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Abstract

We consider the problem of dynamically assigning application sessions of mobile

users or user groups to service points. Such assignments must balance the tradeoff

between two conflicting goals. On the one hand, we would like to connect a user to

the closest server, in order to reduce network costs and service latencies. On the other

hand, we would like to minimize the number of costly session migrations, or handoffs,

between service points. We tackle this problem using two approaches. First, we employ

algorithmic online optimization to obtain algorithms whose worst-case performance is

within a factor of the optimal. Next, we extend them with opportunistic heuristics

that achieve near-optimal practical average performance and scalability. We conduct

case studies of two settings where such algorithms are required: wireless mesh networks

with mobile users, and wide-area groupware applications with or without mobility.

Index Terms— Mobile communication systems, Online computation, Distributed net-

works
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1 Introduction

Recent advances in network technology, along with the increasing demand for real-time net-

worked applications, are bringing application service providers to deploy multiple geograph-

ically dispersed service points, or servers. This trend is expected to further expand with

the explosion of new applications and the expansion of services to larger domains. In such

settings, a given application session is typically associated with some server. In real-time

applications, the association selection is driven by quality of service (QoS) considerations,

which may depend, e.g., on the network distance of the user from the server. As many

of these applications are becoming increasingly available to mobile users and dynamic user

groups, the factors that dictate the server selection can vary with time. For example, due

to a user’s movement, a server providing optimal QoS at some point may later provide poor

QoS, rendering it desirable to migrate the application session from one physical server to an-

other. We therefore believe that many future distributed service infrastructures will employ

nomadic service points, and will transparently manage such dynamic session assignments.

One important domain where nomadic service points can be exploited to serve mobile

users is wireless mesh networks (WMNs) [1, 12, 14]. WMNs provide an increasingly popular

solution for Internet access from residential areas with a limited wired infrastructure. These

networks are built around multiple stationary wireless routers. Some of them, called access

gateways, are wired to the Internet. The mesh access protocol typically routes the traffic

of each mobile node through a single access gateway. As the node travels away from its

original location, the network delay between it and the gateway grows, and the protocol can

re-route the traffic through a different gateway to improve the QoS. For example, a greedy

protocol would always route the traffic via the closest gateway. However, this optimization

is not always adequate for highly mobile users, which suffer from QoS degradation caused

by frequent handoffs. Intelligent nomadic service assignment algorithms can mitigate the

tradeoff between access delay and session interruptions.

Server assignment quality also has special importance in collaborative groupware appli-
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cations like instant messaging, push-to-talk, and massively multiplayer online games, where

the impact of a bad association can be magnified with the group’s scale. The infrastructure

for these applications is typically based on servers that both maintain the application state

and act as forwarding proxies. Intuitively, the server should reside close to the group’s cen-

troid in order to serve the group best. In groups with a highly dynamic membership, the

optimal server selection changes as users join or leave the group. Thus, there is a tradeoff

between the cost of assignment to a suboptimal server (e.g., increased delay) and the cost of

state transfer incurred upon the re-assignment.

In this paper, we study the problem of optimizing the dynamic assignment of sessions

to service points. Such a service assignment should balance the tradeoff between connecting

sessions to the closest servers at all times, and minimizing the number of session migrations.

We capture this tradeoff by assuming two types of service costs: a setup cost, incurred

whenever the session is assigned to a new server, and a hold cost, incurred every unit of

time the server is being used. The former reflects one-time expenses like signaling overhead

and application state transfer, whereas the latter captures continuous expenses like buffer

space, processing power, network latency, and bandwidth. For simplicity, we focus on the

case where the setup costs do not vary over time, and are identical for all servers. The hold

costs may vary in both aspects. For example, in a mobile WMN, connection transfers are

done through wired infrastructure of predictable performance. In this context, the setup

cost is fixed, since it does not depend on the location of the source and target gateways. The

hold costs, which capture user–gateway distances, are variable.

The nomadic service assignment optimization problem is to find a sequence of server

assignments that minimizes the total cost. Obviously, we are interested in the online version

of this problem, in which the service costs are received on the fly. We treat the problem both

as a theoretical online optimization problem and as a practical system question. We first

handle the generic nomadic service assignment problem, and then examine it more closely

in two specific case studies pertaining to specific example domains.
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We formally define the problem in Section 3. Then, in Section 4, we present an offline

algorithm, OPT, which computes the optimal solution assuming that the costs are known in

advance. This algorithm’s time and space computation complexity is linear in the number of

servers k and in the algorithm’s duration. While this result has little practical importance,

it serves as a baseline for evaluating the online algorithms described in later sections.

In Section 5, we study nomadic service assignment as an online optimization problem. A

common metric for an online algorithm is its competitive ratio, which is the worst-case ratio

between the cost produced by the algorithm and the optimal cost. We first prove a lower

bound of k on the competitive ratio of any deterministic online assignment algorithm. We

then present two simple online algorithms, DTrack (deficit tracker) and CTrack (cost tracker),

parameterized by policies governing when transitions happen and which server is chosen

upon a transition. DTrack transitions from its currently assigned server when the session

accumulates “significantly more” hold cost than it would have paid had it been assigned to

some other server, whereas CTrack simply transitions when the session accumulates “enough”

hold cost at the currently assigned server. We show that when instantiated with certain

policies, these algorithms achieve competitive ratios within a constant factor of the lower

bound. Specifically, when using a round-robin (RR) policy to choose the next assignment,

DTrack achieves a competitive ratio of 2k, i.e., at most twice as bad as the lower bound,

whereas CTrack achieves a competitive ratio of (2 + a)k, where a is an upper bound on the

ratio between the hold and setup costs.

Although, as our lower bound shows, a worst-case cost ratio that is linear in the number

of servers is inevitable in the general case, achieving such costs is hardly useful for large-

scale services that employ thousands of servers world-wide. From a practical perspective, it

is more interesting to examine average costs in common scenarios, and moreover, it is highly

desirable for costs not to increase significantly with the number of servers. We address these

practical issues in Sections 6 and 7, via empirical case studies of a WMN with mobile users

and an Internet chatroom with dynamic groups, respectively. Interestingly, the competitive
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versions of DTrack and CTrack, which achieve the best worst-case costs, are not very promis-

ing in practice. However, opportunistic versions of these algorithms, which select the next

assignment based on current or past offered costs (rather than in a round-robin manner),

achieve excellent results. Their costs are at most 50% above the optimum in the average

case in the WMN (for a widely accepted random waypoint mobility model, e.g., [22]), and

at most 20% above optimal in the groupware service (for uniformly distributed users with

a Poisson arrival process). More importantly, this ratio, as well as the total cost, remains

almost constant as the problem size scales.

There is a tradeoff between our two algorithms: although DTrack achieves better results

(lower overall costs), it has a higher computational time complexity, and requires discovering

the hold costs of a large number of servers every time unit. In contrast, CTrack has a constant

per-unit time complexity, and does not need to probe other servers for their costs except

when it decides to transition.

In Section 6.1, we propose two motion-aware heuristic algorithms, named TargetAware

and DirectionAware. TargetAware assumes knowledge of the mobile node’s current tar-

get and speed, whereas DirectionAware only requires the knowledge of the node’s current

direction, which is used to estimate the target, and speed. These hints can be received ei-

ther from a higher-level application, or from a positioning system like GPS. Although their

lookahead window is quite small (the node’s next target), both motion-aware algorithms

yield significant cost improvements. Their costs are typically within 10% of the optimal, and

exhibit perfect scalability.

