random process. Gossip-based membership has been empirically shown
to lead to good load balance of node degrees [13, 23], and certain variants of gossip
were proved to ensure low probability for partitions [2]. On the other hand, most
gossip-based protocols do, in fact, induce spatial dependencies among neighboring
nodes. This is because an id that is gossiped to a neighbor typically remains in the
sender’s view.

Spatial dependencies can be eliminated by deleting ids sent to a neighbor. In
order to avoid having unused entries in views, this is usually done in actions involving
bidirectional communication, where the id received in a reply replaces the sent id [2,
26, 27, 11]. However, such actions were previously analyzed under the assumption
that they occur atomically, without overlapping in time with any other action, even
though they involve multiple nodes. In practice, it is unclear how overlap can be
avoided, as protocol actions are initiated from different nodes concurrently and a
node might receive a message initiating a new action while it is already engaged in
another. Moreover, implementing such atomic actions requires bookkeeping at each
node and is, of course, impossible in the presence of message loss [20] or node failures.

Our main goal in this paper is to bridge the gap between protocols that work
well in practice but are not amenable to formal analysis to others that admit analysis
but make overly conservative assumptions that limit their practical applicability. We
propose a methodology for designing and analyzing protocols with nonatomic actions,
and apply it to design the first protocol that at the same time (1) is practical, in that it
can be implemented in fault-prone networks without any bookkeeping, (2) is amenable
to formal analysis, and (3) does not induce spatial dependencies.

In section 4, we present a model for studying gossip-based membership without
atomicity assumptions. We follow [26, 27] and model protocol actions as random graph
transformations. In order to apply this methodology to real systems, we break up
protocol actions into steps that can be executed atomically at a single node, allowing
the analysis to account for message loss.

In section 5, we present send & forget (S&F), a simple and practical protocol that
eliminates bidirectional communication at the cost of allowing for unused (empty)
entries in views. Message loss increases the number of unused entries. The protocol

3832 MAXIM GUREVICH AND IDIT KEIDAR

compensates for loss by creating new, dependent view entries. The goal is to create
as few dependencies as possible.

In section 6, we analyze node degree distributions induced by S&F. Our analysis
shows that S&F can operate with small views—constant (e.g., with 40 entries)—or
views that are logarithmic in system size. It further shows that the distribution
of node degrees is very well balanced—close to the binomial distribution. We then
analyze degree evolution of joining and leaving nodes and the time it takes to integrate
new nodes and to remove ids of left/failed ones from views of other nodes.

In section 7 we study the distribution of membership graphs to which the protocol
evolves (i.e., the protocol’s properties in the steady state). We define a Markov chain
(MC) on the global states (membership graphs) reachable by S&F starting from any
weakly connected membership graph. We show that, without loss, S&F achieves the
desired properties of uniformity and independence. With positive loss, uniformity still
holds, but there exist spatial dependencies among entries in the same view as well
as among views of neighboring nodes. These dependencies increase very moderately
with the loss rate: The fraction of dependent entries in views is bounded and grows
about twice as fast as the loss rate. As the loss is typically in the order of 1% [32, 4],
the vast majority of view entries are expected to be independent. From this bounded
spatial dependence, we prove that the temporal independence is preserved. We show
that in a system of size n, starting from a random state (membership graph) G in
the MC, once each node initiates O(s log n) actions, where s is a view size, the system
evolves to a state whose dependence on G can be made arbitrarily small.

In summary, our key contribution is in formally analyzing a protocol that can
work in the real world; this includes the following:

(i) We spell out the desired properties of membership protocols that maintain
small views.

(ii) We provide a model for studying membership graph evolution with nonatomic
protocol actions.

(iii) We present a practical membership protocol, S&F, which is amenable to
formal analysis.

(iv) In the absence of message loss, S&F provides all the desired properties of a
membership service.

(v) We present the first formal analysis of a membership protocol in the presence
of message loss. The salient properties of S&F are preserved even under reasonable
loss rates.

2. Goals for a distributed membership service. We consider a dynamic
distributed system with up to n nodes active at any given time. When using a
distributed membership service, no single participant has the complete membership
information. Instead, each node u maintains a local view—a multiset, u.lv, of s node
ids, also denoted u.lv[1 . . . s]. We say that u is an in-neighbor of v, and that v is an
out-neighbor of u, if v ∈ u.lv. We denote such a view entry by (u, v). For simplicity,
we allow a view to contain duplicate ids and account for them later as dependencies.
We say that two nodes are neighbors if one of them is either an in- or out-neighbor
of another. The outdegree of u, denoted d(u), is the number of out-neighbors that u
has. Since some view entries might be empty, this number may be smaller than s.
Similarly, u’s indegree, denoted din(u), is the number of in-neighbors that u has.

We now formalize the desirable properties of a distributed membership service.
Later, in section 4, we define a set of “building blocks” for distributed protocols that
implement such a service.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3833

First, in large systems it is infeasible (in terms of memory, bandwidth, and pro-
cessing time) for each node to maintain the full membership information. We thus
require the following property.

Property M1 (small views). The view size s� n.
Typically, logarithmic size views are used in order to ensure fast dissemination

of gossiped information [13]. Other applications work with constant-size views [29].
Property M1 has to hold at all times.

We next define the load balance, uniformity, and independence properties of the
membership graph. Note that nodes can be expected to be uniformly and indepen-
dently represented in views only after they have been in the system “long enough”
for their representation to spread in the system; these properties cannot be expected
to hold for newly joined or recently departed nodes whose ids are still included in
views. Therefore, similarly to previous studies [7], we require the following properties
to hold only if churn ceases from some point onward. For simplicity, we model this by
considering a static system of n nodes u1, u2, . . . , un. Note that our load balance, uni-
formity, and spatial independence properties are required to eventually hold, starting
from any sufficiently connected initial state, and thus we effectively deal with churn
that affects the initial topology.

The number of messages received by a node (sent by the membership protocol
or by an application) is proportional to the number of its in-neighbors. We therefore
require load balancing of indegrees.

Property M2 (load balance). Starting from any initial state, eventually, the
variance of node indegrees is bounded.

The main quality measure of a local view is how well it approximates an indepen-
dent and identically distributed (i.i.d.) uniform sample of the nodes. The next two
properties stipulate that views should converge to i.i.d. uniform ones, from any state.

Property M3 (uniform sample). Starting from any initial state, eventually, for
each u, v, w,

Pr(v ∈ u.lv) = Pr(w ∈ u.lv).

Uniformity, by itself, does not imply independence among view entries of the
same node or of different nodes at the same time. Therefore Property M3 does not
subsume Property M2: Property M3 means that every id eventually has the same
likelihood of appearing in any given view entry. However, Property M3 does not
preclude dependencies among distinct entries (e.g., duplicate ids in a view) at a given
time.

Since typical membership protocols exchange data between neighbors, the most
likely dependencies are within the same view, or among the views of neighboring
nodes. We say that two nonempty view entries u.lv[i] and v.lv[j] are independent of
each other if

Pr(u.lv[i] = w|v.lv[j] = w) = Pr(u.lv[i] = w).

By slight abuse of terminology, we simply label edges in a membership graph as
dependent without specifying what edges they depend on. We label edges as follows:
(1) All self-edges (u.lv[i] = u) are dependent.1 (2) For v = u or v ∈ u.lv, if u.lv[i]
is not independent of v.lv[j] for some j, then we say that one of u.lv[i] or v.lv[j] is

1Even perfect i.i.d. sampling can produce self-edges. However, since this happens extremely
infrequently, we conservatively consider all self-edges to be dependent.

3834 MAXIM GUREVICH AND IDIT KEIDAR

dependent. In case of dependencies among several edges, all but one of these edges
are considered dependent. Intuitively, these edges all convey similar information, so
we can choose one of them as representative and discount the others. Every edge that
is not dependent is independent. We are now ready to define spatial independence.

Property M4 (spatial independence). Starting from any initial state, eventually,
for each u and 1 ≤ i ≤ s such that u.lv[i] is nonempty, the probability that u.lv[i] is
independent is bounded from below by a constant independent of n.

Typical membership protocols update only a part of the view in each step. Thus,
there is a temporal dependence between the views before and after the update. We
are interested in protocols that lead to fast dependence decay.

Property M5 (temporal independence). Starting from an expected initial state
(formally defined in section 4), the number of actions the protocol needs to take in
order to reach a state that is independent of the initial state is bounded from above.

Note that the above bound is weaker than a bound on mixing time, which con-
siders convergence time from an arbitrary state rather than a random one.

3. Background.

3.1. Membership protocols. We provide a brief taxonomy of the basic actions
of gossip-based membership protocols.

Action initiator. A node u can contact one of its out-neighbors v to either
push some node id to it, or to pull an id from it. The pushed id is added to v’s view.
In a pull, v is expected to return some id, which u adds to its view. In some protocols,
push and pull are combined into a single protocol action [2, 26, 27].

The ids sent. Allavena, Demers, and Hopcroft [2] identified two crucial com-
ponents for a good membership protocol: In a reinforcement component, a node adds
its own id to another node’s view. Reinforcement leads to a uniform representation of
nodes in other nodes’ views and fixes any nonuniformity that might have been caused
by bad initial views or churn. In a mixing component, a node adds to its view an id
from another node’s view. This component spreads membership information among
nodes, thus providing independence.

Note that each of the components can be implemented by either push or pull.
While many protocols implement reinforcement by push and mixing by pull, e.g., [2,
27], Lpbcast [13] uses push for both. We do the same in this paper. Occasion-
ally, due to the common reinforcement-by-push and mixing-by-pull association, push-
only and pull-only protocols are deemed impractical [23]; however, these are actually
reinforcement-only and mixing-only protocols that are impractical. A practical opti-
mization, made in many protocols, e.g., [13, 2], is performing several actions at once,
thus reducing message overhead. Such protocols, however, are difficult to analyze, so
most analyses assume that actions are executed serially [2, 26, 27], as we do in this
paper.

Protocols also differ in whether the sender deletes the ids it sent from its local
view or keeps them. Most protocols, e.g., [13, 2], keep the sent ids, thus inducing
dependence between neighbor views. Those that delete the sent ids, e.g., shuffle [1, 27]
and flipper [26], are unable to withstand message loss or node failures since the system
gradually loses more and more ids. In fact, by design, these protocols work only with
a static membership and provide no means for joining or leaving the system. Jelasity
et al. [23] combine shuffle, which does not create dependencies but may lose ids,
with regular push-pull, which creates dependencies but is immune to loss. In their
approach, shuffle operations constitute a predetermined fraction of all operations,

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3835

regardless of actual loss or churn. In contrast, in S&F, dependencies are created only
to compensate for ids that are actually lost and can be kept arbitrarily low with no
loss.

