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� 
Abstract--This paper addresses cache organization in Chip Multiprocessor (CMPs). We introduce Nahalal, a novel non-

uniform cache (NUCA) topology that enables fast access to shared data for all processors, while preserving the vicinity of 
private data to each processor. Our characterization of memory accesses patterns in typical parallel programs shows that 
such a topology is appropriate for common multi-processor applications. Detailed simulations in Simics demonstrate that 
Nahalal decreases the shared cache access latency by up to 54% compared to traditional CMP designs, yielding 
performance gains of up to 16.3% in run time.   
 

Index Terms—cache memories, chip-multiprocessors, shared memory systems 
 

I. INTRODUCTION 
 

merging and future computer architectures are designed as Chip Multi-Processors (CMPs), 

which leverage the parallelism of multi-threaded applications to achieve higher performance 

within a given power envelope. Data access is typically a bottleneck in such systems, as multiple 

threads compete for limited on-die memory resources. Hence, the organization and management 

of on-chip cache memory become critical to system performance. 

Two major factors impact the latency of on-chip memory access: wire delays and contention 

over shared memory. Global wire delays are becoming a dominant factor in VLSI design 

��[1]�[2]�[3], and on-chip cache access time increasingly depends on the distance between the 

processor and the data. Concurrent access by multiple processors to a shared cache further 

increases the access time, as additional delays are incurred for resolving contention on the cache. 

Some communication fabric such as a Network-on-Chip �[4] is used for interconnecting the 
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processors to the on-chip cache. 

Assuming the worst-case distance and latency for every memory access is wasteful. Hence, 

CMPs are shifting towards a Non Uniform Cache Architecture (NUCA) �[5], where the cache is 

divided into multiple banks, and accesses to closer banks result in shorter access times. In 

NUCA, performance depends on the average (rather than worst-case) latency. The division of the 

cache into multiple banks also allows multiple processors to access different banks 

simultaneously, thus reducing contention.  

Using NUCA, the vicinity of reference becomes of critical importance, and hence data should 

ideally reside close to processors that access it. Unfortunately, there is no straightforward way to 

do so, since, as we show in Section 3, a substantial fraction of the memory accesses involves 

blocks that are shared by many processors. Furthermore, due to coherence mechanisms, writing 

to shared blocks usually requires communication with all sharers, which increases the importance 

of expediting such accesses. Thus, a major challenge to address in the design and management of 

CMP caches is locating shared blocks in the vicinity of all processors that share them, while 

eliminating contention on banks containing blocks that are not shared.  

Luckily, as we further show in Section 3, although shared blocks consume a substantial 

fraction of the total accesses to memory, these blocks comprise only a small fraction of the total 

working set. Moreover, most of the shared data is shared by all processors.  We dub this 

phenomenon the shared hot-blocks effect.  

We leverage the above observations in order to design a CMP topology that tackles both the 

growing wire delay and the shared data problems. In Section 4, we present our novel cache 

topology, Nahalal. This topology was inspired by the layout of the cooperative settlement 

Nahalal, shown in Figure 1(a), which is based on the concentric circles urban design from the 
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18th century �[6]. Public buildings (school, administrative offices, warehouses, etc.) are located in 

the core, and are easily accessible to all. They are enclosed by a circle of homesteads. Beyond 

them, reside private tracts of land, each in proximity to its owner's house. 

 

We project the same conceptual layout to our CMP, as schematically illustrated in Figure 1(b). 

(A detailed layout is given in Section 4). Generally speaking, in Nahalal, a small fraction of the 

memory is located in the center of the chip, enclosed by all processors, while the rest of the 

memory is placed on the outer ring. The inner memory is populated by the hottest shared data, 

and allows for fast access by all processors. The outer rings create a "private yard" for each 

processor in the periphery of the chip, improving vicinity of reference and reducing contention.  

The Nahalal topology provides a platform for implementing the Dynamic NUCA (DNUCA) 

cache management approach �[8], whereby data blocks can migrate among cache locations. 

Whereas DNUCA has been shown to achieve good performance in single-processor architectures 

�[8] it does not improve performance in traditional CMP designs, because of the hot-blocks effect 

�[5]�[9]. By allowing hot-blocks to reside in proximity to all processors, Nahalal provides a 

       
(a) Aerial view of Nahalal ��[7].                                              (b) Schema of Nahalal CMP design. 