2 Related Work

Handoff optimizations in mobile systems have been extensively studied since early 1990’s,

mostly in the context of cellular networks with the advent of the GSM standard [11, 19, 21].

This research targeted increasing network capacity as the primary goal. Handoffs in cellular

systems are driven by physical metrics, like signal strength and transmission power, and are
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handled at the link layer. They cannot be avoided when user location changes significantly,

and optimizing their cost is a secondary design goal (e.g, [9]). Our work is fundamentally

different, because we consider the network layer and above. In this context, handoffs are

optional, they improve the QoS in the long run, but their cost is substantial. For example,

migrating a host connection between two WMN gateways can affect packet delivery order,

and temporarily degrade the TCP performance.

Initial mesh networking research mostly focused on problems that are specific to fixed

wireless, e.g., defining routing metrics [12], exploiting the broadcast nature of the medium [6],

and harnessing multiple radio interfaces through smart cross-layer design [2]. More recently,

Amir et al. presented a design and implementation of a prototype WMN with mobility

support [3]. The algorithms presented in this paper can be integrated into such a system

for inter-gateway handoff decisions. Lavi et al. [15] proposed employing an overlay ser-

vice network for supporting groupware in mobile networks. Their architecture suggested

associating every mobile user with the closest server and efficiently maintaining the group

membership information between multiple servers. In contrast with this approach, we focus

on applications (including possibly groupware) that associate a session with a single server.

The problem of dynamic session management was studied in the context of routing virtual

circuits in mobile ATM networks [4], with a similar model of setup and hold costs. However,

these costs were defined per link, and the algorithm had to decide whether to retain or to

release a redundant link. This model allowed reusing part of the links after the re-routing,

thus allowing for lower total costs than in our model where no reuse is possible. Indeed, their

algorithms exhibit better competitive behavior than the best possible for nomadic service

assignment.

Nomadic service assignment is closely related to the classical metrical task system (MTS)

problem [8]. In this context, there is a set of k states, and a matrix of inter-state transition

costs (the cost of a self-transition is zero). A schedule for a sequence of tasks is a sequence

of states in which these tasks are processed. The cost of a schedule is the sum of all task
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processing (hold) and transition (setup) costs. For symmetric cost matrices subject to the

triangle inequality, there is a deterministic online algorithm with a competitive ratio of 2k−1,

and this bound is tight. Nomadic service assignment closely resembles a special case of this

problem with uniform transition costs, except that in our problem, the initial assignment

always incurs a cost. However, the online MTS algorithm [8] makes use of the entire history of

setup and hold costs until the scheduling decision, which makes it impractical to implement.

We use a very different algorithmic technique, which requires O(k) operations per decision,

regardless of the history length. In a specific setting of a WMN with mobile users, in

which the hold costs are defined as user–gateway distances, the computation overhead of our

algorithm can be further reduced by an order of magnitude, through the use of spatial data

structures.

Optimal center location for a group of users is an instance of the well-studied facility

location problem [18], which given a set of facility locations and a set of customers in a metric

space, chooses which customers should be served from which facilities so as to minimize the

total service cost. Facility location was studied as an online problem [17], and was used for

various applications, including optimizing the delivery of Web content in CDN’s [13, 20],

maintenance of mobile centers in ad-hoc networks [5] and adaptive server selection in online

games [16]. The problem differs from ours in that multiple facilities are used per group,

and the online algorithm is allowed to add facilities over time, instead of migrating sessions

among existing ones.

3 System Model

Consider an application session that can be hosted by any one of k servers S = {s0, ..., sk−1}.

The session is assigned to some server at the beginning of the session but can be re-assigned

to a different server at each discrete time slot.

There are two types of non-negative costs charged for the session: a setup cost that is

paid when the session is assigned to a new server, including the initial one, and a hold cost,

7



paid for each time slot the session is assigned to some server. From a session’s perspective,

different servers offer different costs at a given time slot, and may also change them at the

beginning of each slot. We denote the setup cost offered by server s at time t by setup(s, t)

and the hold cost by hold(s, t).

The assignment schedule σ(t) in a time interval I is a function, σ : I → S, which assigns

the session to server s ∈ S at each discrete time t ∈ I. For convenience, we define σ(t) =⊥

for t 6∈ I. We define the set of transitions on an interval I as

T (σ, I) = {t | t ∈ I ∧ σ(t) 6= σ(t− 1)}.

In particular, the initial assignment is also considered a transition.

The assignment schedule σ on an interval [t1, t2) incurs a total hold cost

hold(σ, [t1, t2)) ,
t2−1∑

t=t1

hold(σ(t), t),

a total setup cost
setup(σ, [t1, t2)) ,

∑

t∈T (σ,[t1,t2))

setup(σ(t), t),

and a total overall cost

cost(σ, [t1, t2)) , setup(σ, [t1, t2)) + hold(σ, [t1, t2)).

The optimal nomadic service assignment problem for interval [0, T ) is to compute an assign-

ment schedule σ∗ that minimizes cost(σ∗, [0, T )).

The presence of positive setup costs is what makes the problem nontrivial. Otherwise,

the session would always associate with the server that offers the minimum hold cost. Hence,

we always consider positive setup costs.

4 An Optimal Offline Algorithm

In this section, we describe an optimal offline algorithm for the assignment problem, i.e.,

assuming that the setup and hold cost functions are known in advance. The algorithm is
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linear-time in the interval length T and the number of servers k.

We first identify the structure of the optimal solution σ∗. Let σ∗s,t : [t, T ) → S be a

lowest cost schedule among those in which s is the initial assignment, that is, σ∗s,t(t) = s.

We observe that if σ∗s,t(t+ 1) = s′, then

cost(σ∗s,t, [t+ 1, T )) = cost(σ∗s′,t+1, [t+ 1, T )).

In other words, the cost of an optimal schedule for [t + 1, T ) that assigns s′ at t + 1 is

identical to the cost of the [t + 1, T )-suffix of the optimal schedule for [t, T ) with the same

assignment. Otherwise, the global optimality is violated. If s′ = s, then setup(s′, t+1) does

not contribute to cost(σ∗s,t, [t, T )).

The problem can be represented as a layered directed acyclic graph. Node i in layer t

stands for σ∗si,t, for 1 ≤ i ≤ k, 0 ≤ t ≤ T . There is an edge between every pair of nodes

(i, t) and (j, t + 1), which represents a possible transition from si to sj at time t. The cost

of this edge is hold(sj, t + 1) if i = j, and hold(sj, t + 1) + setup(sj, t + 1) otherwise. The

optimal solution’s cost is the weight of the shortest path in the graph. While this weight can

be computed in linear time in the number of edges, i.e., O(k2T ), the time complexity can be

optimized to O(kT ), by exploiting the optimal solution’s structure, as we now explain.

We define the tail contribution function for t < T as follows:

tail(s, s′, [t, T )) ,





cost(σ∗s,t, [t, T ))− setup(s, t) if s = s′

cost(σ∗s′,t, [t, T )) otherwise

Then, cost(σ∗s,t, [t, T )) for t < T can be expressed as

cost(σ∗s,t, [t, T )) = setup(s, t) + hold(s, t) + min
s′∈S

tail(s, s′, [t+ 1, T ))

We define tail(s, s′, [T, T )) , cost(σ∗s,t[T, T )) , 0. For t < T we get:

cost(σ∗s,t, [t, T )) =

setup(s, t) + hold(s, t) +
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min(min
s′∈S

cost(σ∗s′,t+1, [t+ 1, T )), cost(σ∗s,t+1, [t+ 1, T ))− setup(s, t+ 1)).