Other sampling approaches. An important advantage of gossip-based mem-
bership is the use of local operations, where each node communicates only with its im-
mediate neighbors. An alternative (nonlocal) approach is to use random walks (RWs)
(on the membership graph) to obtain new ids for local views [19, 5, 28]. However,
RWs are disadvantageous in our setting. First, since a single RW involves multiple
id exchange steps, the probability of a successful RW under message loss degrades
exponentially with the length of the random walk. Second, an RW’s correctness de-
pends on the graph topology. Unlike gossip, where views are updated after every step
(regardless of the graph topology), an RW explicitly stops at some point and then
takes a sample. If the actual topology is different from the assumed one, then that
sample may be far from uniform [19]. Third, the analysis of RW convergence ignores
the dynamic nature of the graph; recent work suggests that RWs may be much less
effective on dynamic graphs [3]. In this paper, we consider local operations only.

Another characteristic of gossip-based membership protocols is that they use the
local view for two purposes: (1) to provide node id samples to the application, and (2)
to define the communication graph over which messages of the gossip protocol itself
are transmitted. It is possible to separate the two. For example, Brahms [7] uses
fast evolving local views, which might be nonuniform, and complements them with
membership samples, which converge to uniform ones over time. However, the latter
do not provide temporal independence, as they are designed to persist rather than
evolve. We note that Brahms was designed for Byzantine settings, where maintaining
uniform views is challenging. In this paper, we consider benign settings and are
interested in evolving yet uniform local views.

3.2. Markov chains. Here we provide a brief introduction into the theory of
MCs. For more details please refer to any standard textbook on the subject, e.g.,
[31, 8].

AMarkov chain on a finite state space U is a stochastic process in which states of U
are visited successively. The MC is specified by a |U|×|U| probability transition matrix
P . P is a stochastic matrix, meaning that every row x of P specifies a probability
distribution Px on U . P induces a directed graph GP on U with nonnegative edge
weights. There is an edge x → y in the graph if P (x, y) > 0 and the corresponding
weight is P (x, y).

The MC is called ergodic if it satisfies two conditions: (1) it is irreducible, meaning
that the graph GP is strongly connected, and (2) it is aperiodic, meaning that the
greatest common denominator of the lengths of directed paths connecting any two
nodes in GP is 1.

Each step t of the MC induces a probability distribution pt on the state space
U . The initial distribution is p0. Successive distributions are given by the recursive
formula: pt = pt−1P . Therefore, pt = p0P

t. A fundamental theorem of the theory
of MCs (a.k.a. ergodic theorem) states that if an MC is ergodic, then regardless of
the initial distribution p0, the sequence of distributions p0, p1, p2, . . . is guaranteed
to converge to the unique stationary distribution π such that πP = π. That is,

||pt − π|| t→∞−→ 0.

4. Modeling membership protocols by graph transformations. Wemodel
membership as a directed multigraph G = (V,E) where vertices represent nodes and

3836 MAXIM GUREVICH AND IDIT KEIDAR

edges represent membership information: E is a multiset containing an edge (u, v) for
each u and v such that v ∈ u.lv, with the multiplicity equal to the multiplicity of v in
u.lv. Unless specified otherwise, we assume the graph to be weakly connected. That
is, there is an undirected path between every two nodes.

Protocol actions can be described as transformations on graph G. For example,
a push action of w’s id from u to v adds an edge (v, w), and pulling id w by u from v
adds an edge (u,w).

We consider only memoryless random transformations. That is, each transforma-
tion allowed by a particular protocol occurs with a probability that depends only on
the current membership graph. Every protocol thus defines an MC G̃(0), G̃(1), . . . ,
where G̃(i) represents the distribution of the membership graphs after the ith action
of the protocol. We analyze a protocol’s MC graph, where vertices are all possi-
ble membership graphs and edge weights are transition probabilities of the protocol.
Assuming that the initial membership graph is weakly connected, a stationary distri-
bution π of such an MC (assuming it exists) describes the steady state of the system.
We thus can analyze the properties of an expected (according to π) membership graph
and the extent to which it satisfies the desired properties defined in section 2.

4.1. Distributed operations. Because each node’s knowledge of the system is
partial, only a limited set of transformations can occur as a result of a distributed
protocol in any given state. Protocol actions are composed of steps, as defined below.

Protocol steps. A step is a transformation that can be implemented at a single
node and consists of the following three elements: (1) receiving of 0 or 1 messages; (2)
modifying the local view by adding ids received in the message (including the sender’s
id) and deleting and duplicating arbitrary ids; and (3) sending 0 or more messages
that can include ids received in the message in (1), ids from the current view, or ids
from the previous view before performing (2). A key property of a step is that it can
be executed atomically, even in an environment with message loss.

Protocol actions. A number of steps can be combined into a protocol action,
starting with a step of an initiating node u, followed by a sequence of steps that
receive messages sent in the previous steps. For example, in a push action from u to
its out-neighbor v, u’s send to v is a step and v’s receive and view modification is
another step.

Previous analyses, e.g., [2, 26, 6, 27, 11], assumed atomic actions, with no overlap
in time. However, guaranteeing atomicity of multistep actions in a real system may
be complex and is in some cases impossible, e.g., in the presence of message loss
or of unreliable nodes and asynchronous communication [20, 16], even if the nodes
themselves are synchronous (Theorem I0 in [12]).

We allow communication to be asynchronous but assume that the nodes are
loosely synchronized among themselves, so that they may all independently invoke
actions at a similar rate.

Modeling loss with nonatomic actions. Due to message loss, with some
probability a sent message is not delivered to its destination. We assume that this
probability is unknown to the protocol and that the sender cannot detect that the
message it sent was lost, so it cannot retransmit the message. This means that in a
multistep action, each step is executed with probability ≤ 1, given that the previous
step was executed (except for the first step, which is executed with probability 1).

In this paper we restrict our analysis to uniform loss. We assume a message is
lost with probability �, identical for all messages, and independent of other messages.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3837

While nonuniform loss occurs in practice [33], it is more difficult to model and analyze.
Thus, similarly to other works dealing with protocol analysis under message loss (e.g.,
[22, 24]), we resort to the uniform i.i.d. loss model.

5. Send & forget protocol. We present S&F, a simple and practical protocol
that overcomes loss. S&F avoids bidirectional communication within the same action;
after it sends a message, it “forgets” about it. Thus, actions at each node are trivially
nonoverlapping. The protocol running at each node is shown in Figure 5.1 (u.a.r.
stands for uniformly at random). Each node u maintains a view u.lv—an array of
size s, where s ≥ 6 is even.2 In order to overcome loss (nonatomic actions), the
protocol is parametrized by a threshold 0 ≤ dL ≤ s− 6 that sets a lower bound on
node outdegree. The gap between dL and s makes the outdegree flexible enough for
the protocol to be effective.

1: function S&F-InitiateActionu()
2: select 1 ≤ i �= j ≤ s u.a.r.
3: v ← u.lv[i]
4: w ← u.lv[j]
5: if v �= ⊥ AND w �= ⊥ then
6: send [u,w] to v
7: if d(u) > dL then
8: u.lv[i]← ⊥
9: u.lv[j]← ⊥

1: function S&F-Receiveu(v1, v2)
2: if d(u) < s then
3: select i u.a.r. so that u.lv[i] = ⊥
4: select j u.a.r. so that u.lv[j] = ⊥
5: u.lv[i]← v1
6: u.lv[j]← v2

Fig. 5.1. The S&F protocol at node u.

A joining node has to know at least dL ids of live nodes before engaging in the
protocol. A node can obtain these ids by copying another node’s view, or, in case of
reconnection, by probing previously seen ids. We conservatively require the minimal
degree of dL to guarantee weak connectivity of the membership graph with high
probability. Nodes that wish to leave the system do not need to take any explicit
actions; they simply stop participating in the protocol.

A protocol step at node u works as follows: The node selects two different entries i
and j in its view uniformly at random. If either of them is empty, nothing happens and
the views of all the nodes remain unchanged. If both v = u.lv[i] and w = u.lv[j] are
nonempty, then u performs the following steps: (1) it sends to v a message including
its own id and w, and (2) it clears both entries i and j in its view, unless d(u) ≤ dL,
in which case we say the entries are duplicated. On receiving a message, a node adds
both received ids to empty entries in its view, unless d(u) = s, in which case we say
the received ids are deleted. Figures 5.2(a) and 5.2(b) show the graph transformation
performed by the protocol when sender’s and receiver’s outdegrees are between dL
and s (which happens most of the time). Figure 5.2(c) shows the effect of duplication
at the sender, and Figure 5.2(d) illustrates message loss or deletion at the receiver.
The id of a node that fails/leaves remains in some views of live nodes for some time,
but then disappears from all views during the normal course of the protocol, as every
message sent to this node causes its id to be deleted from the sender’s view (except if
duplicated).

2We use s ≥ 6 for proving reachability of every membership graph from every other graph in
Lemma A.3. However, this may not be a necessary condition for reachability.

3838 MAXIM GUREVICH AND IDIT KEIDAR

u v

w

u v

w

(a) before (b) after no duplication

and no deletion

u v

w

(c) after duplication

u v

w

(d) after deletion

or loss

Fig. 5.2. Possible outcomes of a transformation of S&F, initiated by u sending message [u,w]
to v, and v performing the receive step. (a) Before the transformation. Possible states after the
transformation, where (b) d(u) > dL,d(v) < s, message delivered; (c) d(u) = dL, d(v) < s, message
delivered; (d) d(u) > dL, and d(v) = s or message lost.

It is easy to see that the protocol satisfies the following invariant.

Observation 5.1. Every node’s outdegree is at any time between dL and s and is
even.

The purpose of the duplications, controlled by the threshold dL, is to compensate
for loss. In the absence of loss, dL can be set to zero, disabling duplications. Under
positive loss and without duplications, node outdegrees would gradually decrease,
until eventually all nodes become isolated. To prevent such a scenario, the protocol
performs duplications and creates new edges in the membership graph instead of lost
ones. One might wonder, why not fill up empty view entries by replicating ids in the
view? We avoid such replication since it increases dependencies among ids in the same
view. Instead, we allow the sent ids to remain in the sender’s view. Although such
duplication still creates dependencies among neighbors’ views, it does not directly
create redundant parallel edges. As the protocol occasionally creates too many edges,
it may need to delete some when there are no empty view entries to store the received
ids. In section 6, we analyze the impact of dL and s (recall that the view size is
bounded by s), which in turn provides a “rule-of-thumb” for selecting their values.