Figure 1. Nahalal design. The inner-most memory circle is designated for shared memory. 
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platform where DNUCA can realize its potential, and achieve good performance in a CMP. In 

Section 5, we demonstrate the advantages of our approach via a full system simulation in Simics 

�[10]. We compare the Nahalal topology to the classical CMP NUCA floorplan ��[5]� of a shared L2 

cache located in the center of the chip, surrounded by several processors. We show that Nahalal 

outperforms the classical architecture over a range of applications, including some of the most 

common parallel workloads. Nahalal achieves the most significant improvements, up to 16.3% in 

runtime, in commercial benchmarks like apache.  

II. RELATED WORK 

 

The concept of Non Uniform Cache Architecture (NUCA), was introduced by Kim et al. �[8] in 

the context of a uniprocessor system. To further reduce the average access time, the authors of 

�[8] have suggested the use of dynamic block migration, called Dynamic NUCA (DNUCA). In 

DNUCA, every access to a block moves the block one step closer to the processor, thus gradually 

reducing distances and access times to popular data.  

Beckmann et al. ��[5] applied NUCA to CMP systems, devising an eight node CMP structure 

where L2 banks are located in the center of the chip and are shared by eight symmetric processors 

that surround  it (see Figure 2). We henceforth refer to this layout as cache-in-the-middle (CIM).  

 

 
Figure 2. Traditional cache-in-the-middle CMP NUCA layout. A banked L2 is located in the center of 
the chip, surrounded by eight symmetric processors. 
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Previous studies of CIM-CMP �[5]�[9] have compared DNUCA to a Static NUCA (SNUCA) 

design, where block placement is static, determined by address. Their findings show that the 

remoteness of shared data is a major drawback of the DNUCA approach: Whereas private data 

blocks, which migrate towards a single processor, enjoy fast access times, shared data blocks 

gradually migrate to the center of the chip, where they are essentially far from all processors. 

(Figure 3 illustrates this effect, presenting shared data blocks in dark colors). Due to coherence 

mechanisms, access to theses shared blocks usually requires communication with all sharers, 

further reducing the latency. Both studies have found that, as a result, DNUCA can achieve at 

most a modest performance improvement over the SNUCA scheme, and may even exhibit 

performance degradation when the percentage of accesses to shared blocks is high. In fact, both 

works have concluded that, in the CIM CMP design, DNUCA does not provide a sufficient 

performance improvement to justify its hardware overhead as compared to SNUCA. Our 

alternative layout resolves the major problem of remoteness of shared data, thus allowing one to 

achieve the performance advantages of DNUCA in CMPs.  

 

Several works have tried to ease the hot blocks problem using block replication, whereby every 

copy migrates towards one of the block sharers �[11]�[12]�[13]. Such replication, however, reduces 
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Figure 3. Block locations in CMP-NUCA. Blocks shared by many processors (depicted in dark colors) 
reside in the middle, while private blocks (depicted in light colors) reside close to their owners. 
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the effective cache capacity, further increasing the on-chip capacity pressure. Moreover, block 

replication is only cost-effective when the shared blocks are read-only, since writing entails 

invalidation of all copies, which only intensifies the problem. Our work eliminates the need for 

replication by allowing a single copy to reside close to all the processors that share it.  

Beckman et al. �[5] �[12] have studied memory access patterns in CMP, identifying the 

imbalance between the number of accesses to shared blocks and the actual number of shared 

blocks in the working set, and pointed out the importance of shared blocks to overall memory 

performance. The results we give in Section 3 continue this line of work, identifying the same 

trends and making additional observations. 

III. MEMORY ACCESSES CHARACTERIZATION  

In this section, we analyze the sharing patterns that occur in various standard multi-threaded 

programs, including SPEComp benchmarks �[14], Splash2 benchmarks �[15], an apache web 

server �[16] and zeus web server �[17]. More details about the benchmarks are given in Section 

�5.1.2 below. We use the Pin program analysis tool �[18] to profile accesses to each cache block 

throughout the program execution, emulating a scenario where the program is run on an eight-

way processor (a similar approach was used for studying L2 accesses in �[12]). The results are 

summarized in Table 1. 