An optimal solution can be computed through dynamic programming [10] using the above

recurrence. The algorithm employs a two-dimensional table Table[1..k, 0..T ] where an entry

Table[s, t] holds the value of cost(σ∗s,t, [t, T )) and the identity of s′ = σ∗s,t(t+ 1). The table

is computed column by column from T − 1 down to 0. Column T is initialized by zeroes.

During the processing of column t, the value of

min
s′∈S

cost(σ∗s′,t, [t, T )) = min
1≤s≤k

Table[s, t]

is computed once to be used in computing all entries of column t− 1. After the whole table

is filled, the overall optimal cost is computed as

cost(σ∗, [0, T )) = min
0≤s≤k−1

Table[s, 0],

and an optimal schedule is built by tracing the algorithm’s choices through the columns

0 . . . T − 1.

The computation of a single table entry requires a constant number of operations thanks

to the pre-computation of the previous column’s minimum cost, and therefore, the algo-

rithm’s time complexity is O(kT ). The space complexity is also O(kT ) – the table’s size.

5 Online Server Assignment

In a realistic scenario, the costs are not known in advance. This is especially true for the hold

cost, which can reflect dynamic network conditions like user mobility, group membership,

etc. In this section, we study server assignment as an online optimization problem [7]. The

cost for a time slot becomes known at the beginning of that slot, and the algorithm must

produce a new scheduling decision. We restrict ourselves to the case where the setup costs

are identical and constant, that is, setup(s, t) = C for all s and t, whereas the hold costs

are dynamic. We denote the schedule produced by the optimal algorithm OPT as σ∗, and the
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schedule produced by an online algorithm ALG as σ.

The competitive ratio is the common performance measure for online algorithms. In our

problem, an online algorithm ALG is called r(ALG)-competitive if there is a constant δ such

that for all finite intervals I and for all setup and hold costs

cost(σ, I) ≤ r(ALG) · cost(σ∗, I) + δ.

The rest of this section is structured as follows. In Section 5.1, we show that no deterministic

online algorithm can achieve a competitive ratio better than k. In Section 5.2, we present a

generic online algorithm called DTrack (deficit tracker). A version of this algorithm termed

DTrack−RR, that is, DTrack with round-robin selection of server assignments, achieves a

competitive ratio of 2k with a certain parameter choice. DTrack needs to track the cost of

up to k servers every time slot, and may thus have a large control message overhead in a

distributed implementation. In Section 5.3, we present a simple and efficient algorithm called

CTrack (cost tracker), which yields a competitive ratio of (2 + a)k for a certain parameter

choice, assuming that a server’s per-slot hold cost never exceeds aC. The competitive version

of CTrack, called CTrack−RR, probes the cost of only one server every slot. In Section 5.4,

we present opportunistic versions of these algorithms, called CTrack−F, DTrack−F, and

DTrack−B, which are not competitive but greatly improve the cost in the average case, and

achieve good scalability.

5.1 A Lower Bound of k on the Competitive Ratio

Theorem 1 No deterministic server assignment algorithm can achieve a competitive ratio

of less than k.

Proof : Consider k symmetric servers that offer the same setup cost C > 0 and a zero

hold cost each at t = 0, that is, hold(si, 0) = 0. Consider the following simple adversary

strategy against any deterministic algorithm ALG. When ALG connects to si at time t, set

hold(si, t+ 1) = 1. When ALG disconnects from the server at time t′, set hold(si, t
′+ 1) = 0.
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Regardless of what the online algorithm is, it will have to transition to a different server

at some point if it wishes to remain competitive. This process continues until k − 1 moves

happen. At this point, the adversary stops the run.

If ALG has visited every server exactly once, let s∗ be its last assignment. Otherwise,

there exists a server s∗ that has never been picked by ALG. The best offline algorithm, OPT,

assigns the session to server s∗ at time 0 and never changes the assignment.

OPT pays only C for the initial setup, whereas ALG pays kC for setup and zero or more

for hold. Therefore, r(ALG) ≥ kC
C

= k, and the algorithm’s competitive ratio has a lower

bound of k. 2

5.2 DTrack - a 2k-Competitive Online Algorithm

We present a simple online algorithm called DTrack (deficit tracker). It is parameterized by

factor α ≥ 0, which controls when transitions happen, and a subroutine nextchoice(), which

controls which server is chosen upon transition. In this section, we focus on a 2k-competitive

version of DTrack, called DTrack−RR, obtained by a round-robin nextchoice() policy. Its

pseudocode appears in Figure 1.

We begin with some definitions. The deficit between the servers s and s′ during the

interval [τ, t) is the greatest total difference between the total hold costs in a suffix [t′, t):

def(s, s′, [τ, t)) , max
τ≤t′≤t−1

(hold(s, [t′, t))− hold(s′, [t′, t))).

Let us denote the current assignment by sc. A server s for which def(sc, s, [τ, t+ 1)) > 0

is called a leader at time t.

The algorithm’s code maintains the following variables: t is the current time, τ is the last

transition’s time, c is the current assignment’s id, Leaders is the set of the current leaders’

ids, and Def is the vector of deficit values between sc and the other servers. The algorithm

maintains that at time t, Def[s] = def(sc, s, [τ, t+ 1)).

DTrack maintains an invariant that the deficit between sc and any other server s never

12



1: Initialization:
2: t← 0
3: c← i s.t. hold(si, 0) = mins∈S hold(s, 0)
4: reset()

5: Every time slot do
6: update()
7: if (Def[s] > αC) for some s ∈ Leaders then
8: nextchoice()
9: reset()

10: t← t+ 1

11: procedure reset()
12: τ ← t
13: Leaders← ∅
14: for all s 6= sc do
15: Def[s]← 0
16: update()

17: procedure update()
18: for all s s.t. s 6∈ Leaders ∧ hold(sc, t) > hold(s, t) do
19: Def[s]← 0
20: Leaders← Leaders ∪ {s}
21: for all s ∈ Leaders do
22: Def[s]← Def[s] + hold(sc, t)− hold(s, t)
23: if (Def[s] < 0) then
24: Leaders← Leaders \ {s}

25: procedure nextchoice() /*RR version*/
26: repeat
27: c← (c+ 1) mod k
28: until hold(sc, t)−mins∈S hold(s, t) ≤ αC

Figure 1: DTrack−RR - an Online Algorithm for Server Assignment.
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exceeds αC. Initially, DTrack makes an assignment to the server with the minimal hold

cost. It then keeps tracking the deficit versus the other servers. A server becomes a leader

when it offers a smaller hold cost than sc, and stops being one when the cumulative deficit

value becomes negative. Since the hold costs are published at the beginning of each time

slot, DTrack makes its decision using a single-slot lookahead. When some server is about to

accumulate significantly less hold cost than the current choice (a deficit of above αC), the

algorithm changes its assignment. Due to the lookahead mechanism, the update() procedure

that updates the deficit values is invoked twice at transition times. First, for the current

choice in order to decide whether to transition, and then for the new choice, which does not

necessarily offer the best hold cost, hence the new deficit must be computed.

In the instance of DTrack we consider now, termed DTrack−RR, nextchoice() selects the

next assignment in a round-robin way, among servers whose a-priori deficit versus any other

server (that is, the hold cost gap) does not exceed αC.