In our analysis, we assume that a central entity repeatedly selects a random
node, invokes its S&F-InitiateActionu() method, and waits for the completion of
S&F-Receiveu(v1, v2) by the receiving node (in case a message was sent). In prac-
tice, a similar behavior can be implemented by each node periodically invoking its
S&F-InitiateActionu() method at the same frequency at all nodes. The next propo-
sition follows immediately.

Proposition 5.2. The probability for every node u and every two entries in u’s
view to be chosen in an action is the same.

Optimizations. One could modify the S&F protocol to make it more efficient
by incorporating some lessons from the substantial existing experience with practical
membership protocols. Examples include the following: (1) Instead of removing sent
ids from the view, the protocol could only mark them for deletion and could then use
undeletion instead of duplication; (2) instead of discarding received ids when the view
is full, the protocol could replace some existing view entries with new ids; (3) more
than two ids could be sent in a message. However, since such optimizations would
make the protocol harder to analyze, we opted to avoid them and leave optimizations
to future work.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3839

6. Node degree analysis and setting degree thresholds. In this section we
show that S&F satisfies Properties M1 (small views) and M2 (load balance) defined
in section 2. We assume that n
 s. In the examples in this section, view sizes are
up to 100, and n is assumed to be in the order of thousands or more. As long as n is
sufficiently large, for fixed s and dL, our results are independent of n.

In this section we analyze the in- and outdegree distributions of a single node in the
steady state. Steady state is the expected membership graph to which the protocol
converges after sufficiently many actions. We formally define, show existence, and
analyze the properties of the steady state in section 7. Since we analyze the steady
state, we assume the churn ceases for the period we analyze.

We start, in section 6.1, with additional assumptions that the protocol actions are
atomic (no loss), that the views are initialized so that for all u, d(u) + 2 din(u) = dm
for some even dm ≤ s, and that no edge duplications or deletions are taking place (e.g.,
by setting dL = 0). We analytically derive approximate node degree distributions.

In section 6.2 we remove the additional assumptions and model the evolution of
node indegree and outdegree as a degree Markov chain (degree MC). This model is
more accurate than the analytical one since it assumes positive loss and makes weaker
assumptions on initialization. We show that when using parameters corresponding
to the assumptions in section 6.1 (dL = 0, constant d(u) + 2 din(u) for all u), the
resulting degree distributions are close to those obtained analytically.

In section 6.3 we propose guidelines for selecting protocol parameters s and dL.
We show that S&F can operate with small views—constant or logarithmic in system
size.

In section 6.4 we compute the stationary distribution of the degree MC and show
that the protocol preserves Property M2 (load balance).

Finally, in section 6.5 we analyze the time it takes to integrate a joining node into
the system and to remove ids of a left/failed node from views.

6.1. Analytically approximating degree distributions without loss. We
start by defining a node sum degree.

Definition 6.1 (sum degree). Define ds(u) = d(u)+2 din(u) to be a sum degree
of u.

In this analysis we assume that protocol actions are atomic (no loss), that all
views are initialized so that for each u, ds(u) = dm for some even dm ≤ s, and that
no edge duplications or deletions are taking place (e.g., by setting dL = 0).

The following proposition shows that sum degrees are preserved by the protocol
under the above assumptions.

Lemma 6.2. If there is no loss; the initial state is chosen so that for some u and
some even dm ≤ s, ds(u) = dm and for all v, ds(v) ≤ s; and dL = 0, then ds(u) = dm
is an invariant.

Proof. By Observation 5.1, 0 ≤ d(v) ≤ s for each v. Thus, since dL = 0, protocol
actions do not perform duplication or deletions. From the protocol, actions that do
not involve duplications or deletions do not alter sum degrees.

Lemma 6.3. If there is no loss; the initial state is chosen so that for each u,
ds(u) = dm for some even dm ≤ s; and dL = 0, then the average node indegree and
outdegree are dm /3.

Proof. We define the average of function f over the set of nodes as follows:
avg(f(u)) = 1

n

∑
u f(u). Since total indegrees and outdegrees are both equal to the

number of edges, avg(d(u)) = avg(din(u)). By Observation 5.1 and Lemma 6.2,

3840 MAXIM GUREVICH AND IDIT KEIDAR

avg(d(u)) + 2 avg(din(u)) = ds(u) = dm. Clearly, only avg(din(u)) = avg(d(u)) = dm

3
satisfies the above equations.

We now analyze node degree distributions of a single node under the assumptions
of no loss and no duplications or deletions. Suppose that we want to select neighbors
for each node so that the sum degree of each node is dm. We start with all views
being empty and select an arbitrary node u and dm arbitrary nodes v1, . . . , vdm

to
be potential neighbors of u. We now decide, for each vi, whether it becomes an in-
neighbor, out-neighbor, or not-a-neighbor of u, while making sure that ds(u) = dm.
For a given even outdegree d∗ ∈ [0, dm] (and the corresponding indegree of dm −d∗

2),
the number of different assignments of v1, . . . , vdm to in-neighbor, out-neighbor, or
not-a-neighbor of u that achieve this outdegree is at most

a(d) �
(
dm

d∗

)(
dm−d∗
dm −d∗

2

)
.

Given u, v1, . . . , vdm
, and some assignment Λ, denote the number of different

membership graphs containing the assigned subgraph by b(u, v1, . . . , vdm
,Λ). In other

words, b(u, v1, . . . , vdm
,Λ) is the number of different assignments of neighbors to other

nodes given the assignments we made for u. Different choices of u, v1, . . . , vdm , and
Λ result in different values of b(u, v1, . . . , vdm

,Λ), since each assignment of neighbors
to u leaves slightly different degrees of freedom in the assignments of other nodes;
e.g., if v is a neighbor of u in Λ, it can accommodate fewer additional assignments.
Nevertheless, when n is large, the values of b(·) are similar, and for the sake of the
analysis in this section we assume them to be equal. In section 6.2 we substantiate
this assumption with a more accurate numerical computation and show that it has
only a minor effect on our results.

In section 7.2 (Lemma 7.5) we show that under the assumptions of this section,
the protocol is equally likely to reach each membership graph satisfying the sum
degree invariant (ds(u) = dm for each u). Thus,

Pr(d(u) = d∗) = Pr

(
din(u) =

dm−d∗
2

)

≈ a(d∗)∑
d′=0,2,4,...,dm

a(d′)
.(6.1)

The only source of imprecision is the slight variation of the remaining degrees of
freedom described above. Figure 6.1 compares these analytical results with a more
precise numerical study (section 6.2). It shows that the actual outdegree distribution
has similar form and variance. Moreover, it can be seen that the degree distributions of
S&F have lower variance than the binomial distributions with the same expectations.

6.2. Degree Markov chain. Allavena [1] analyzed the indegree distribution of
a different protocol, with a constant outdegree, assuming no message loss, and using
a one-dimensional MC. Since in S&F both node indegree and outdegree can vary,
we construct a two-dimensional degree MC, where one dimension is indegree and the
other is outdegree, reflecting their joint evolution at a single node.

A schematic diagram of the degree MC is shown in Figure 6.2. Recall that some
actions where one of the selected view entries is empty have no effect on the views.
We call such transformations self-loop transformations and do not show them in the
diagram. Note that the state corresponding to an isolated node (zero indegree and
outdegree) is disconnected from the rest of the states. In the settings we consider,

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3841

0

0.05

0.1

0.15

0.2

0 10 20 30 40

Node indegree

Binomial

S&F Analytical

S&F Markov

0

0.05

0.1

0.15

0.2

0 20 40 60 80

Node outdegree

Binomial

S&F Analytical

S&F Markov

Fig. 6.1. S&F node degree distributions (analytical approximation and exact, from degree MC)
and binomial distributions with the same expectation. s = 90, dL = 0, � = 0, ds(u) = 90 for each u
and arbitrary n � s.

outdegree
0 2 4 6

in
d
e
g
re
e

0

1

2

3

…

…

…

…

…

…

…

…

Fig. 6.2. Degree MC. Dark circles are reachable states, and the light circle is an unreach-
able state. Solid lines correspond to (non-self-loop) transformations occurring with atomic actions
(no loss, duplications, or deletions). Dashed lines correspond to (non-self-loop) transformations
occurring due to loss, duplications, or deletions.

when the loss is nonzero, dL > 0, so the outdegree cannot decrease to 0. With no
loss, we allow dL = 0, but since the initial membership graph is weakly connected, by
Lemma 6.2 no node can become isolated.

Unfortunately, there is a cycle here: The degree distributions can be learned from
the stationary distribution of the MC, but the transition probabilities, in turn, de-
pend on the degree distributions. For example, the probability of a node receiving
a message depends on that node’s indegree. We therefore search the correct degree
distributions iteratively, starting from an arbitrary one, computing the corresponding
MC’s stationary distribution and deriving from it the degree distributions, with which
we start the next iteration. In each iteration, we compute the MC’s stationary distri-
bution numerically by multiplying the transition matrix by itself until it converges.
We stop the computation when the process converges to an MC with matching degree
distributions and transition probabilities.

Note that since the sum degree invariant (Lemma 6.2) does not hold with non-
atomic actions, sum degrees are not bounded. Considering all possible sum degrees
is computationally infeasible. We observed that states with sum degrees close to 3s
had negligible probabilities under the stationary distribution, so there is no point in
computing probabilities for states with higher sum degrees. Therefore, for the sake of

3842 MAXIM GUREVICH AND IDIT KEIDAR

the numerical computation we consider sum degrees to be bounded by 3s, removing
states with higher sum degrees from the MC and replacing edges leading to these
states with self-loops. This bound is used only to speed up numerical computation
and is not used elsewhere. We verified that the bound does not affect our results by
recomputing part of the results with higher bounds.

The resulting degree distributions, for s = 90, dL = 0, � = 0, and ds(u) = 90 for
each u, are shown in Figure 6.1. Note that the figures show results from our analysis,
which is independent of n, and hence the results hold for any n
 s. We see that the
degree distributions have a variance lower than that of the binomial distribution. It
validates our analysis in section 6.1, which we use now to set the protocol’s degree
thresholds.