We first examine, in the third column of Table 1, which percentage of the memory accesses are 

made to shared blocks, namely blocks accessed by multiple processors. The remaining accesses 

are to private blocks, i.e., blocks accessed by only one processor. We find: (Observation 1) 

access to shared blocks comprises a substantial fraction of the total memory access, ranging 

from 6.99% in ocean, through 32.05% in equake, and up to a 58.25% in apache. We conclude 
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that the performance of such accesses can have a significant impact on CMP performance. 

 

 

In the fourth column of Table 1, we examine the percentage of the data blocks that account for 

these accesses. We observe: (Observation 2) a relatively small number of shared blocks 

make for a substantial fraction of the total accesses to memory. For example, in equake, only 

0.73% of the blocks in the working set are shared, but these blocks consume 32.05% of the total 

accesses to memory. In the apache benchmark, shared blocks comprise only 34.33% of the 

working set, but they account for 58.25% of the accesses to memory.   

The fifth and sixth columns in Table 1 present the average number of processors that share a 

block per shared blocks and per access respectively. These two columns show that: 

(Observation 3) shared blocks are typically shared by many processors. In the SPEComp 

benchmarks, a vast majority of the accesses to shared blocks are to blocks shared among all 

processors. In zeus, the average number of sharers per access to a shared block is 5.68 (out of 8). 

These three observations characterize a phenomenon that we call the shared hot blocks effect, 

where a small subset of the working set is accessed numerous times by all or many processors.  

Finally, the last two columns of Table 1 reveal: (Observation 4) in commercial workloads, 

Shared blocks Average  
Number  

of sharers 

Read-write sharing Benchmarks 

% 
accesses 

% 
blocks 

%   
accesses 

%  
blocks 

% accesses  
(out of  
total  

accesses) 

%  
blocks 

equake 32.05 0.73 7.72 2.02 2.78 0.40 SPEComp 
fma3d 8.93 0.16 7.99 2.03 0.37 0.14 
barnes 15.36 7.07 6.53 3.21 3.14 0.61 
ccean 6.99 2.48 5.68 2.06 3.01 2.30 
water 24.90 11.96 5.90 4.98 17.55 10.85 
lu 32.72 15.32 3.43 2.58 10.00 5.19 

Splash2 

radix 14.47 4.96 7.09 2.12 1.50 0.83 
apache  58.25 34.33 3.69 2.95 47.91 25.26 commercial 
zeus 56.85 37.76 5.68 3.59 41.64 28.16 

Table 1. Block sharing characteristics.  
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accesses to read-write shared blocks are a significant fraction of the total accesses to shared 

data. 

While Table 1 presents the averages over the entire program execution, in Figure 4, we study 

short-term sharing. To this end, we consider a block to be shared only if it is accessed by several 

processors within a window of a given number of instructions. Figure 4 plots the percentage of 

access to shared blocks as the size of the windows increases. As can be seen from the figure, for 

most of the benchmarks, the percentage of accesses to shared block is noteworthy even when 

considering a narrow window of few million instructions. This implies that processors access the 

shared blocks concurrently. We have also explicitly checked which blocks are shared in each 

slice, and found that blocks rarely change their attribution to private or shared at different time 

slices. We conclude: (Observation 5) shared blocks remain shared throughout the program 

execution.  
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Figure 4. Percentage of accesses to shared data blocks, where a block is considered shared when several 
processors access it within a window of a given number of instructions. The x axis is the size of the windows in 
million instructions. The program exhibits stationary behavior over time. 

 

To better understand the hot-block effect we focus on shared data in Figure 5, plotting the 
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distribution of the memory accesses to shared blocks. Figure 6 shows the distribution of memory 

accesses to read-write shared blocks in commercial workloads, where the portion of such blocks 

is significant. The results exhibit locality even within the set of hot blocks, i.e., a small fraction 

of the shared blocks - some very hot blocks – account for most of the accesses to shared data. We 

conclude: (Observation 6) some hot blocks are more popular than others. This observation 

implies that one can improve performance by allowing fast access to the "hottest" hot blocks, 

even if fast access to all hot blocks is not possible. 