The intuition behind DTrack is that the current server must be provably bad (costing

αC more than the best) in order to change the choice, and the next server must also not be

provably bad (not costing αC more than any other server). When instantiated with α = 0

(this algorithm is termed Greedy), DTrack immediately changes the assignment when some

other server offers a better hold cost. At the other extreme, when α =∞, it never changes

its initial assignment. It is clear that the algorithm is not competitive in either of these

extreme cases.

In Appendix A.1, we provide a detailed competitive analysis of DTrack−RR, and get the

following result:

Theorem 2 The competitive ratio of DTrack−RR is bounded as follows:

r(DTrack−RR) < k(1 + 1
α

) α ≤ 1

r(DTrack−RR) < 1 + (k− 1)α+ k α ≥ 1

Corollary 1 For α = 1, DTrack−RR achieves a competitive ratio of 2k.
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The crux of the algorithm’s competitiveness lies in the round-robin selection policy, and

can be informally explained as follows. If we consider a schedule σ by DTrack−RR that

overtakes (that is, either leaves or skips) every server while the optimal schedule σ∗ does not

change its assignment s∗, then σ overtakes s∗ exactly once. This overtake implies that the

total hold cost incurred by σ∗ during the interval exceeds αC. The total hold cost incurred by

σ exceeds the one incurred by σ∗ by at most (k− 1)αC. The subtle point in this proof is the

deficit bookkeeping, because upon transition the hold cost lookahead affects the assignment

but does not contribute to the total hold cost. The total setup cost incurred by σ during

this period is at most kC, whereas σ∗ pays C upon the assignment to s∗. A careful analysis

of the worst-case ratio between the total costs concludes the proof.

5.3 CTrack - an Efficient Online Algorithm

At each slot, DTrack checks the hold cost of every server, which results in linear time com-

plexity per slot. Since the number of servers can be large, sublinear complexity is desirable

to achieve efficiency of communication in a distributed implementation.

We now present a simple online algorithm CTrack (cost tracker), which achieves constant

computation time complexity at the expense of a weaker competitive guarantee, under the

assumption of an upper bound on the ratio between the hold and the setup costs. CTrack

is also parameterized by a factor α and a subroutine nextchoice(). Initially, it assigns the

server with the minimal hold cost. The assignment changes when the total hold cost since

the last transition exceeds αC (e.g., for α = 0, it transitions every time slot). The rationale

behind this policy is controlling the fraction of the setup cost in the total cost. It only

requires receiving the hold cost of the current assignment every time slot, which leads to

constant per-slot time complexity.

In Appendix A.2, we provide a detailed competitive analysis of CTrack−RR, the round-

robin version of CTrack, and get the following result:

Theorem 3 If hold(s, t) ≤ aC for all s and t, then r(CTrack−RR) < (2 + a)k for α = 1.
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5.4 Opportunistic Heuristics

While the competitive ratio is an accepted metric for measuring the worst-case performance

of an online algorithm, the average-case performance is more important in practice. An

algorithm that behaves 2k times worse than the optimal solution in the average case is

impractical in systems accommodating thousands of servers.

In this section, we introduce opportunistic versions of CTrack and DTrack, in which

nextchoice() selects an assignment that is locally optimal for some metric, instead of the

round-robin traversal. This approach exploits the well-known locality principle to achieve

good performance in typical scenarios. Note that although locality is common in practice, it

is not a property that holds in all possible runs, and hence, the cost of using opportunistic

selection policies is that they yield worse competitive ratios than the round-robin ones.

In the forward heuristics DTrack−F and CTrack−F, nextchoice() picks the server with

the current minimal hold cost. The backward heuristic DTrack−B augments DTrack−RR’s

selection policy with the following rule: the deficit between the next choice and the previous

assignment is greater than βC for some −∞ ≤ β ≤ α. Using any β > 0 allows the algorithm

to choose the next server from those that presented good behavior since the last transition.

For β = −∞, the resulting algorithm is DTrack−RR. For β = 0, DTrack−B chooses the

next server from the leader set. For β = α, it selects a leader that triggered the transition.

Theorem 2 can be generalized to describe DTrack−B’s worst-case behavior (the proof appears

in Section A.3):

Theorem 4 The competitive ratio of DTrack−B is bounded as follows:

r(DTrack) < k(1 + 1
α

) α ≤ 1 and β ≤ 0

r(DTrack) < 1 + (k− 1)α + k α ≥ 1 and β ≤ α− 1

r(DTrack) < 1 + (k−1)α+k

α−β max(0, α− 1) ≤ β ≤ α

Corollary 2 For α = 1 and β ≤ 0, DTrack−B achieves a competitive ratio of 2k.
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The worst-case competitive ratio achieved by DTrack−F and DTrack−B with α = β is

not limited by the problem size k (see Appendix A.4 for the proof):

Theorem 5 The competitive ratio of DTrack−F and DTrack−B with α = β is Ω(C).

6 Case Study: Mobile Users in a WMN

In this section, we study nomadic service assignment in an urban WMN environment. The

results of the optimal algorithm OPT are used as a comparison baseline. For each algorithm

ALG, we measure its cost as well as performance ratio, which is the average ratio between the

total costs incurred by ALG and OPT during multiple runs. We average over 20 simulations,

each 10,000 slots long. This metric is analogous to the competitive ratio, the theoretical

worst-case metric.

The simulated network spans a square grid with uniformly distributed wireless routers.

The number of routers that populate a 1000m × 1000m grid is 100, that is, a single router

spans an average area of 100m × 100m. A mobile node moves using the random waypoint

mobility model [22]. The node uniformly chooses the destination and moves toward it at a

constant urban driving speed of 10 m/sec (36 km/hour). The time slot is one second.

We assume that the wireless infrastructure is the main bottleneck, whereas the gateway

resources are abundant, and hence, the end-user QoS is not affected by the congestion among

multiple connections. The hold cost between mobile node n and router r is defined as d(n,r)
100

,

i.e., a normalized Euclidean (L2) distance. Under these parameters, the average hold cost

offered by the closest router is roughly 0.5. The setup cost is 50.

Our main interest is in the scalability of the online solutions, i.e., how the total cost per

second and the performance ratio are affected as the problem size grows. For this purpose, we

gradually increase the grid size from 1000m×1000m to 5000m×5000m, and correspondingly

increase the number of routers from 100 to 2500, keeping the router density fixed. We study

the performance of different versions of CTrack and DTrack with different selections of α, β,

and nextchoice().
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Figure 2: CTrack−RR and DTrack−RR with α = 1 do not scale well with the network
size.

Our first goal is to study the performance of CTrack−RR and DTrack−RR with α = 1,

which have the best proven worst-case ratios. Figure 2 shows that both algorithms scale

poorly with the network size (their costs grow approximately as
√
k, whereas OPT’s cost

remains nearly constant). This is intuitive, since the round-robin selection policy tends to

assign a session to a random server, and the average distance grows as O(
√
k).

DTrack−B requires selecting the β parameter for a given α. Contrary to the worst-case

analysis, our results show that the algorithm’s performance improves as β becomes closer

to α. Figure 3 depicts the results for α = 1. The curves for all β values from 0.2 to 1 are

barely distinguishable. Hence, a good worst case ratio can be guaranteed by selecting small

β values without compromising the average performance by much (for example, for α = 1

and β = 0.2, the competitive ratio is bounded by 2.5k − 0.25).