6.3. Setting the thresholds. We first select d̂, the expected outdegree we are
interested in, without loss. One should choose d̂ based on the application needs and,
as we see later, on the expected loss rate. Given d̂, we now show how to set dL and s so
that, without loss, the probability of edge duplications and deletions is arbitrarily low,
while the expected outdegree is kept close to d̂. Let δ be the maximum duplication
and deletion probability that we are interested in. We then find dL and s that satisfy,
under no loss, the following conditions: (1) E(d(u)) = d̂, (2) Pr(d(u) ≤ dL) < δ, and

(3) Pr(d(u) ≥ s) < δ. For a given δ < 1/2 we use (6.1) (where dm = 3d̂ by Lemma
6.3) to set

dL = max
d′=0,2,4,...,d̂ : Pr(d(u)≤d′)≤δ

d′,

s = min
d′=d̂,d̂+2,d̂+4,...,dm : Pr(d(u)≥d′)≤δ

d′.

Since the values of dL and s are discrete, Pr(d(u) ≤ dL) and Pr(d(u) ≥ s) are close
but not necessarily equal. Consequently, the resulting expected outdegree may differ
slightly from d̂. For example, for d̂ = 30 and δ = 0.01, dL should be set to 18 and s
to 40. Note that while high δ increases dependencies between nodes’ views, setting δ
too low decreases the ability of the protocol to fix degree imbalances caused by loss.
Typically, δ = 0.01 provides a good balance of keeping low duplication and deletion
probabilities with no loss, and fixing degree imbalances under moderate loss.

We conclude that S&F satisfies Property M1 (small views), as even constant-size
(in the system size n) views are sufficient for the protocol to function properly.

6.4. Node degrees with loss. Figure 6.3 shows the indegree and the outdegree
distributions for several different loss rates and the values dL = 18 and s = 40 from
the example in section 6.3. The average indegrees and their standard deviations are
28± 3.4, 27± 3.6, 24± 4.1, 23± 4.3 for � = 0, 0.01, 0.05, 0.1, respectively.

It can be seen that while the average outdegree decreases with loss, it stays sig-
nificantly above dL, even for high loss rates. This could be counterintuitive as one
might expect all outdegrees to eventually fall to dL. However, due to the flexibility in
node indegrees, even a slight decrease in the average outdegree triggers some dupli-
cations, thus preventing outdegrees from dropping to dL. On the other hand, as we
show in Lemma 6.7, the duplication probability is only slightly higher than the loss
rate; i.e., duplications are not triggered more often than needed to compensate for
lost ids. Therefore, even under relatively high loss rates, nodes are able to exchange
ids effectively, without inducing excessive spatial dependencies.

Figure 6.3 shows that the indegree distribution remains concentrated around the
expected degree. Thus, most nodes have similar indegrees, and we conclude that the

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3843

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40

Node indegree

l=0

l=0.01

l=0.05

l=0.1

(a)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80

Node outdegree

l=0

l=0.01

l=0.05

l=0.1

(b)

Fig. 6.3. S&F node degree distributions (exact, from degree MC) for different loss rates � =
0, 0.01, 0.05, 0.1 (dL = 18, s = 40) and arbitrary n � s.

protocol satisfies Property M2 (load balance).
The next lemma proves what is evident from Figure 6.3—that the expected out-

degree decreases with increasing loss (�).
Lemma 6.4. The expected node outdegree decreases with increasing �.
Proof. Assume loss rate �1 and the corresponding average outdegree d1 and

duplication probability dup1. Suppose now that the loss rate increases to �2 > �1.
To accommodate a higher loss rate, the duplication probability has to increase to
dup2 > dup1, while the deletion probability should not grow. For the duplication
probability to increase, node outdegrees should reach their lower threshold dL more
frequently, and their upper threshold s at most as frequently as with �1. This, in turn,
implies that the expected outdegree decreases. We conclude that in the under loss
rate �2, the expected outdegree d2 < d1.

By Lemma 6.4, with increasing loss rate, the expected outdegree approaches its
lower bound of dL. Hence, the variance of the node outdegree decreases (this can be
observed in Figure 6.3(b)), and the following observation follows.

Observation 6.5. The deletion probability decreases with increasing �.
This is illustrated in Figure 6.3(b), where the deletion probability is the probabil-

ity density at the right edge of the curve, as deletions occur only when the outdegree
reaches s.

We now characterize the connection between the probability of message loss and
the probabilities of duplication and deletion performed by the protocol.

Lemma 6.6. In the steady state, the probability of duplication equals � plus the
probability of deletion.

Proof. Since in the steady state the expected total number of edges remains
constant, the number of new edges created by duplication equals the number of edges
lost due to message loss or deletions.

Recall (section 6.3) that δ is an upper bound on the duplication probability of
the protocol with no loss. We get the following bound on duplications.

Lemma 6.7. In the steady state, the duplication probability during non-self-loop
transformations is between � and �+ δ.

Proof. By Observation 6.5, for � > 0, the probability of deletion decreases below
δ. By Lemma 6.6, the lemma follows.

6.5. Degree dynamics of joining and leaving nodes. We now analyze how
fast the membership graph is updated after a node joins or leaves (fails) in the steady
state. That is, the system is in the steady state when a single join/leave happens. We

3844 MAXIM GUREVICH AND IDIT KEIDAR

assume that a joining node starts with the minimal possible outdegree, dL, and with
indegree 0.

For a node u, an action initiated by u adds u’s id to some view (unless the message
is lost or the view is full), and an action whose target is u removes u’s id from some
view (unless a duplication is performed). Actions where u’s id is sent from one node
to another, on average, keep the same number of instances of u’s id in the system,
because in the steady state, the probability of duplication equals � plus the probability
of deletion.

Thus, there is an exponential decay of “old” instances of u’s id in views (as a
fixed percentage of these instances are chosen as message targets in every round), as
well as a steady flow of “new” instances of u’s id.

6.5.1. General lemmas. We first show that actions where u’s id is sent from
one node to another are expected to keep the same number of instances of u’s id in
the system.

Lemma 6.8. In the steady state, an action where v sends an instance of u’s id
to some w is expected to keep the number of instances of u’s id unchanged.

Proof. Consider an action where v sends an instance of u’s id (in a message [v, u])
to w. There are four possible outcomes of this action (depicted in Figure 5.2). If
the message is not lost and no duplication or deletion occurs, then the number of
instances of u’s id is unchanged. If the action performs a duplication and the message
is lost or deleted, then views do not change at all.

The remaining two outcomes do change the number of id instances: (1) if the
action performs a duplication, and the message is not lost or deleted, the number of
instances of u’s id increases by one; (2) if the action does not perform duplication
but deletion or message loss occurs, we lose one instance of u’s id. Note that the
events of message loss and of deletion are mutually exclusive; i.e., the probability that
both happen is 0. Denoting the probability of duplication by dup and the probability
of deletion by del, the probability of (1) occurring is dup(1 − (�+ del)), and the
probability of (2) is (1−dup)(�+ del). Since by Lemma 6.6, in the steady state dup =
�+ del, the probabilities of events (1) and (2) are equal. Therefore, in expectation,
the number of instances of u’s id is unchanged by actions that send it.

For the sake of the following analysis we define a round to be the period of time
during which each node is expected to initiate exactly one action.

The next lemma bounds the rate at which instances of u’s id disappear from views
of other nodes. We start from some round t0. Note that although new instances of
u’s id may be added during the period we analyze, we consider only old instances that
were created up to round t0.

Lemma 6.9. Consider round t0 in the steady state. The probability that an
instance of u’s id remains in the system from round t0 to round t0+ i is bounded from
above by

(
1− (1− �− δ)dL

s2

)i

.

Proof. By Lemma 6.8, only actions where u is the target of a message change
the expected number of old instances of u’s id in the system. Let v be a node that
has u in its view, and suppose that v initiates an action. The id of u is deleted from
v’s view as a result of the following sequence of events: (1) v selects two nonempty

entries in its view (this happens with probability (d(v)s)2); (2) the first selected entry

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3845

(message target) contains u’s id (this happens with probability 1
d(v) given (1)); and

(3) the action does not perform duplication (this happens with probability dup given
(1) and (2); we analyze dup later). Then, the probability that the id of u is removed
from v’s view is

(
d(v)

s

)2

· 1

d(v)
· (1− dup) =

(1− dup)d(v)

s2
.

Note that dup is not equal to the system-wide average duplication probability
since we are considering only nodes that have instances of u’s id in their view, thus
preferring nodes with higher outdegrees. Fortunately, since the duplication probabil-
ity decreases with an increasing node outdegree, dup is lower than the system-wide
duplication probability. Thus, we use Lemma 6.7 to bound dup by the system-wide
upper bound on the duplication probability �+ δ, getting

(1− dup)d(v)

s2
≥ (1− �− δ)d(v)

s2
.

Finally, we use the fact that d(v) ≤ dL and obtain the following lower bound on
the probability of removal of each instance of u’s id in the system during a single
round:

(1− �− δ)d(v)

s2
≥ (1− �− δ)dL

s2
.

Since all the events during a round happen independently of other rounds, at the end
of round t0 + i, the probability that an instance of u’s id remains in the system from
time t0 is at most

(
1− (1− �− δ)dL

s2

)i

.

6.5.2. Representation of leaving nodes. The following lemma follows di-
rectly from Lemma 6.9.

Lemma 6.10. Consider node u leaving (or failing) at round t0 when the system
is in the steady state and an instance of u’s id in some other node’s view. Then the
probability for this instance to still be in some view at round t0 + i is bounded from
above by

(
1− (1− �− δ)dL

s2

)i

.

Figure 6.4 illustrates the result of Lemma 6.10. It shows the evolution of the
upper bound on the probability of an id instance remaining in the system for several
different loss rates and the values dL = 18 and s = 40 as in the examples in previous
sections. It demonstrates that (the bound on) the id instance decay rate is almost
unaffected by loss, and that after merely 70 rounds (i.e., after each node initiates about
70 actions), fewer than 50% of the id instances of a left/failed node are expected to
remain in the system.

6.5.3. Representation of joining nodes. Let the expected indegree of a node
(in the steady state, under a uniform distribution over the nodes) be Din. We denote

3846 MAXIM GUREVICH AND IDIT KEIDAR

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Round

l=0

l=0.01

l=0.05

l=0.1

Fig. 6.4. The upper bound on the probability that an id instance of a left/failed node remains in
the system as a function of time since the leave/failure, for loss rates � = 0, 0.01, 0.05, 0.1 (δ = 0.01,
dL = 18, s = 40) and arbitrary n � s.

by Δ the expected creation rate—the expected number of new id instances created by
an average node u during a round. We bound Δ in the following lemma.

Lemma 6.11. In the steady state,

Δ ≥ (1− �−δ)dL
s2

·Din.