 

 
 
 
Figure 5. Accesses distribution of shared blocks.  A small subset of the memory capacity suffices for 
holding blocks to which the majority of accesses are made. 
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IV. CACHE ORGANIZATION AND MANAGEMENT 

As mentioned in Section 2, NUCA-based CMPs had difficulties harnessing block migration to 

improve performance. The shared hot block phenomenon observed in Section 3 proved to be the 

Achilles' heel of performance in all such designs, since it causes shared hot blocks to migrate to 

the center of the cache array, far from all processors. While remoteness of shared data could have 

been acceptable if only a handful of all memory accesses would have involved such cache 

blocks, the many accesses to shared data (Observation 1) penalize the average memory access 

time and hinder memory performance. The fact that a substantial fraction of the accesses to 

shared data are to read-write shared blocks (Observation 4) further emphasizes the problematic 

character of such  remoteness, since these accesses are the worst-case in terms of cache access 

time (due to coherence messages sent to all sharers). 

 
 
 
Figure 6. Access distribution of shared read-write blocks for the commercial workloads. A small subset 
of the memory capacity suffices for holding read-write blocks to which the majority of accesses are 
made. 
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Moreover, the fact that shared blocks are shared by many processors (Observation 3) implies 

that, in a traditional CIM-NUCA organization, regardless of the chosen migration policy, these 

blocks will inevitably reside far from at least some of the sharers. Hence, this problem is an 

inherent weakness of the classical CIM layout. 

At the same time, Observations 2 and 5 suggest that the problem is restricted to a small number 

of shared blocks, which do not change over the program's time. Moreover, Observation 6 

suggests that the hottest shared blocks, which account for most accesses, are even fewer. All of 

these observations motivate our novel architecture, Nahalal, which allows the few shared blocks 

(or the hottest thereof) to reside in proximity to all processors.  

We present Nahalal's organization in Section �4.1. In Section �4.2 we discuss cache management 

in Nahalal, concentrating on block placement and migration. 

4.1. The NAHALAL Layout 

Our suggested CMP topology tackles the remoteness of shared data blocks by breaking the 

traditional cache-in-the-middle floorplan. As explained above, the main concept in Nahalal is 

placing shared data in a small area in the middle of the chip, surrounded by processors, and 

locating private data in the periphery.  We now present one example of a detailed embodiment of 

the Nahalal concept in a setting similar to that of �[5]. We consider a collection of eight 

processors, each of which has a private L1 cache, and roughly half the chip consists of L2 

memory banks (this is typical for today's processors, where the relative area occupied by on-chip 

memory is increasing as VLSI generations progress). 

The processors and banks are interconnected by a Network-on-Chip (NoC) �[19]�[20].  NoCs are 

already a reality in MPSoCs, and are expected to dominate future CMP designs �[4]. NoCs scale 

better than traditional bus and wiring solutions �[21]; they increase spatial reuse while reducing 
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contention on the interconnect, and enabling concurrent memory transactions.  

 

Whereas Figure 1(b) presented Nahalal's schematic layout, Figure 7 portrays a realistic layout 

for an 8-way CMP design. A small fraction of the total memory, designated for shared data is 

located in the center, enclosed by the processors. The rest of the cache is located in the peripheral 

rings, and is used mainly for private data. Unlike in the traditional CMP-DNUCA layout, here 

private data blocks do not obstruct or delay the path to the shared data blocks. Thus, the Nahalal 

layout enables fast access by all processors to shared data while still preserving the proximity of 

private data blocks.  

This solution is feasible thanks to the shared hot blocks phenomenon (discussed in Section 3), 

which suggests that the shared area can be accommodated in a relatively small area in the center 

of the chip. This small shared cache area can be further reinforced to better handle multiple 

accesses and increased pressure without paying a severe area and power overhead (as would have 

been required for allowing concurrent accesses to all data banks). That is, this design allows one 

to improve performance by selectively investing additional resources in a small subset of the total 

cache – the same subset that is expected to experience the higher load. 