Figures 4(a) and 4(b) depict the results of simulating the opportunistic algorithms Greedy,

CTrack−F, DTrack−F, and DTrack−B with α = 1 and β = 1. The performance curves of

CTrack−F and DTrack−F are almost indistinguishable. The algorithms’ performance ratios

remain constant as the problem scales – around 50% above the optimum. The total cost

per second also remains constant, since OPT itself is very scalable. Greedy, which takes the

opportunistic heuristic to the extreme, exhibits a weaker performance ratio (more than three

times the optimum) although it scales well. In this setting, Greedy’s reasonable behavior

can be explained by the moderate speed (hence, the hold cost changes are slow), and by
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Figure 3: Choosing a β value for DTrack−B with α = 1.0. The values between 0.2
and 1 exhibit very close behavior and scale well with the network size.

the moderate setup cost (hence, the penalty for making a wrong decision is limited). The

fact that DTrack−F consistently produces better results than DTrack−B can be explained

by the motion’s nature. Since the motion is random, the deficit values exhibit poor locality.

The result could have been different had the motion happened around a small number of

stationary points (home, office, cab station etc).

Figure 4(c) depicts the results of the same experiment with an average simulated speed

25 m/sec (90 km/hour). In this setting, DTrack−F starts producing a consistently lower

total cost (by 5-6%) than CTrack−F. This happens because at higher speeds, the hold cost

changes faster, and the total cost becomes a worse transition indicator than the deficit. This

phenomenon cannot be further magnified at reasonable driving speeds, but can be clearly

demonstrated in a different application (Section 7). As expected, Greedy performs worse at

higher speeds (above five times the optimum).

Further simulations (Figure 5) show that α values between 0.5 and 2.0 exhibit nearly the

same average-case performance.

DTrack’s computation overhead can be significantly improved in a WMN environment

since the hold cost monotonically increases with distance. Therefore, maintaining the deficit

values requires accessing the hold costs of the servers that are closer to the user than the

current assignment, as well as the servers that already have a positive deficit. This can

be achieved by using data structures that support efficient nearest neighbor queries in a
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Figure 4: Scalability of CTrack−F, DTrack−F, and DTrack−B in a WMN with mobile
users, α = 1.0 and β = 1.0.
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Figure 5: Scalability of CTrack−F, DTrack−F, and DTrack−B in a WMN with mobile
users, speed=10 m/s, with different α values.

multidimensional space like KD-trees or R-trees [18]. Figure 6 depicts the percentage of

hold costs that need to be accessed by DTrack−F and DTrack−B with α = β = 1. We can

see that the fraction of hold costs that must be accessed to maintain the positive deficit

values is very low.

6.1 Motion-Aware Heuristics

In order to achieve a better practical performance, we employ two simple online heuristics

tailored specifically to the mobile user environment. These heuristics exploit the near-term

motion pattern, and therefore can project the hold costs better than DTrack, which has only

a single-slot lookahead.

20



0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

Number of Servers

P
er

ce
nt

ag
e 

of
 U

se
fu

l A
cc

es
se

s

DTrack−F α=1
DTrack−B α=1 β=1

Figure 6: Percentage of useful hold cost accesses per second for DTrack−F and
DTrack−B with α = 1 and β = 1.

The first heuristic is called TargetAware. It requires information regarding the mobile

node’s current target and speed. This target information can be provided from a higher-

level system, e.g., a car navigation system, where the user can indicate the current status

(e.g., “driving home”). TargetAware is informed every time the mobile node changes its

target, and applies OPT as a subroutine in order to compute the assignment schedule until

the next target is reached. Every time the target changes, TargetAware selects the best of

two choices: running OPT with the fixed first assignment that is identical to the current one

(i.e., no setup cost is incurred for it), or letting OPT pick an arbitrary first assignment.

If the target information is not available, a mobile node equipped with a positioning

system (e.g., GPS) can use the direction information provided by it. In this context, we

propose the second heuristic that is called DirectionAware. It receives information about

the grid size as well as the mobile node’s estimated current direction and speed, which are

received upon the node’s direction changes. The algorithm projects the next target as the

clipping point of its current trajectory and the grid’s boundary, and applies TargetAware as

a subroutine.

Figure 7 depicts the scalability of both motion-aware heuristics, in the same environ-

ment as the previous simulation. Both TargetAware and DirectionAware are clearly su-

perior to CTrack−F and DTrack−F. Their performance ratios are less than 10% and 18%

above the optimum, respectively. As expected, TargetAware performs slightly better than
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Figure 7: Scalability of the motion-aware algorithms in a WMN with mobile users.

DirectionAware because it uses an accurate motion forecast. The motion-aware heuristics

scale even better than OPT because their lookahead window grows as the grid scales up.

We also evaluated DirectionAware’s capability to handle inaccurate predictions, by sup-

plying it with direction estimates that are normally distributed around the real direction with

variance ε. The values of ε ranged from 0o (exact prediction) to 30o (Figure 7). As expected,

the algorithm’s performance ratio grows with ε. However, this growth is limited by 25%

above the optimum, i.e., only 7% above the algorithm with a perfect direction forecast.

Therefore, DirectionAware is quite tolerant to moderately inaccurate direction estimates.

Note that both heuristics perform very well despite their small lookahead window. In

the context of the offline assignment problem, this means that a practically good solution

can be achieved with constant space complexity, without the need to capture the entire data

stream before running the dynamic programming algorithm.

7 Case Study: Wide-area Chatroom Service

The second environment studied is an Internet-scale groupware application service [15, 16],

e.g., chat. The service overlay network consists of 100 servers uniformly selected among the

nodes of a random network. Groups of users run a chatroom application, where each group

is assigned to a single server. The users are stationary, and their locations are uniformly

distributed in the network. The user arrival to a group is described by a Poisson process

22



with a mean of λ, and the membership lifetime is distributed exponentially with a mean of

T (that is, the average number of users in a group is λT ). The hold cost between group G

and server s is proportional to the maximal network distance between the server and some

node in the group, which reflects the application’s buffer space requirements affected by the

maximal delay. In this context, the server is seen as the group’s center, and the maximal

distance is the group’s radius. We study the same instances of CTrack−F, DTrack−F, and

DTrack−B as in Section 6 (that is, α = β = 1). We explore the algorithms’ scalability with

both the number of servers and the average group size.

In the first experiment, we increase the number of servers (in parallel with the network’s

size) from 100 to 2500, without increasing the number of users. We set λ = 0.1 users/second

and T = 30 seconds, yielding three users in the chatroom on average. Figure 8(a) depicts

the simulation results. Both versions of DTrack are within 15-20% above the optimal cost.

DTrack−F consistently outperforms CTrack−F because individual join or leave events in

a small group trigger fast changes in the hold costs. This is the same phenomenon that

happens in WMNs at high speeds (Figure 4(c)), but it is more significant since the hold cost

changes are faster.

In the second experiment, depicted in Figure 8(b), we scale the average group size up

from three to 75 (a large-scale conference) by increasing both λ and T . The network size is

not changed. Both versions of DTrack exhibit a performance ratio of under 5% above the

optimum for groups with more than ten members, and converge to the optimal cost as the

group scales. This happens because in dense groups, individual join and leave events do not

considerably affect the group radius. Therefore, the algorithms perform fewer transitions.