Proof. Clearly, in the steady state, to compensate for the decaying id instances,
u creates the same number of new id instances in expectation. From Lemma 6.9,
the expected number of the instances of u’s id that are removed from views during a

round is at least (1−�−δ) dL

s2 · din(u). Taking the expectation,

Δ ≥ E

(
(1 − �− δ)dL

s2
· din(u)

)

=
(1− �− δ)dL

s2
· E(din(u)) =

(1 − �− δ)dL
s2

·Din.

Lemma 6.12. If a new node joins when the systems is in the steady state, the
expected creation rate of the newly joined node is at least

(
dL
s

)2

·Δ.

Proof. A new instance of u’s id can be added to some view only as a result of a
non-self-loop action initiated by u. The probability of such a non-self-loop action is

(d(v)s)2. For a veteran node in the system, this probability may be as high as (ss)
2.

For a newly joined node, this probability may be as low as (dL

s)
2. The lemma follows

from Lemma 6.11 and the ratio of the above probabilities: (dL

s)
2/(ss)

2 ≥ (dL

s)
2.

Lemma 6.13. If a new node joins when the systems is in the steady state, during

its first s2

(1−�−δ) dL
rounds the node is expected to create at least (dL

s)
2 ·Din instances

of its id in other views.
Proof. By Lemma 6.11, a veteran node is expected to create at least Din new

instances of its id in at most s2

(1−�−δ) dL
rounds. By Lemma 6.12, the expected creation

rate of the newly joined node is at most (dL

s)
2 times slower. Thus, during the same

number of rounds, the newly joined node is expected to create at least (dL

s)
2 · Din

instances of its id in other views.
The above result may be hard to parse, so we substitute some typical values to

obtain a more intuitive result in the following corollary.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3847

Corollary 6.14. For �+δ � 1 and s / dL = 2, after 2s rounds, a newly joined
node is expected to create at least Din/4 instances of its id in other views.

Note that after creating Din/4 new in-neighbors, the new node is likely to receive
messages from these neighbors, thus increasing its outdegree to above dL and making
the duplication probability at the node low. We conclude that under moderate loss,
after roughly 2s rounds, the new node can efficiently engage in the protocol and
becomes integrated in the system.

7. Uniformity and independence. In this section we analyze the remaining
protocol properties of uniformity and independence (Properties M3–M5). In section
7.1 we define a global MC graph that we use to model protocol actions. In section 7.2
we prove that with no loss and no duplications or deletions, all membership graphs
reachable from a weakly connected initial graph are equally likely to be reached by
the protocol. In section 7.3 we show that eventually each node id is equally likely to
appear in a view of any other node in the system. In section 7.4 we show that the
expected fraction of independent entries in views is at least 1 − 2(�+ δ). Finally, in
section 7.5 we show that the number of actions each node needs to initiate in order
to reach a state that is independent of the initial state is bounded by O(log n) for
constant-size views and by O(log2 n) for logarithmic views.

Since in this section we are interested in the steady state behavior of the protocol,
we assume that the churn ceases for the period we analyze. We further assume that
the initial topology (i.e., the one reached after the churn stops) satisfies some minimal
connectivity conditions (formally specified below). In practice, such conditions will
be satisfied if the churn is moderate. If the churn is severe enough to partition the
network, not only is our analysis not applicable, but also no gossip-based protocol can
be expected to work well. In section 6.5 we analyze the time it takes to integrate new
nodes and to remove id instances of left/failed ones.

7.1. The global Markov chain graph. We define G(s, dL, �) to be the global
MC graph induced by S&F with given s, dL, and �. For simplicity, we omit the
parameters and refer to this graph as G. We call vertices in G states, as each vertex
represents a global state of the views of all nodes. The set of vertices of G can be
represented as a union V = V0

⋃V1 of two disjoint sets of states: V0 that contains all
weakly connected membership graphs, where all node outdegrees are between dL and
s− 2 (inclusive) and are even; and V1 that contains all weakly connected membership
graphs that are not in V0 (i.e., membership graphs where some nodes have outdegree
of s) and that can be reached by S&F transformations from some membership graph
in V0. States G1 and G2 are connected by a directed edge (G1,G2) if there exists at
least one transformation from G1 to G2. The weight of the edge, p(G1,G2), is the
sum of the probabilities of all transformations from G1 to G2.

Note that some membership graphs are partitioned, e.g., when some node has no
incoming edges and all of its outgoing edges are self-edges. Since partitioned states are
excluded from G, we replace the edges leading to them from states in G by self-loops.
In section 7.4 we show sufficient conditions for making the probability of reaching
such partitioned membership graphs arbitrarily small. When these conditions do not
hold, e.g., when the loss rate is 100%, the analysis in this section is not applicable.

We also exclude states that are unreachable from the largest connected component
of G. Such unreachable states are (some of the) membership graphs where some nodes
have full views, i.e., outdegrees of s. Nodes with full views cannot effectively exchange
ids with their neighbors (which may also have full views). For example, states where
all views are full are clearly unreachable by S&F transformations. In the analysis we

3848 MAXIM GUREVICH AND IDIT KEIDAR

assume that the system begins from a reachable state; i.e., the initial state is in G and
not among the unreachable states.

Note that each state in G has a self-loop edge corresponding to self-loop transfor-
mations, which occur as a result of actions where one of the selected view entries is
empty so the action has no effect on the views.

The proof of the following lemma appears in the appendix.
Lemma 7.1. When 0 < � < 1, G is strongly connected.

Lemma 7.1 implies that from any initial state, any state in G can be reached by
a sequence of S&F transformations.

Lemma 7.2. The MC on G has a unique stationary distribution π.
Proof. Clearly, G is finite. By Lemma 7.1 it is irreducible. It is aperiodic (meaning

that the greatest common denominator of the lengths of directed paths connecting
any two nodes in G is 1) since each state in G has a self-loop edge. From the above, the
MC is ergodic and, by the fundamental theorem of the theory of MCs, has a unique
stationary distribution.

Definitions.
Steady state is a random state distributed according to π.
Expected outdegree dE is the expected node outdegree in the steady state. It is

immediate that dE ≥ dL.
Expected independence α is the expected fraction of independent entries in views

in the steady state.

7.2. Stationary distribution with no loss. We now complete the analysis of
section 6.1 by proving that, with no loss and when for each u, 0 < ds(u) ≤ s and
is even, the stationary distribution over all reachable states in G is uniform. As we
assume no loss, there is no need to compensate for it using duplications, so we set
dL = 0. It is easy to see that in the above setting, no duplications or deletions take
place. Observe that by Lemma 6.2, S&F preserves the sum degree of each node. Let
d̄s = (ds(u), ds(v), . . .) be a vector mapping each node to its sum degree. For the sake
of the analysis in this section, we define Gd̄s to be the subgraph of G where all states
satisfy a given degree sum vector d̄s. Then, Gd̄s is the MC graph induced by S&F
under the above assumptions, where d̄s is the sum degree vector of the initial state.

We now prove that the stationary distribution of the MC on Gd̄s is uniform. The
proof is basically an adaptation of the proof in [27] to S&F. We first observe that Gd̄s
is in fact undirected.

Lemma 7.3. Gd̄s is reversible.
Proof. Consider an arbitrary G ∈ Gd̄s, an arbitrary transformation initiated

by node u, sending u and w to v, and the resulting G′ ∈ Gd̄s. Clearly, G′ can
be transformed back into G by v sending v and w to u. By Proposition 5.2, all
transitions happen with the same probability. The lemma follows.

Lemma 7.4. The outdegrees and the indegrees of all states in Gd̄s are equal.
Proof. G’s outdegree is the sum of the probabilities of all transformation of G.

Since each transformation involves an arbitrary node and by Proposition 5.2, the
probability of each transformation is the same.

By Lemmas 7.4 and 7.3, Gd̄s induces a doubly stochastic MC transition matrix.
Lemma 7.5. The stationary distribution of the MC on Gd̄s is the uniform distri-

bution over all states in Gd̄s.
Proof. Consider the MC induced by Gd̄s. Clearly, Gd̄s is finite. From Lemma A.2

it is irreducible. It is aperiodic (meaning that the greatest common denominator of

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3849

the lengths of directed paths connecting any two nodes in Gd̄s is 1) since each state
G ∈ Gd̄s has a self-edge. From the above, the MC is ergodic and, by the fundamental
theorem of the theory of MCs, has a unique stationary distribution.

By Lemma 7.3, Gd̄s is undirected. On undirected graphs, the probability of each
state under the stationary distribution is proportional to its degree. Since by Lemma
7.4 the degrees of all states are equal, the stationary distribution of an MC on graph
Gd̄s is uniform.

7.3. Proving uniformity (Property M3). We now return to the general case,
where loss may occur. We show that Property M3 (uniform sample) holds, with the
exception that the probability that u’s view contains its own id may be different
(higher) than the uniform probability of containing any other id v �= u.

Lemma 7.6. In the steady state, for each u, u’s view contains each v �= u with
equal probability.

Proof. Consider two arbitrary nodes u and v. Denote by G(u,v) the set of states
in G that contain edge (u, v). As G includes all weakly connected membership graphs
where dL ≤ d(u′) ≤ s for each u′, and since all nodes behave exactly the same way, by
symmetry, for all u, v, w, z such that u �= v and w �= z, the subgraph spanned by G(u,v)
is isomorphic to the subgraph spanned by G(w,z). Thus, in G’s stationary distribution
π, the probability of being in one of the states in G(u,v) equals the probability of being
in one of the states in G(w,z). From here, every node v �= u has the same positive
probability of appearing in u’s view.

7.4. Proving spatial independence (Property M4). We next analyze Prop-
erty M4 (spatial independence) and show that in the steady state, the expected frac-
tion of independent entries in all views, α, can be bounded from below by some
positive constant.

In this section, we restrict the initial state and assume that, initially, the fraction
of independent entries in views is at least 2/3. This assumption allows us to show
(in Lemma 7.9) that under moderate loss, α converges to a much higher value that
depends on the actual loss. Thus, α remains higher than 2/3.

Assumption 7.7. Initially, α ≥ 2/3.
Note that due to Assumption 7.7 our analysis is not applicable for high loss rates

or high churn rates when all new joiners start with the same initial view, making α
too low. Nevertheless, since our analysis is not tight, we speculate that the protocol
may also work well with α below 2/3. The exact dependence of α on the loss rate will
become evident in the analysis below.