 
Figure 7. Example Nahalal layout. An 8-way CMP with a shared, banked L2 cache interconnected via 
NoC. The eight inner-most banks are designated for shared blocks while the rest of the banks (depicted 
in light gray) are used to store private data for nearby processors. 
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4.2. NAHALAL Cache Management  

The management of CMP-DNUCA based caches has been studied in several pervious papers 

�[5]�[9]�[22]. Such mechanisms are, by-and-large, agnostic to the cache layout topology, and can be 

used in Nahalal. We therefore employ previously-suggested cache management mechanisms 

�[5]�[9] in our system. We now briefly discuss the relevant details for the sake of completeness, 

while elaborating on issues that are unique to the Nahalal design. 

We use the MESI coherence protocol �[23] and enforce inclusion between the shared L2 and all 

L1 caches (as in �[5]�[9]). Each L2 line's tag includes a sharing status vector comprised of a 

bitmask indicating which L1 has a valid copy and a dirty bit that indicates if one of the higher 

level caches has a modified version. When a processor modifies an L1 copy, an update message 

is sent to the L2 cache, which in turn sends invalidation messages to all the other L1 caches that 

hold the block (a similar approach was used in �[9]�[24]).  

Several block migration schemes for CMPs have been suggested �[5]�[9]. The basic idea in all 

schemes is to partition the physical memory banks into groups named banksets. Each block is 

mapped to one bankset via its address, and can reside in any bank that belongs to that bankset. 

The banks in each bankset are distributed in the chip such that they reside in varying distances 

from each processor. When a processor accesses a block, the block can migrate to another bank 

that belongs to the same bankset and resides closer to the processor. Migration is done gradually, 

so that blocks switch places in a bubble-sort like fashion.  

We employ the same basic idea, except in the decision where to migrate blocks to. In Nahalal, 

only shared blocks migrate to banks located in the center of the chip, whereas private blocks 

migrate towards the processor within the processors' designated private area. We leverage the 

sharing status vector to identify shared blocks: During a block access, if more than one bit is set 
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in the sharing status vector bitmask, then the block is identified as shared and is migrated to the 

center.  

Finally, a mechanism for locating blocks is needed. Searching all banks in parallel is 

prohibitively costly, since it overloads the interconnect, as well as the banks. Instead, some 

mechanism providing hints as to where to look for a given block is desirable. Recently, Ricci et 

al. ��[22] have leveraged bloom filters to devise such a complexity-effective search mechanism for 

CMPs. Since this mechanism is orthogonal to the concepts introduced in this paper, for 

simplicity, we use an oracle predictor that knows the location of all blocks in our simulations 

(this was also done in previous studies of CMP DNUCA performance �[5]). Due to the 

effectiveness of the predictor, this is not expected to significantly offset performance 

measurements.  

V. PERFORMANCE EVALUATION 

In this section we evaluate the performance of the Nahalal architecture using a detailed system 

simulation in Simics �[10]. Section �5.1 describes the simulation methodology, environment, and 

benchmarks.  Simulation results are presented in Section �5.2 

5.1. Methodology  

5.1.1.  Simulation Setup   

We compare three solutions: Nahalal, a classical cache-in-the-middle DNUCA (CIM-

DNUCA), and a cache-in-the-middle SNUCA (CIM-SNUCA). Our evaluation uses a full-system 

simulation in Simics �[10], using the x86 in-order processor model as a building block. The 

architectural parameters used in most simulations are summarized in Table 2. Our parameter 

choices and cache-in-the-middle model closely follow those employed in���[5]. We implement the 
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8-processor CMP design of Figure 7, assuming 45nm technology ��[25]. Each processor has a 

private 64KB L1 data cache. Instruction caching is not implemented, but rather instructions are 

assumed to be available with no delay. The processors share a 16MB NUCA L2 cache comprised 

of 256 banks. All system components are interconnected via a Network-On-Chip (NoC) 

�[4]�[19]�[20]. Each link's bandwidth is assumed to be infinite, and no contention is modeled at the 

routers. Thus, the delay incurred by the network is proportional to the number of hops in the 

network between the source and the destination. Each hop is assumed to be a single link 

corresponding to the distance between adjacent cache banks.   