Finally, we study the algorithms’ scalability to large groups in large networks. For this

purpose, we gradually increase both the number of servers and the group size by the same

factor. The results depicted in Figure 8(c) show that when the number of servers grows

from 400 to 2500 and the number of users grows from 12 to 75, the performance ratios of

both versions of DTrack remain constant at less than 5% above the optimum, whereas the
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Figure 8: Scalability of CTrack−F, DTrack−F and DTrack−B in a wide-area chatroom
application service, α = 1.0 and β = 1.0.

performance ratio of CTrack−F also remains constant but exceeds the optimum by 30%.

8 Conclusion

In this paper, we have studied a problem of service point assignment to mobile users or

user groups in a distributed infrastructure with multiple service points. This problem will

naturally arise in several emerging practical environments. We have provided a rigorous

theoretical study, which includes competitive online algorithms and a lower bound on the

competitive ratio of deterministic algorithms. Following this, we studied the performance

of the proposed algorithms when applied in an urban WMN and in a wide-area chatroom

service. We gave practical algorithms that exhibit near-optimal performance and scale well

with the network size.
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A Competitive Analysis

A.1 A Competitive Analysis of DTrack-RR

In this section, we give a competitive analysis of the worst-case performance of DTrack−RR,

and derive the parameter value of α for which the best competitive ratio is obtained.

Claim 1 Let t be a time and s a server. Let τ be the time of the latest transition before

t+ 1. DTrack−RR maintains that Def[s] = def(sc, s, [τ, t+ 1)).

Proof : Immediate from the code (Lines 14–15 stands for the initialization upon assignment,

and Lines 18–24 stand for the maintenance between assignments). 2

Lemma 1 Let t be a time and s a server. Let τ be the time of the latest transition before

t+ 1. Then, def(σ(τ), s, [τ, t+ 1)) ≤ αC.

Proof : By induction on t. For t = 0, the claim holds because the server with the

minimal hold cost is selected (Line 3). For t > 0, if there is no transition at t, then

the invariant is maintained by the algorithm’s code (Line 7). Assume that a transition

occurs at time t, i.e., τ = t. By the induction hypothesis, def(σ(τ ′), s, [τ ′, t)) ≤ αC,

where τ ′ is the previous transition time. However, since a transition happened at t, then

for some s, def(σ(τ ′), s, [τ ′, t + 1)) > αC. Hence, there exists some server s such that

hold(s, t) < hold(σ(τ ′), t), that is, hold(σ(τ ′), t) is not the minimal hold cost at time t.

Therefore, some identity s 6= σ(τ ′) can be found such that def(s, s′, [t, t + 1)) ≤ αC, for all

s′ (Line 28) – e.g., the server with the minimal hold cost at t satisfies this requirement. 2
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Corollary 3 If nextchoice() is invoked at time t, it returns an identifier that is different

from σ(t− 1).

We term an interval [τ, τ ′) between two consecutive transitions of algorithm ALG or be-

tween ALG’s last transition and the end of the run as ALG-round. Where ALG is clear from the

context, we simply say round. It is convenient to describe the assignment choices made by

DTrack−RR with time as a movement in a circular server identifier space, with a clockwise

direction from s to (s + 1) mod k. We say that σ overtakes s at time t if s is encountered

while moving clockwise from σ(t− 1) to σ(t), and s 6= σ(t). In other words, either σ(t− 1)

is s, or s is skipped at t.

We now consider a DTrack−RR-round and an ALG-round of an arbitrary algorithm ALG.

We analyze the competitive ratio of DTrack−RR for different values of α by comparing the

cost it incurs with the cost incurred by ALG during a single ALG-round [τi, τi+1) and then

generalizing for the whole run. We denote ALG’s schedule by σ ′, and ALG’s assignment during

this ALG-round by s′ (if ALG is OPT, the notations are σ∗ and s∗, respectively).

We define two partitions of the interval [τi, τi+1) into sub-intervals. The first one partitions

the interval to phases {Pi,j = [ti,j, ti,j+1)}, defined as follows. The first phase starts at τi. A

phase completes at the earlier between the time when σ overtakes s′ and τi+1. The second

partition is to shifted phases {−→Pi,j}, defined as follows. The first shifted phase starts at

τi. A shifted phase completes at the earlier between one slot after the completion of the

corresponding phase and τi+1.

Figure 9 depicts the above definitions for an OPT-round [10, 30), in which s∗ = s4. The

first phase ends at time 18 when the algorithm chooses s6 and overtakes s4, which was its

previous assignment. The second phase ends at time 25 when the algorithm chooses s5 and

overtakes s4 for the second time, without choosing s4 in this phase.

Lemma 2 Consider an ALG-round [τi, τi+1) with p phases produced by DTrack−RR. Then,

cost(σ, [τi, τi+1)) ≤ hold(σ′, [τi, τi+1)) + pC(k + (k − 1)α)
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Figure 9: Definition of phases for DTrack−RR.

Proof : Consider a DTrack−RR-round [t, t′) ⊆ Pi,j, and denote s = σ(t).

If s = s′, then hold(σ′, [t, t′)) = hold(σ, [t, t′)). Otherwise, by the definition of def,

hold(σ, [t, t′)) − hold(σ′, [t, t′)) ≤ def(s, s′, [t, t′)). By Lemma 1, def(s, s′, [t, t′)) ≤ αC.

Therefore, hold(σ, [t, t′))−hold(σ′, [t, t′)) ≤ αC. There are at most k−1 rounds during Pi,j
in which the assignment is different from s′, and hence,

hold(σ,Pi,j)− hold(σ′,Pi,j) ≤ (k − 1)αC.

DTrack−RR performs at most k transitions during Pi,j, paying at most kC for setup. There-

fore,
cost(σ,Pi,j) ≤ hold(σ′,Pi,j) + (k − 1)αC + kC.

{Pi,j} is a partition of [τi, τi+1), and hence,

cost(σ, [τi, τi+1)) =

p∑

j=1

cost(σ,Pi,j) ≤

p∑

j=1

hold(σ′,Pi,j) + pC(k + (k − 1)α) = hold(σ′, [τi, τi+1)) + pC(k + (k − 1)α).2

Lemma 3 Consider an ALG-round [τi, τi+1) with p phases produced by DTrack−RR, such that

either σ(τi − 1) 6= σ′(τi), or σ(τi) 6= σ′(τi). Then, hold(σ′, [τi, τi+1)) ≥ (p− 1)αC.

Proof : If p = 1, the claim trivially holds because the hold costs are non-negative.
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Otherwise, consider a phase Pi,j such that j < p. This phase ends at ti,j+1 that is strictly

smaller than τi+1. We first prove a claim that hold(σ′,
−→Pi,j) > αC. Consider DTrack−RR’s

assignment s during the last DTrack−RR-round [t, ti,j+1) in Pi,j, that is, s = σ(t), and σ

overtakes s′ at time ti,j+1. By definition,
−→Pi,j ends at time ti,j+1 + 1. Consider two possible

cases:

1. If s 6= s′, then the algorithm considers picking s′ upon the transition from s at

ti,j+1, and does not select it because there exists a server s̃ such that hold(s′, ti,j+1)−

hold(s̃, ti,j+1) > αC, and hence, hold(s′, ti,j+1) > αC. By definition of a shifted phase,

[ti,j+1, ti,j+1 + 1) ⊆ −→Pi,j. It follows that hold(σ′,
−→Pi,j) > αC, and the claim holds.