Observe that spatial independence decreases only when the protocol performs
duplication, creating dependent entries in views of immediate neighbors. By Lemma
6.7, duplication probability is at most �+δ (recall that δ is an upper bound on the
duplication probability of the protocol with no loss).

The following analysis shows that the expected fraction of independent entries in
views is bounded from below by 1− 2(�+δ). Note that, typically, both � (see [32, 4])
and δ (see section 6) are on the order of 1%; hence the vast majority of view entries
are expected to be independent.

The following lemma coarsely bounds the probability of a dependent view entry
that u sends returning to u in the future. By slight abuse of terminology, we use the
term dependent entry to refer to a particular instance of an id that was created by
duplication. The dependent entry is created in some view entry of u and later may be
sent to other nodes and reside in their views. In this lemma we ignore the possibility
that a dependent entry is duplicated again and account for this in Lemma 7.9.

3850 MAXIM GUREVICH AND IDIT KEIDAR

Lemma 7.8. Suppose u sends a dependent entry to one of its neighbors. In the
steady state, the probability of this entry being sent back to u in the future is at most
1/2.

Intuitively, the lemma follows from the fact that u’s neighbors have many addi-
tional neighbors, and thus the id is more likely to travel away from u than to return.

Proof. We (crudely) bound the probability of a dependent entry being sent back
to its originator as follows. In the worst case, when all dependent entries of u’s
out-neighbors point to u, the probability of u getting back a dependent entry from its
immediate neighbor is at most 1−α(1−1/n). For simplicity, we neglect 1/n (assuming
n
 1) and thus use 1 − α for the above bound. More generally, the probability of
a dependent entry getting back to u after traversing i edges under the worst case
assumptions that all dependent entries of all nodes reachable from it by i edges are
“devoted” to such back edges to u is bounded by (1− α)i. Thus, the probability of a
given dependent entry returning to u after being removed from u’s view is bounded
by

∞∑
i=1

(1− α)i =
1

1− (1− α)
− 1 =

1

α
− 1.

Since we assumed that α ≥ 2/3 (Assumption 7.7), the above expression is at most
1/2.

Note that the above bound is not tight due to the following worst-case assump-
tions: (1) for each i ∈ [1,∞), all dependent entries of all nodes reachable from u by
i edges are devoted to edges to u; (2) we ignore the probability of the entry disap-
pearing due to loss or deletions; and (3) summing the return probabilities for all i,
we ignore the fact that if the entry returns after traversing i edges, it will not return
after traversing j edges for j > i.

Lemma 7.9. In the steady state, the expected fraction of independent entries in
views is bounded from below: α ≥ 1− 2(�+δ).

Proof. We analyze the expected time a nonempty entry in a view is independent.
Since the protocol is memoryless, we use a simple dependence MC to model the state
of the entry, which can be either “dependent” or “independent.”

In
d
e
p
e
n
d
e
n
t

D
e
p
e
n
d
e
n
t

Sent with duplication or

received previously duplicated

Sent without duplication

Fig. 7.1. Dependence MC.

We consider non-self-loop transformations corresponding to actions initiated by
a random node u and bound the transition probabilities between these states. We
then compute the stationary distribution of the dependence MC, shown in Figure 7.1,
and derive from it the bound on the expected time a nonempty entry in a view is
independent. We ignore self-loop transformations since they do not cause any change
in views and thus do not alter the dependence state of any entry.

We start with computing the probability of going from the independent to the
dependent state. By Proposition 5.2 each entry has the same probability of being

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3851

involved in a transformation. Thus, by Lemma 6.7, the probability of an entry be-
coming dependent during a non-self-loop transformation is at most �+δ. By Lemma
7.8, the probability of getting back a dependent entry given that it was duplicated
at the time of sending is at most 1/2. Thus, in the steady state, the arrival rate
of the returning dependent entries is at most half of the rate of creation of the new
dependent entries. Summing up, the probability of going from the independent to the
dependent state is at most (1 + 1

2)(�+δ) = 3
2 (�+δ).

We now bound the probability of going from the dependent to the independent
state. An action removes a dependent entry from a view if (1) the target node is
different from the action initiator, and (2) the entry is not duplicated again. By
Lemma 6.7, the probability of (2) is at least 1−(�+δ). We next bound the probability
of (1).

Let β be the probability of an entry being a self-edge, i.e., u.lv[i] = u. The most
likely scenario for creating a self-edge in u’s view is that (1) u creates two parallel edges
(v, u) by initiating two actions involving one of its out-neighbors, v (in both u sends a
message to v which is not lost or deleted), where the first action performs duplication
so that v’s id remains in u’s view; then, (2) v initiates an action involving both of
these parallel edges (v, u), sending a message [v, u] to u that is not lost or deleted.
Since the probability of (2) is at most 1/2 by Lemma 7.8, we conclude that at most
half of the dependent entries are self-edges. Since we assumed α ≥ 2/3 (Assumption
7.7), the probability β of a random view entry being a self-edge is at most 1

3 · 12 = 1
6 .

Summing up, the probability of going from the dependent to the independent state
is at least (1− β)(1 − (�+δ)) = 5

6 (1− (�+δ)).

Thus, an entry is expected to spend at most 1
5
6 (1−(�+δ))

out of 1
3
2 (�+δ)

+ 1
5
6 (1−(�+δ))

transformations in the dependent state:

1
5
6 (1−(�+δ))

1
3
2 (�+δ)

+ 1
5
6 (1−(�+δ))

=

6
5

(1−(�+δ))
2
3 (1−(�+δ))+ 6

5 (�+δ)

(�+δ)(1−(�+δ))

=
6
5 (�+δ)

2
3 + 8

15 (�+δ)
=

�+δ
5
9 + 4

9 (�+δ)
≤ 2(�+δ).

The lemma follows.

Connectivity conditions. A sufficient condition for a membership graph to be
weakly connected is that each node has at least three independent out-neighbors [15].
Although we do not know the exact distribution of the number of independent ids
in views, since the loss rate (and hence the duplication probabilities) is uniform and
independent, we speculate that the number of independent ids in node views is dis-
tributed similarly to node outdegrees but with lower expectation (α dE instead of dE).
That is, the number of independent ids in a view is distributed so that it is close to
a binomial distribution with expectation of at least α dL. Thus, for any given proba-
bility ε and loss rate �, we can find the minimal dL guaranteeing that the probability
of a node having fewer than three independent neighbors is at most ε. For example,
for � = δ = 1% and ε = 10−30, dL should be set to at least 26.

7.5. Proving temporal independence (Property M5). We next analyze
Property M5 (temporal independence). Consider a random initial state G(0) = G̃
chosen from π. Clearly, the state G̃(1) after one transformation is highly dependent
on G(0). However, as more transformations are performed, the dependence between

3852 MAXIM GUREVICH AND IDIT KEIDAR

G̃(i) and G(0) decreases. For a given ε, we would like to find the minimum time τε(G)
such that for all subsets of states S,

|Pr[G̃(τε(G)) ∈ S|G(0) = G̃]− π(S)| < ε.

That is, after τε(G) transformations, the membership graph is ε-independent of the
initial graph.

Note that we are interested in convergence time from an average state G̃ dis-
tributed according to π, and not from an arbitrary state (the latter is called mixing
time). This is because such a worst-case assumption inevitably yields overly pes-
simistic bounds that do not shed much light on the protocol’s behavior in practice.
Indeed, mixing time analyses of similar MCs in previous works [14, 10, 11] proved
bounds on the order of O(n9) steps or more, which can hardly be considered useful in
practice. We instead start from an average state, which provides meaningful bounds,
albeit for more limited circumstances. In particular, if the churn rate is high and all
new joiners start with the same initial view, convergence might be slower.

For the sake of this analysis, we assume that there are exactly n nodes, fixed
during the period we analyze, in all states in G and that s � √n. We first derive
the expected conductance—a generalization of graph expansion around the expected
state—of G from three properties: (1) each transition from each state is induced by
two entries selected uniformly at random in a view of a random node; (2) both of these

transitions are not self-loops (due to empty view entries) with probability dE(dE −1)
s(s−1) ;

and (3) the expected fraction of independent entries in views is bounded from below
by α; hence different transitions involving independent view entries lead to different
states, independently of other transitions, with probability of at least α.

Our analysis makes use of the following well-established notions of neighbor set
and boundary.

Definition 7.10 (neighbor set). Let x be a vertex in G. Then, the neighbor set
of x, Γi(x) is the subset of V reachable from x by paths of at most i edges.

Recall (section 3.2) that P (x, y) is the transition probability of the MC from state
x to y. Intuitively, the boundary size of S is the “flow” from S to the rest of the graph
relative to the stationary distribution π.

Definition 7.11 (boundary size). For x, y ∈ V, let Q(x, y) = π(x)P (x, y), and
for A,B ⊂ V, let Q(A,B) =

∑
x∈A,y∈B Q(x, y). The boundary size of S ⊂ V, |∂S|,

is then |∂S| = Q(S, Sc), where Sc = V \ S is the complement of S.
Definition 7.12 (conductance). The conductance of S ⊂ V, φ(S), is defined

as follows: φ(S) = |∂S|
π(S) . The conductance of graph G is defined as follows: φ(G) =

minS⊂V:π(S)≤1/2(φ(S)).
As explained above, we focus on starting from a random state rather than from

an arbitrary one. We thus introduce the new notion of expected conductance.
Definition 7.13 (expected conductance). The expected conductance of graph G,

Φ(G), is defined as follows:

Φ(G) = E

(
min

i:π(Γi(X))≤1/2
(φ(Γi(X)))

)
,

where X is a random state in V distributed according to π.
The following lemma bounds the expected conductance of G.
Lemma 7.14. Assume s � √n. Then, the expected conductance of G satisfies

Φ(G) ≥ dE(dE −1)α
2 s(s−1) .

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3853

Proof. Recall the definition of the expected conductance:

Φ(G) = E

(
min

i:π(Γi(X))≤1/2
(φ(Γi(X)))

)
,

where X is distributed according to π, and

φ(Γi(X)) =

∑
x∈Γi(X)(π(x)

∑
y∈Γi(X)c P (x, y))

π(Γi(X))
.

We bound
∑

y∈Γi(X)c P (x, y)—the sum of all transition probabilities from x to states

in Γi(X)c—as follows: Recall that each two entries in a view of each node have the
same probability of being involved in a transformation. We thus have n · s ·(s−1)
view entry pairs in x, each involved in a transformation with probability 1

n · s ·(s−1) .