 

 

A processor's cache access time is comprised of the target bank's cache latency, the two-way 

network delay, and possibly a queuing delay resulting from contention on busy banks, since at 

most one access per bank is allowed at a given time. In accesses to read-write shared data, the 

MESI coherence protocol incurs additional delays: A read access to a read-write shared block 

may require fetching the block from another processor that changed it. A write access to a read-

write shared block has to wait until the copies of all other shares are invalidated. Since we use an 

oracle predictor, we neglect the lookup time, and assume the accessed block's location is known. 

In our simulation of Nahalal, 2MB (32 banks) of the 16MB cache are allocated in the center 

and are used for shared data. When these are full, less popular shared data can reside elsewhere. 

Parameter Value 
Processor clock frequency  10GHz 
Number of processors  8 
L1/L2 cache block size 64B 
Private L1 caches  16KB, 2-way, 3 cycle 
Shared L2 cache 16MB, 256x64KB banks, 16-way 
Cache bank latency (Tb) 6 cycles  
Network per-hop delay  (�) 2 cycles   
Main memory 4GB, 260 cycles 

 
 Table 2. System Parameters. 
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Empirically, we found that 2MB suffice to hold most of the shared data in standard benchmarks. 

The remaining cache banks are placed in the outer ring.  

Several block migration schemes were proposed in the literature �[5]�[9]. Since block locations 

in the Nahalal and CIM topologies differ, the same migration scheme cannot be used in both. 

Therefore, in order to allow for a fair comparison of the two topologies, we run our simulations 

using an oracle placement approach, which approximates the final location of blocks in virtually 

all previously suggested migration schemes. The oracle places the most accessed shared blocks in 

the center banks, and the most accessed private blocks in the closest banks to each processor. 

Thus, the oracle eliminates the warm-up period, during which blocks migrates in bubble-sort 

fashion until reaching their equilibrium placement with respect to the pulling forces set by its 

sharers.  

5.1.2. Benchmarks   

In our simulated system, we run Mandrake 10.1 Linux with SMP kernel version 2.6, custom-

compiled to interface with Simics, on top of which we run Linux programs as benchmarks. We 

have studied various commercial and scientific benchmarks. Our benchmarks include five 

SPLASH-2 benchmarks �[15]: barnes, ocean water, lu and radix,  two SPEComp benchmarks 

��[14]: equake, and fma3d and two static web content serving: apache HTTP server and zeus web 

server. For both web benchmarks, we use the SURGE �[16] toolkit to generate a workload of web 

requests from a 30,000-file, 700MB repository with a zero backoff time. This toolkit generates a 

Zipf distribution of file accesses, which was shown to be typical of real-world web workloads.  

Typical parallel benchmarks begin with some setup code, which is run serially, and only then 

embark on parallel processing. In order to simulate the parallel part of each benchmark, which is 

the most interesting for our purposes, we fast-forward through the serial part, and then perform 
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measurements in a parallel part of the code. In all benchmarks other than those of Splash, the 

parallel part itself consists of loops that are iterated-through hundreds or thousands of times (in 

the SPEComp benchmarks), or even millions of times (in case of apache and zeus). All iterations 

have very similar characteristics. We therefore run only some of the iterations (hundreds in 

apache and zeus).  

5.2. Results 

 We now present performance results. We begin, in Section �5.2.1, by examining the primary 

phenomenon impacted by Nahalal’s layout, namely the distance between processors and their 

data. Having shown that Nahalal improves proximity of data to its owners, we continue to 

examine the impact this has on the average cache access time in Section �5.2.2. Finally, in Section 

�5.2.3, we study the benchmarks’ overall running time, thus showing how the improved cache 

access time impacts the bottom line performance. We also study the trend exhibited as wire 

delays become more dominant. 