2. Otherwise, s = s′. Since the algorithm transitions from s′ at time ti,j+1, there exists s̃

such that def(s′, s̃, [t, ti,j+1 + 1)) > αC, that is, hold(σ′, [t, ti,j+1 + 1)) > αC. Assume

that Pi,j is the first phase in [τi, τi+1). Since either σ(τi − 1) 6= σ′(τi), or σ(τi) 6=

σ′(τi), DTrack−RR’s assignment to s′ did not happen before τi, i.e., t ≥ τi. Hence,

[t, ti,j+1 + 1) ⊆ −→Pi,j, by definition of a shifted phase. Otherwise, consider the preceding

phase Pi,j−1. By definition, σ overtakes s′ at time ti,j. In particular, σ(ti,j) 6= s′.

Since at least one time slot is spent at every assignment, σ transitions to s′ at time

ti,j < t < ti,j+1, that is, [t, ti,j+1 + 1) ⊆ −→Pi,j. It follows that hold(σ′,
−→Pi,j) > αC, and

the claim holds.

It follows that hold(σ′,
−→Pi,j) > αC. {−→Pi,j} is a partition of [τi, τi+1), and therefore,

hold(σ′, [τi, τi+1)) ≥
p−1∑

j=1

hold(σ′,
−→Pi,j) > (p− 1)αC.2

Lemma 4 Consider an ALG-round [τi, τi+1), such that either σ(τi − 1) 6= σ′(τi), or σ(τi) 6=

σ′(τi). Then, cost(σ,[τi,τi+1))
cost(σ′,[τi,τi+1))

< k(1 + 1
α

) α ≤ 1

cost(σ,[τi,τi+1))
cost(σ′,[τi,τi+1))

< 1 + (k − 1)α + k α ≥ 1

Proof : ALG pays the setup cost C for a single transition during [τi, τi+1) (at τi), and therefore,
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cost(σ′, [τi, τi+1)) = C + hold(σ′, [τi, τi+1)).

Substituting the ratio’s numerator from Lemma 2, we receive

cost(σ, [τi, τi+1))

cost(σ′, [τi, τi+1))
≤ hold(σ′, [τi, τi+1)) + pC((k − 1)α + k)

C + hold(σ′, [τi, τi+1))
< 1 +

pC((k − 1)α + k)

C + hold(σ′, [τi, τi+1))
.

Substituting the denominator from Lemma 3,

cost(σ, [τi, τi+1))

cost(σ′, [τi, τi+1))
< 1 +

pC(k + (k − 1)α)

C + (p− 1)αC
= 1 +

p((k − 1)α + k)

1 + (p− 1)α
.

We denote %(α, p) , 1 + p(k+(k−1)α)
1+(p−1)α

. In order to compute p that produces the maximum

ratio for a given α, we derive ∂%
∂p

. We get that ∂%
∂p

= 0 for α = 1, that is, the function is

constant when α = 1: %(1, p) = 2k for all p. The derivative is strictly positive for α < 1 and

strictly negative for α > 1, therefore, the function is monotonically increasing for α < 1 and

monotonically decreasing for α > 1. For α < 1,

sup
1≤p<∞

%(α, p) = lim
p→∞

%(α, p) = 1 +
(k − 1)α + k

α
= k(1 +

1

α
),

whereas for α > 1,
sup

1≤p<∞
%(α, p) = %(α, 1) = 1 + (k − 1)α + k.2

Theorem 2 The competitive ratio of DTrack−RR is bounded as follows:

r(DTrack−RR) < k(1 + 1
α

) α ≤ 1

r(DTrack−RR) < 1 + (k− 1)α+ k α ≥ 1

Proof : We prove the upper bound on DTrack−RR’s competitive ratio for every OPT-round,

and conclude the same result for the entire run.

Consider the local ratio between the costs incurred by DTrack−RR and OPT during a single

OPT-round [τi, τi+1), that is, cost(σ,[τi,τi+1))
cost(σ∗,[τi,τi+1))

. If either σ(τi − 1) 6= σ(τi), or σ(τi − 1) 6= σ(τi),

the claim follows immediately from Lemma 4. Otherwise, σ(τi− 1) = σ(τi) = σ∗(τi) = s∗. If

DTrack−RR never transitions during the OPT-round, then

cost(σ, [τi, τi+1)) = hold(σ, [τi, τi+1)) = hold(σ∗, [τi, τi+1)) < cost(σ∗, [τi, τi+1)),
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and the claim trivially holds. Otherwise, let τi < t < τi+1 be the first time after τi such

that σ(t) 6= s∗. Consider a schedule σ′ that is obtained from σ∗ by shifting the assign-

ment to s∗ from τi to t (assume that this schedule is produced by some algorithm ALG).

Note that hold(σ∗, [τi, t)) = hold(σ, [τi, t)) ≥ 0, and cost(σ, [t, τi+1)) = cost(σ, [τi, τi+1))−

hold(σ, [τi, t)) ≥ cost(σ∗, [τi, τi+1))− hold(σ, [τi, t)) = cost(σ′, [t, τi+1)) ≥ 0. By applying a

well-known inequality a+x
b+x
≤ a

b
for 0 ≤ b ≤ a and x ≥ 0 to the sought ratio, we get:

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
=

hold(σ, [τi, t)) + cost(σ, [t, τi+1))

hold(σ, [τi, t)) + cost(σ′, [t, τi+1))
≤ cost(σ, [t, τi+1))

cost(σ′, [t, τi+1))
.

. Since s∗ = σ(t−1) = σ′(t) 6= σ(t), the bound from Lemma 4 is applicable to the ALG-round

[t, τi+1), and the claim follows. 2

A.2 A Competitive Analysis of CTrack-RR

Theorem 3 If hold(s, t) ≤ aC for all s and t, then r(CTrack−RR) < (2 + a)k for α = 1.

Proof : Consider an OPT-round [τi, τi+1) with p phases produced by CTrack−RR as defined

in Appendix A.1, in which s∗ is OPT’s choice.

Consider a CTrack−RR round [t, t′) in which server s is CTrack−RR’s choice. If t < t′− 1,

then

hold(σ, [t, t′)) = hold(σ, [t, t′ − 1)) + hold(s, t′ − 1) ≤ hold(σ, [t, t′ − 1)) + aC.

hold(σ, [t, t′ − 1)) ≤ αC since no transition happened at t′ − 1, and hence, hold(σ, [t, t′)) ≤

(α+ a)C. If t = t′− 1, the same result holds trivially. There are p phases in [τi, τi+1) and at

most k rounds in each phase. Summarizing over all CTrack−RR’s rounds, we get

cost(σ, [τi, τi+1)) ≤ pkC + hold(σ, [τi, τi+1)) ≤ pk(α + a)C + pkC = pk(α + a+ 1)C.

Consider the last CTrack−RR round [t, t′) in phase Pi,j such that j < p. By definition, s∗ is

the algorithm’s choice in this round. A transition happens, therefore, hold(σ, [t, t′)) > αC.

Hence, hold(σ∗, [t, t′)) > αC. Summarizing over all phases in [τi, τi+1), we get
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cost(σ∗, [τi, τi+1)) = C + hold(σ∗, [τi, τi+1)) > (1 + (p− 1)α)C.

Hence, cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
< k

p(α + a+ 1)

1 + (p− 1)α
.