We now bound the probability of a random transformation from a random state in
Γi(X) leading to one of the states in Γi(X)c. The probability of both view entries

being nonempty is dE(dE −1)
s(s−1) , and the probability of each of them pointing to a ran-

dom node independently of other view entries is α. Thus, a random transformation

has the probability of at least dE(dE −1)α
s(s−1) of leading to one of the states in Γi(X)c,

independently of other transformations. Due to the assumption that s � √n, the
probability of several such independent transformations leading to the same state in
Γi(X)c is negligible for small Γi(X) and is at most half when π(Γi(X)) ≈ 1/2. (More
frequent duplicate selections would imply that there is a higher fraction than 1−α of
dependent entries, since duplicate selection is caused by several different sequences of
transformation reaching the same state.) Thus,

Φ(G) ≥ dE(dE−1)α
2 s(s−1) .

We now use standard techniques typically used to deduce the mixing time from
conductance to show the following lemma.

Lemma 7.15. Assuming s� √n,

τε(G) ≤ 16 s2(s−1)2
dE

2(dE−1)2 α2

(
n s · log(n) + log

4

ε

)
.

Proof. The MC mixing time Tε(G) is related to the MC graph conductance as
follows [30]:

Tε(G) ≤ 1 +
4

φ2(G)
(
log

1

π∗
+ log

4

ε

)
,

where π∗ = minx∈V π(x) is the probability, under stationary distribution, of a least
probable “worst-case” state. Since we are starting from a random state X distributed
according to π, we use Φ(G) instead of φ(G), and π′ = E(π(X)) instead of π∗. Thus,

τε(G) ≤ 1 +
4

Φ2(G)
(
log

1

π′ + log
4

ε

)
.

As we do not know the distribution π explicitly, we bound E(π(X)) from below as
if each state had the same probability. In each state in G, each node selects, uniformly

3854 MAXIM GUREVICH AND IDIT KEIDAR

at random, at most s neighbors out of n nodes independently of other selections. Thus,
there are at most nn s different states in G. Since some states have higher probability
relative to π than the others (e.g., since most views are expected to contain fewer
than s entries),

E(π(X)) ≥ 1

nn s
.

Substituting the result of Lemma 7.14, we get

τε(G) ≤ 16 s2(s−1)2
dE

2(dE−1)2 α2

(
log(nn s) + log

4

ε

)

=
16 s2(s−1)2

dE
2(dE−1)2 α2

(
n s · log(n) + log

4

ε

)
.

Note that for zero loss and α = 1, temporal independence is achieved inO(n s log n)
transformations. That is, after each node initiates O(s log n) actions in expectation,
the views of all nodes are independent of the initial state. For logarithmic view sizes
this translates to O(log2 n) time until the dependence on the initial state becomes
arbitrarily low. For a positive but moderate loss, α remains a constant bounded away
from 0, and the time it takes to achieve temporal independence increases by a constant
factor.

8. Conclusions. We formalized the desired properties of distributed member-
ship service: small local views, bounded number of node neighbors, uniformity of
views, and their low correlation with past and neighbors’ views. We proposed a
formal model for studying membership graph evolutions with nonatomic protocol ac-
tions. We presented a simple and practical membership protocol, S&F, and showed
that it provides all the desired properties of a membership service. This is the first
analysis of a membership protocol in the presence of message loss that we are aware
of. It might be interesting to apply our methodology in order to analyze additional
gossip-based protocols under message loss.

Appendix. Uniformity and independence. In this appendix we show that
the global MC graph is strongly connected. We first prove this in Lemma A.2 for the
loss-free case, and then prove the general case with positive loss in Lemma 7.1. Recall
that the sum degree of node u, ds(u), is equal to d(u)+ 2 din(u). In the loss-free case,
the sum degrees remain invariant. We define the following loss-free transformations
on membership graphs.

Edge exchange transformation of (u,w) and (v, z). This transformation removes
edges (u,w) and (v, z) and creates edges (u, z) and (v, w) instead. First, assume that
u and v are connected by an edge (u, v). A prerequisite for this transformation is
that d(u) > dL and d(v) < s. We use this transformation only when the prerequisite
holds. The following two S&F actions implement the edge exchange transformation:
u initiates an action, selects entries containing v and w in its view, removes these
entries from its view, and sends a message [u,w] to v. On receiving the message, v
creates an edge (v, u). Then, v initiates an action and sends [v, z] to u (note that
v necessarily has u in its view), and u creates an edge (u, z). It is easy to see that
except for the edge exchange, the rest of the membership graph remains unchanged.

We now generalize the edge exchange to any two nodes u and v that are not
necessarily neighbors. Since the graph is weakly connected, there exists at least one
undirected path between u and v. Let this path be u, y1, y2, . . . , yk, v. We use simple

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3855

edge exchange between neighbors to “send” the edges we want to exchange along the
path. That is, u exchanges edge (u,w) with some arbitrary y1’s edge, say (y1, x1).
Then, y1 exchanges edge (y1, w) with y2 and so on, until yk exchanges edge (yk, w)
with v’s edge (v, z). Now yk exchanges edge (yk, z) with yk−1’s edge (yk−1, xk).
This way, an edge to z travels towards u while returning the temporarily misplaced
edges x1, x2, . . . , xk to their original owners. A prerequisite for the generalized edge
exchange transformation between u and v is the existence of an undirected path
between u and v such that, for each two neighbors in the path connected by an edge
(y1, y2), d(y1) > dL and d(y2) < s.

Degree borrowing transformation between u and v. The goal of this transformation
is to decrease the outdegree of node u, and to increase the outdegree of node v, while
keeping their sum degrees invariant. We first define a degree borrowing transformation
between two neighbor nodes u and v and later generalize it to two arbitrary nodes.
Obviously, a prerequisite for this transformation is that d(u) > dL and d(v) < s.
Degree borrowing is then implemented by u initiating an action and sending a message
to v that is not lost.

Degree borrowing between two arbitrary nodes u and v is then implemented
as follows: We identify another node w, such that there exists an edge (w, v), and
exchange an arbitrary u’s edge (u, z) with w’s edge (w, v), thus making u and v
neighbors. We then proceed with degree borrowing between neighbors. A prerequisite
for the generalized degree borrowing transformation between u and v is a nonzero
indegree of v and the ability to perform edge exchange between u and at least one of
v’s in-neighbors.

Recall (section 7.2) that d̄s = (ds(u1), ds(u2), . . .) is a vector mapping each node
to its sum degree, and that Gd̄s is the subgraph of G where in all states all node sum
degrees are according to d̄s. The next lemma proves that, in a static setting with n
nodes and when each pair of nodes satisfies the prerequisite for edge exchange, Gd̄s is
strongly connected.

Lemma A.1. When in each state in Gd̄s, each two nodes satisfy the prerequisite
for edge exchange, Gd̄s is strongly connected.

Proof. We show that, for each G,G′ ∈ Gd̄s, there exists a sequence of trans-
formations transforming G to G′. We use only transformations not involving loss,
duplications, or deletions. We transform G into G′ in two steps: (1) Transform G
into G∗ such that node outdegrees in G∗ are equal to those in G′ (note that by the
sum degree invariant, the indegrees become equal, too); and (2) transform G∗ into
G′.

We implement (1) as follows: We iteratively identify pairs of nodes so that one has
outdegree higher than its outdegree in G′ and another has outdegree lower than its
outdegree in G′. Since the total number of edges in the membership graph remains
constant, such pairs are guaranteed to exist as long as at least one node has an
outdegree different from its outdegree in G′. For each such pair, we invoke the degree
borrowing transformation, making the outdegrees of the two nodes closer to their
outdegrees in G′. Note that since degree borrowing does not alter node sum degrees,
as a result of the transformation we get a state that is in Gd̄s. Clearly, after a finite
number of such transformations, we get G∗, where node outdegrees are equal to those
in G′.

To implement (2) we repeatedly identify “misplaced” edges and use edge exchange
transformations to move them to the nodes to which they belong according to G′.
As the number of edges in the membership graph is finite, a finite number of such
transformations is needed to transform G∗ into G′.

3856 MAXIM GUREVICH AND IDIT KEIDAR

The next lemma proves that, with no loss (i.e., � = 0 and dL = 0) and for d̄s such
that for each u, 0 < ds(u) ≤ s, Gd̄s is strongly connected.

Lemma A.2. When 0 < ds(u) ≤ s for each u, � = 0, and dL = 0, Gd̄s is strongly
connected.

Proof. We first show that in the setting of the lemma, in each state in Gd̄s, each
two nodes that do not satisfy the prerequisite for edge exchange (outdegree above
dL for the initiating node and outdegree below s for the other node) can temporarily
increase/decrease their outdegree using degree borrowing with one of their neighbors.
The lemma then follows from Lemma A.1.

Since 0 < ds(u) ≤ s for each u and dL = 0, if d(u) = dL = 0, then, by the sum
degree invariant, u has at least one in-neighbor y such that 0 < d(y). Similarly, if
d(u) = s, then u has at least one out-neighbor y such that d(v) < s. Thus, for any node
that has an outdegree of dL or s, we can perform degree borrowing before and after the
edge exchange so that the node satisfies the edge exchange prerequisite. The degree
borrowing performed after the edge exchange involves the same nodes as the one
performed before the edge exchange, thus eliminating any effects of degree borrowing
on the membership graph. We also do this for edge exchange transformations used
within degree borrowing. Thus, for every u whose outdegree is lower than s−2 and
every v whose outdegree is greater than 2, the prerequisites for degree borrowing of
u from v can be satisfied.

We now take message loss into account (� > 0) and show that G is also strongly
connected. Recall (section 7.1) that the states of G include states in V0 (where all
node outdegrees are between dL and s− 2 and are even) and states in V1 (where some
nodes have outdegrees of s) that are reachable by S&F from V0.

Lemma 7.1 (restated). When 0 < � < 1, G is strongly connected.
Proof. We prove the lemma in several steps. We first prove that any two states

in V0 are reachable from each other (Lemma A.3), and then show that there is a path
from any state in V1 to some state in V0 (Lemma A.4). In the following two lemmas,
unless specified otherwise, we consider transformations that do not involve message
loss.

Lemma A.3. For each G,G′ ∈ V0, there exists a sequence of S&F transformations
transforming G to G′.

Proof. We first construct from G′ another membership graph G′′ by adding
outgoing edges from every node whose outdegree in G′ is dL to two arbitrary nodes.
Note that G′′ is also in V0. Clearly, G′′ can be transformed to G′ by invoking S&F
transformations involving only these additional edges, where these edges are lost.
The remainder of the proof is dedicated to transforming G to G′′. Note that since in
section 5 we require dL ≤ s− 6, we are guaranteed that s−2 > dL +2.