5.2.1. Hop Count 

Figure 8 depicts the average distance from processors to the data they access, measured in 

number of network hops. The average is computed over all cache accesses in each benchmark. 
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  We see that Nahalal achieves the best results, and exhibits significant improvements over 

CIM-SNUCA in all benchmarks. CIM-DNUCA is close to Nahalal in some benchmarks, but 

closer to CIM-SNUCA in others. This is explained by the discrepancy between to the distances to 

shared versus private blocks in CIM-DNUCA, as shown in Figure 9. Consequently, while in 

benchmarks like ocean (only 6.99% shared accesses) CIM-DNUCA does well, in benchmarks 

like apache, which have a high percentage of accesses to shared data, CIM-DNUCA presents 

only a modest improvement over CIM-SNUCA. This is a result of the long distance to shared 

blocks, which always end up in the center of the chip. The Nahalal design, on the other hand, 

reduces the average distance over the entire application spectrum, since it places both shared and 

private blocks close to all processors that access them. 
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Figure 8. Average distance in number of hops between the processor and the cache block they access. 
CIM-DNUCA reduces the average distance over CIM-SNUCA, and Nahalal further reduces the distance, 
especially in benchmarks with many accesses to shared blocks. 
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5.2.2. L2 Cache Access Time  

We have seen that Nahalal reduces the distance between data and its owners. We now examine 

how this impacts the cache access time. Figure 10 presents the average L2 cache access time (in 

cycles) for the three architectures. As can be seen from the figure, Nahalal reduces the average 

cache delay by 20.12% on average over DNUCA, to the extent of 37.2% in the apache 

benchmark.  

To explain the results of Figure 10, the cache access time can be estimated using a simple 

Formula. The following parameters impact the access time:  

pP = Percentage of accesses to private data out of total L2 cache accesses 

sP = Percentage of accesses to shared data out of total L2 cache accesses 

wsP = Percentage of writes to shared data out of total L2 cache accesses 
(included in the above)  

pN = Average distance(in hops) of accesses to  private banks 

sN = Average distance (in hops) of accesses to shared banks 
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Figure 9. Average distance to shared versus private blocks for CIM-DNUCA and Nahalal. Nahalal 
reduces the distance to shared blocks, while the distance to private blocks is the same in both 
architectures. 
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In addition, the access time is affected by the per-hop latency in the NoC, namely � cycles, and 

the cache bank latency, Tb cycles, defined in Table 2 above. Based on these parameters, we 

compute the predicted average cache access time (in cycles) using the following formula: 

� � � � � �2 2 2 2L b p p s s ws sT T P N P N P N� � �� � � � � � � � � � � �               (1) 

We now explain the above formula. First, every memory access requires accessing the 

appropriate memory bank, which takes Tb cycles, if we neglect queuing time. Second, the access 

requires a two-way traversal of the distance between the processor and the data, which takes 

2 pN �  cycles on average for private blocks, and 2 sN �  cycles for shared ones. In addition, every 

write operation to a read-write shared variable entails an additional penalty for invalidating 

copies held by other sharers. For simplicity, we assume that all invalidations occur in parallel, 

and the time to invalidate all relevant copies is the same as the average round-trip time. This 

gives a slight under-estimate of the invalidation time when there are many sharers. 
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Figure 10. Average cache delay in clock cycles for CIM-SNUCA, CIM-DNUCA and Nahalal. The delay 
closely follows the average distance measured above. 
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We now examine how closely the above formula predicts the cache access times measured in 

the simulations. We extract from the simulations the average distance values (as presented in the 

previous section) as well as the percentages of private and shared accesses, and the percentage of 

accesses that are writes to shared data. We then use the formula above to predict the average 

cache access time. 

Figure 11 shows the predicted cache access time versus the one measured in the simulations, 

for CIM-DNUCA and Nahalal. Although we have neglected some factors (such as contention, 

and multiple concurrent invalidations) in the formula, we see that their impact is small, and the 

formula provides a good explanation of the measured results. In particular, Nahalal’ s improved 

cache access time can be fully attributed to the fact that it places data closer to processors that 

access it. 

 

5.2.3. Overall Performance  

Finally, we examine how Nahalal impacts the overall system performance. Figure 12 presents 
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Figure 11. Predicted versus simulated cache access time for CIM-DNUCA and Nahalal. The prediction is a 
slight underestimate of the detailed simulation.  

C
ac

he
 A

cc
es

se
s 

Ti
m

e 
(c

lo
ck

 c
yc

le
s)

 



 
 

22 

benchmark running times, normalized to the running time of CIM-SNUCA. We see that Nahalal 

improves overall system performance in all benchmarks, but in some more significantly than in 

others.  The average reduction in running time is 8.58%, and the best improvement is in apache, 

which improves by 16.3%. The differences in the improvement stem from variations in the role 

L2 caches play in the different benchmarks. Recall that Nahalal only modifies the organization of 

L2 caches, and does not impact performance of access to L1 or to off-chip memory. 