For α = 1, this ratio is smaller than (2 + a)k for all p. Since this upper bound limits the

algorithm’s competitive ratio for every OPT-round, we conclude the same result for the entire

run. 2

A.3 A Competitive Analysis of DTrack-B

In this section, we prove the upper bound on the competitive ratio of DTrack−B for arbitrary

β values. The following lemma is an adaptation of Lemma 3 for DTrack−B.

Lemma 5 Consider an ALG-round [τi, τi+1) with p phases produced by DTrack−B, such that

either σ(τi − 1) 6= σ′(τi), or σ(τi) 6= σ′(τi). Then,

hold(σ′, [τi, τi+1)) ≥ (p− 1)C min(α, α− β).

Proof : Like in Lemma 3, we consider a phase Pi,j such that j < p, which ends at ti,j+1. We

first prove a claim that hold(σ′,
−→Pi,j) > max(α, α − β)C. Consider DTrack−B’s assignment

s during the last DTrack−B-round [t, ti,j+1) in Pi,j, that is, s = σ(t), and σ overtakes s′ at

time ti,j+1. Consider the case when s 6= s′. This happens for one of two reasons:

1. There exists a server s̃ such that hold(s′, ti,j+1)− hold(s̃, ti,j+1) > αC, and therefore,

hold(s′, ti,j+1) > αC. [ti,j+1, ti,j+1 + 1) ⊆ −→Pi,j, hence, hold(σ′,
−→Pi,j) > αC, and the

claim follows.

2. def(s, s′, [t, ti,j+1 + 1)) ≤ βC. There exists a server s̃ that triggered the transition, and

therefore, def(s, s̃, [t, ti,j+1 + 1)) > αC. Hence, def(s′, s̃, [t, ti,j+1 + 1)) > (α − β)C,

that is, hold(σ′,
−→Pi,j) > (α− β)C, and the claim follows.

The rest of the proof is identical to that of Lemma 3. 2
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Theorem 4 The competitive ratio of DTrack−B is bounded as follows:

r(DTrack) < 1 + (k− 1)α + k α ≥ 1 and β ≤ α− 1 (1)

r(DTrack) < k(1 + 1
α

) α ≤ 1 and β ≤ 0 (2)

r(DTrack) < 1 + (k−1)α+k

α−β max(0, α− 1) ≤ β ≤ α (3)

Proof : Consider the local ratio between the costs incurred by DTrack−RR and OPT during a

single OPT-round [τi, τi+1). Similarly to the proof of Theorem 2, we derive

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
< 1 +

p((k − 1)α + k)

1 + (p− 1) min(α, α− β)
.

We denote %(α, β, p) , 1+ p((k−1)α+k)
1+(p−1) min(α,α−β)

. If min(α, α−β) ≥ 1 (i.e., α ≥ 1 and α−β ≥ 1),

then the derivative ∂%
∂p

is non-negative, and hence,

sup
1≤p<∞

%(α, β, p) = %(α, β, 1) = 1 + (k − 1)α + k if α ≥ 1 and β ≤ α− 1. (1)

If min(α, α− β) ≤ 1, then ∂%
∂p

is non-positive, and hence,

sup
1≤p<∞

%(α, β, p) = lim
p→∞

%(α, β, p) = 1 +
(k − 1)α + k

min(α, α− β)
.

Consider the case when min(α, α− β) = α, i.e., β ≤ 0. Combining this with α ≤ 1, we get:

sup
1≤p<∞

%(α, β, p) = 1 +
(k − 1)α + k

α
= k(1 +

1

α
) if α ≤ 1 and β ≤ 0. (2)

Consider the case when min(α, α− β) = α− β, i.e., β ≥ 0. Combining this with α− β ≤ 1

and β ≤ α (by definition), we get:

sup
1≤p<∞

%(α, β, p) = 1 +
(k − 1)α + k

α− β if max(0, α− 1) ≤ β ≤ α, (3)

and the claim follows. 2

A.4 Non-Competitiveness of Opportunistic Algorithms

In this section, we show that the opportunistic versions of DTrack are not competitive, that

is, the worst-case competitive ratio depends on C, rather than on the problem size k.
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Figure 10: An example of hold costs for which DTrack−F and DTrack−B with α = β
are Ω(C)-competitive.

Theorem 5 The competitive ratio of DTrack−F and DTrack−B with α = β is Ω(C).

Proof : Assume wlog that C is a positive integer (otherwise, the theorem can be proved for

C ′ = bCc). Let ε be a small number s.t. 0 < ε < α
C+2

. Consider three servers s0, s1 and

s2. Let hold(s2, t) = ε for all t, whereas hold(s0, t) and hold(s1, t) are defined as follows for

integer values of 0 ≤ i < dC
2
e:

hold(s0, t) =





(2i+ 3)ε t = (2i+ 1)(C + 1)

α 2i(C + 1) < t < (2i+ 1)(C + 1)

0 otherwise

and

hold(s1, t) =





(2i+ 2)ε t = 2i(C + 1)

α (2i+ 1)(C + 1) < t < (2i+ 2)(C + 1)

0 otherwise

The hold costs during the interval [0, 3C + 3] are depicted in Figure 10. Note that for

0 ≤ i < dC
2
e, it holds that (2i + 3)ε ≤ (C + 2)ε < α. Therefore, hold(s0, t) ≤ α, and

hold(s1, t) ≤ α for all t during this interval.

Lemma 6 Both DTrack−F and DTrack−B assign s0 at times t = 2i(C+ 1), and s1 at times

t = (2i+ 1)(C + 1), for 0 ≤ i < dC
2
e.
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Proof : By induction on i. At time t = 0, both algorithms choose s0 because it offers the

minimal hold cost. The induction step considers two cases:

1. t = (2i + 1)(C + 1). Both algorithms transitioned to s0 at 2i(C + 1) by induction

hypothesis. We compute def(s0, s1, [2i(C + 1), t)) and def(s0, s2, [2i(C + 1), t)).

def(s0, s1, [2i(C + 1), (2i+ 1)(C + 1) + 1)) =

−(2i+ 2)ε+ αC + ((2i+ 1) + 2)ε = αC + ε > αC,

whereas

def(s0, s2, [2i(C + 1), (2i+ 1)(C + 1) + 1)) =

−ε+ C(α− ε) + ((2i+ 1) + 2− 1)ε < αC − ε(C − (2i+ 1)) ≤ αC.

Note that both def(s0, s1, [2i(C+1), t′) and def(s0, s2, [2i(C+1), t′) are strictly smaller

than αC for t′ < t. Therefore, the transition happens at (2i + 1)(C + 1) for the first

time since 2i(C + 1).

2. t = (2i+ 2)(C + 1). This case is proved analogously to the previous one.

Upon every transition, DTrack−F selects the server with the zero hold cost, i.e., s0 at times

2i(C + 1), and s1 at times t = (2i + 1)(C + 1). DTrack−B selects the server that achieves

the largest deficit, i.e., it makes the same choice. 2

Consider a run of DTrack−F and DTrack−B during the interval [0, C 2 − 1). Both algo-

rithms behave identically. They transition C times during this interval (at t = i(C + 1),

for 0 ≤ i ≤ C − 1). Hence, the total setup cost is C2. The total hold cost exceeds αC2

since a hold cost of above αC is incurred between every two transitions. Hence, the total

cost during the interval exceeds (α + 1)C2. In the same setting, OPT selects s2 at t = 0 and

never changes its assignment, thus paying a total setup cost of C and a total hold cost of

ε(C2 − 1) < αC. Hence, the competitive ratio of both online algorithms is Ω(C). 2
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