We start by transforming G into G1 where each node has outdegree of at least
dL +2. We first increase the outdegrees of nodes with outdegree dL. We pick u such
that d(u) = dL and perform the following transformation: If u has an in-neighbor with
outdegree of at least dL +4, we invoke an S&F transformation where this neighbor
sends a message to u, thus increasing its outdegree to dL +2. If u does not have
an in-neighbor with outdegree of at least dL +4, we invoke an S&F transformation
where u sends a message to any of its out-neighbors (involving duplication), and then
a transformation where that neighbor sends a message back to u. Thus, the outdegree
of u becomes dL +2, while other node outdegrees do not change.

From now on, we maintain the outdegrees of all nodes in the range [dL +2, s− 2].
Thus, the prerequisites for edge exchange and degree borrowing transformations be-
tween any two nodes are satisfied.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3857

We next transform G1 into G2, where the total number of edges is as in G′′. To
decrease the number of edges, we invoke S&F transformations involving loss at nodes
whose outdegree is still greater than dL +2. To increase the number of edges, we need
to invoke S&F transformations that perform duplication, which happens only when
a node has outdegree of dL. To this end, we pick an arbitrary node u and perform
degree borrowing transformations to decrease the outdegrees of u and of all of its
out-neighbors to dL. Once u reaches an outdegree of dL, we invoke S&F transfor-
mations where u sends messages to its out-neighbors and performs duplications until
the neighbors’ outdegrees reach s− 2 (or the desired number of edges is reached). We
then invoke S&F transformation where one of u’s in-neighbors sends u a message, thus
increasing u’s outdegree to dL +2. We continue the above process (possibly repeating
it with different nodes), until we reach the desired number of edges. All subsequent
transformations will preserve the total number of edges in the membership graph.

We next transform G2 into G3, where for each node u, its sum degree is as in G′′.
We iteratively identify pairs of nodes u and v so that ds(u) is too low and ds(v) is too
high until for each u, ds(u) is as in G′′. (Such pairs are guaranteed to exist as long as at
least one node u has a sum degree different from that in G′′.) For such a pair u, v, we
identify an arbitrary node w and use edge exchanges between w and the in-neighbors
of u and v to create edges (w, u) and (w, v). (If u or v do not have in-neighbors, we
perform degree borrowing to create the needed in-neighbors.) We then temporarily
decrease the outdegree of w to dL using degree borrowing (as described earlier), and
perform the following sequence of S&F transformations between w and its arbitrary
out-neighbor y �= u, v: (1) w sends and duplicates [w, u] to y, thus creating edges
(y, w) and (y, u); (2) y sends [y, u] to w, removing edges (y, w) and (y, u) and creating
edges (w, y) and (w, u) (both these edges now have multiplicity of at least 2); (3) w
sends [w, v] to y, and the message is lost, thus removing edges (w, y) and (w, v). The
outcome of this entire sequence is creating one new incoming edge to u and removing
one incoming edge from v, thus increasing u’s sum degree by 2 and decreasing v’s sum
degree by 2. The total number of edges in the membership graph remains unchanged.
We now can undo all degree borrowing transformations so that node outdegrees are
again between dL +2 and s− 2. After a finite number of such transformations, we get
G3, where for each node u, ds(u) is as in G′′.

By Lemma A.1, G′′ is reachable from G3, and the lemma follows.
We next prove that there is a path from any state in V1 to some state in V0.
Lemma A.4. For each G ∈ V1, there exists a sequence of transformations trans-

forming G to some G′ ∈ V0.
Proof. In order to get from G to some G′ ∈ V0 we need to decrease the outdegrees

of all nodes to at most s−2. To this end, we iteratively pick nodes having outdegrees of
s, and initiate S&F transformations involving entries in their views and also involving
message loss. Each such transformation decreases the source node’s outdegree from
s to s−2 without affecting the outdegree of any other node. After at most n such
transformations we get to some G′ ∈ V0.

Proof of Lemma 7.1. By Lemmas A.3 and A.4, and since by the definition of G
all states in V1 are reachable from some state in V0, the lemma follows.

Acknowledgment. We are grateful to Fabian Kuhn for stimulating discussions
on the expansion of random graphs.

3858 MAXIM GUREVICH AND IDIT KEIDAR

REFERENCES

[1] A. Allavena, On the Correctness of Gossip-Based Membership Protocols, Ph.D. thesis, Cornell
University, Ithaca, NY, 2006.

[2] A. Allavena, A. Demers, and J. E. Hopcroft, Correctness of a gossip based membership
protocol, in Proceedings of the Twenty-Fourth Annual ACM Symposium on the Principles
of Distributed Computing, 2005, pp. 292–301.

[3] C. Avin, M. Koucký, and Z. Lotker, How to explore a fast-changing world (cover time of
a simple random walk on evolving graphs), in Automata, Languages and Programming,
Lecture Notes in Comput. Sci. 5125, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 121–
132.

[4] O. Bakr and I. Keidar, Evaluating the running time of a communication round over the
Internet, in Proceedings of the Twenty-First Annual ACM Symposium on the Principles
of Distributed Computing, 2002, pp. 243–252.

[5] Z. Bar-Yossef, R. Friedman, and G. Kliot, RaWMS-Random walk based lightweight mem-
bership service for wireless ad hoc networks, ACM Trans. Comput. Syst., 26 (2008), pp.
1–66.

[6] F. Bonnet, Performance Analysis of Cyclon, an Inexpensive Membership Management for
Unstructured P2P Overlays, Master’s thesis, ENS Cachan Bretagne, University of Rennes,
IRISA, Rennes, France, 2006.

[7] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, Brahms: Byzantine
resilient random membership sampling, Comput. Netw., 53 (2009), pp. 2340–2359.

[8] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Springer-
Verlag, New York, 2008.

[9] Y. Busnel, M. Bertier, and A.-M. Kermarrec, Bridging the Gap between Population and
Gossip-based Protocols, Research report RR-6720, INRIA, Rennes, France, 2008.

[10] C. Cooper, M. E. Dyer, and C. S. Greenhill, Sampling regular graphs and a peer-to-peer
network, Combin. Probab. Comput., 16 (2007), pp. 557–593.

[11] C. Cooper, M. E. Dyer, and A. J. Handley, The flip Markov chain and a randomising P2P
protocol, in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Principles
of Distributed Computing, 2009, pp. 141–150.

[12] D. Dolev, C. Dwork, and L. J. Stockmeyer, On the minimal synchronism needed for
distributed consensus, J. ACM, 34 (1987), pp. 77–97.

[13] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermar-

rec, Lightweight probabilistic broadcast, ACM Trans. Comput. Syst., 21 (2003), pp. 341–
374.

[14] T. Feder, A. Guetz, M. Mihail, and A. Saberi, A local switch Markov chain on given degree
graphs with application in connectivity of peer-to-peer networks, in Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, 2006, pp. 69–76.

[15] T. I. Fenner and A. M. Frieze, On the connectivity of random m-orientable graphs and
digraphs, Combinatorica, 2 (1982), pp. 347–359.

[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, J. ACM, 32 (1985), pp. 374–382.

[17] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, Scamp: Peer-to-peer lightweight mem-
bership service for large-scale group communication, in Networked Group Communication,
Springer-Verlag, Berlin, Heidelberg, 2001, pp. 44–55.

[18] D. Gavidia, S. Voulgaris, and M. van Steen, Epidemic-Style Monitoring in Large-Scale
Sensor Networks, Technical report IR-CS-012, Vrije Universiteit, Amsterdam, The Nether-
lands, 2005.

[19] C. Gkantsidis, M. Mihail, and A. Saberi, Random walks in peer-to-peer networks, in IN-
FOCOM 2004, Proceedings of the Twenty-Third Annual Joint Conference of the IEEE
Computer and Communications Societies, 2004, pp. 120–130.

[20] J. Gray, Notes on data base operating systems, in Operating Systems, an Advanced Course,
Springer-Verlag, London, 1978, pp. 393–481.

[21] M. Gurevich and I. Keidar, Correctness of gossip-based membership under message loss,
in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Principles of Dis-
tributed Computing, 2009, pp. 151–160.

[22] S. Hu and W.-Y. Yan, Stability robustness of networked control systems with respect to packet
loss, Automatica J. IFAC, 43 (2007), pp. 1243–1248.

[23] M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec, and M. van Steen, Gossip-based
peer sampling, ACM Trans. Comput. Syst., 25 (2007), article 8.

[24] D. S. Lun, M. Madard, R. Koetter, and M. Effros, On coding for reliable communication
over packet networks, Phys. Commun., 1 (2008), pp. 3–20.

CORRECTNESS OF GOSSIP-BASED MEMBERSHIP UNDER LOSS 3859

[25] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstructured peer-
to-peer networks, in Proceedings of the 16th International Conference on Supercomputing,
ACM, New York, 2002, pp. 84–95.

[26] P. Mahlmann and C. Schindelhauer, Peer-to-peer networks based on random transforma-
tions of connected regular undirected graphs, in Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, 2005, pp. 155–164.

[27] P. Mahlmann and C. Schindelhauer, Distributed random digraph transformations for peer-
to-peer networks, in Proceedings of the Eighteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, 2006, pp. 308–317.

[28] L. Massoulie, E. Le Merrer, A.-M. Kermarrec, and A. J. Ganesh, Peer counting and
sampling in overlay networks: Random walk methods, in Proceedings of the Twenty-Fifth
Annual ACM Symposium on Principles of Distributed Computing, 2006, pp. 123–132.

[29] R. Melamed and I. Keidar, Araneola: A scalable reliable multicast system for dynamic en-
vironments, J. Parallel Distrib. Comput., 68 (2008), pp. 1539–1560.

[30] B. Morris and Y. Peres, Evolving sets, mixing and heat kernel bounds, Probab. Theory
Related Fields, 133 (2005), pp. 245–266.

[31] J. R. Norris, Markov Chains, Cambridge University Press, Cambridge, UK, 1998.
[32] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, The end-to-end effects of

Internet path selection, SIGCOMM Comput. Commun. Rev., 29 (1999), pp. 289–299.
[33] N. Tölgyesi and M. Jelasity, Adaptive peer sampling with newscast, in Proceedings of the

15th International Euro-Par Conference on Parallel Processing, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 523–534.

[34] S. Voulgaris, D. Gavidia, and M. van Steen, CYCLON: Inexpensive membership manage-
ment for unstructured P2P overlays, J. Netw. Syst. Manag., 13 (2005), pp. 197–217.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