 

In commercial benchmarks like apache and zeus, there are many accesses to shared blocks that 

reside in L2 caches, both read-write shared blocks, and read-only blocks that do not fit in L1 

caches.  Therefore, Nahalal significantly improves the performance of these benchmarks. Other 

benchmarks, like barnes and ocean, rely heavily on L2, but have few accesses to shared data (see 

Table 1), and therefore benefit less from Nahalal. Nahalal's improvement is close to that of CIM-

DNUCA in such benchmarks. In benchmarks like water, with a high L1 hit-rate, L2 cache 
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Figure 12. Runtime for CIM-DNUCA and Nahalal, normalized to the runtime of CIM-SNUCA. Nahalal 
achieves significant performance gains in benchmarks with many accesses to shared blocks in L2 caches, 
such as the typical commercial workloads (zeus and apache). In benchmarks with little sharing, like ocean 
and barnes, Nahalal's performance improvement is less significant. In benchmarks such as water, where 
most shared blocks are read-only and fit in L1 caches, and in benchmarks with a high L2 miss rate like 
equake, the organization of the L2 cache is immaterial to performance. 
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organization is immaterial to performance. Similarly, when the L2 hit-rate is low, e.g., as in 

equake, the performance bottleneck is access to external memory, and again L2 organization has 

virtually no impact 

As global wire delays become more and more dominant, the importance of placing data in 

proximity to the clients is expected to become more evident. Figure 13 demonstrates this effect 

for the apache benchmark. It depicts the speedup in runtime over the CIM-SNUCA system for 

both CIM-DNUCA and Nahalal as the per-hop link delay, �, increases. Although both systems 

exhibit more speedup as wire delay increases, the relative gain of Nahalal keeps growing as 

technology scales. This is because distance-related delay becomes dominant and Nahalal is more 

effective in reducing the average access distances. As expected, the performance improvement is 

linear, since the runtime is the sum of processing time and cache delay, and from Equation 1, the 

cache delay is proportional to �.  
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Figure 13. Runtime speedup over SNUCA for both DNUCA and Nahalal for different link delays (in clock 
cycles). The results are given for the apache benchmark. Nahalal's performance gain increases as the wire 
delay becomes more dominant. 
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VI. SUMMARY AND DISCUSSION 

The shift to CMPs makes the on-chip memory system a primary performance bottleneck. The 

use of non uniform cache techniques encourages vicinity of reference as means to mitigate the 

growing effect of global wire delays. Prior CMP designs suffer from the remoteness of shared 

data blocks, which end up residing far from all sharers. In this work, we have characterized the 

accesses to shared data and found that, in many standard parallel applications, accesses to shared 

data consume a significant fraction out of the total memory accesses. Therefore, the remoteness 

of shared blocks hinders cache performance and calls for an architectural solution.  

We have leveraged this phenomenon (referred to as the shared hot-blocks effect) to devise 

Nahalal - a novel CMP topology that locates shared data close to all sharers and still preserves 

vicinity of private data for all processors. We have demonstrated the potential of our new design 

via a full-system simulation and comparison to the classic cache-in-the-middle design. We have 

shown that on standard benchmarks, Nahalal achieves performance improvement of up to 16.3% 

percent. 

Despite its merits, it is important to note that, like the traditional cache-in-the-middle layout, 

Nahalal also has limited scalability. This is since the middle area grows as the square of the 

number of processors around the circumference. While Nahalal's design is feasible for a 

moderate number of processors, massively scalable CMPs employing hundreds of processors 

clearly require a different topology. In such systems, we believe that the most appropriate 

solution is to employ a clustered design, whereby the processors and memory banks are 

organized as a collection of closely knit clusters.  
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Such a design supports the execution of multiple multi-threaded applications, one on each 

cluster. In this context, one can organize each cluster like Nahalal, for maximum performance of 

the application running therein. Designing and evaluating such scalable architectures is an 

interesting direction for future work.  
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