
Composing Ordered Sequential Consistency

Kfir Lev-Aria,∗, Edward Bortnikovb, Idit Keidara,b, Alexander Shraer

aViterbi Department of Electrical Engineering, Technion, Haifa, Israel
bYahoo Research, Haifa, Israel

Abstract

We define ordered sequential consistency (OSC), a generic criterion for concur-

rent objects. We show that OSC encompasses a range of criteria, from sequential

consistency to linearizability, and captures the typical behavior of real-world co-

ordination services, such as ZooKeeper. A straightforward composition of OSC

objects is not necessarily OSC, e.g., a composition of sequentially consistent ob-

jects is not sequentially consistent. We define a global property we call leading

ordered operations, and prove that it enables correct OSC composition.

Keywords: Composability, Consistency, Distributed Systems

1. Introduction

In this work we define a generic correctness criterion named Ordered Se-

quential Consistency (OSC), which captures a range of criteria, from sequential

consistency [1] to linearizability [2].

We use OSC to capture the semantics of coordination services such as5

ZooKeeper [3]. These coordination services provide so-called “strong consis-

tency” for updates and some weaker semantics for reads. They are replicated

for high-availability, and each client submits requests to one of the replicas.

Reads are not atomic so that they can be served fast, i.e., locally by any of the

replicas, whereas update requests are serialized via a quorum-based protocol10

∗Corresponding author
Email address: kfirla@campus.technion.ac.il (Kfir Lev-Ari)

Preprint submitted to Information Processing Letters March 21, 2017



based on Paxos [4]. Since reads are served locally, they can be somewhat stale

but nevertheless represent a valid system state.

In the literature, these services’ guarantees are described as atomic writes

and FIFO ordered operations for each client [3]. This definition is not tight

in two ways: (1) linearizability of updates has no meaning when no operation15

reads the written values; and (2) this definition allows read operations to read

from a future write, which obviously does not occur in any real-world service.

A special case of OSC, which we call OSC(U), captures the actual guarantees

of existing coordination services.

Although supporting OSC(U) semantics instead of atomicity of all oper-20

ations enables fast local reads, this makes services non-composable: correct

OSC(U) coordination services may fail to provide the same level of consistency

when combined [5]. Intuitively, the problem arises because OSC(U), similarly

to sequential consistency [1], allows sub-set of operations to occur “in the past”,

which can introduce cyclic dependencies.25

In a companion systems paper [5] we present ZooNet, a system for modular

composition of coordination services, which addresses this challenge: Consis-

tency is achieved on the client side by judiciously adding synchronization re-

quests called leading ordered operations. The key idea is to place a “barrier”

that limits how far in the past reads can be served from. ZooNet does so by30

adding a “leading” update request prior to a read request whenever the read

is addressed to a different service than the previous one accessed by the same

client. We provide here the theoretical underpinnings for the algorithm imple-

mented in ZooNet.

Proving the correctness of ZooNet is made possible by the OSC definition35

that we present in this paper. Interestingly, Vitenberg and Friedman [6] showed

that sequential consistency, when combined with any local (i.e., composable)

property continues to be non-composable. Our approach circumvents this im-

possibility result since having leading ordered operations is not a local property.

2



2. Model and Notation40

We use a standard shared memory execution model [2], where a set φ of

sequential processes access shared objects from some set X. An object has a

name label, a value, and a set of operations used for manipulating and reading

its value. An operation’s execution is delimited by two events, invoke and

response.45

A history σ is a sequence of operation invoke and response events. An invoke

event of operation op is denoted iop, and the matching response event is denoted

rop. For two events e1, e2 ∈ σ, we denote e1 <σ e2 if e1 precedes e2 in σ, and

e1 ≤σ e2 if e1 = e2 or e1 <σ e2. For two operations op and op′ in σ, op precedes

op′, denoted op <σ op
′, if rop <σ iop′ , and op ≤σ op′ if op = op′ or op <σ op

′.50

Two operations are concurrent if neither precedes the other.

For a history σ, complete(σ) is the sequence obtained by removing all oper-

ations with no response events from σ. A history is sequential if it begins with

an invoke event and consists of an alternating sequence of invoke and response

events, s.t. each invoke is followed by the matching response.55

For p ∈ φ, the process subhistory σ|p of a history σ is the subsequence of σ

consisting of events of process p. The object subhistory σx for an object x ∈ X

is similarly defined. A history σ is well-formed if for each process p ∈ φ, σ|p

is sequential. For the rest of our discussion, we assume that all histories are

well-formed. The order of operations in σ|p is called the process order of p.60

For the sake of our analysis, we assume that each subhistory σx starts with

a dummy initialization of x that updates it to a dedicated initial value v0,

denoted dix(v0), and that there are no concurrent operations with dix(v0) in σx.

We refer to an operation that changes the object’s value as an update oper-

ation. The sequential specification of an object x is a set of allowed sequential65

histories in which all events are associated with x. For example, the sequential

specification of a read-write object is the set of sequential histories in which

each read operation returns the value written by the last update operation that

precedes it.

3



3. Ordered Sequential Consistency70

Definition 1 (OSC(A)). A history σ is OSC w.r.t. a subset A of the objects’

operations if there exists a history σ′ that can be created by adding zero or more

response events to σ, and there is a sequential permutation π of complete(σ′),

satisfying the following:

OSC1 (sequential specification): ∀x ∈ X, πx belongs to the sequential75

specification of x.

OSC2 (process order): For two operations o and o′, if ∃p ∈ φ : o <σ|p o
′

then o <π o
′.

OSC3 (A-real-time order): ∀x ∈ X, for an operation o ∈ A and an opera-

tion o′ (not necessarily in A) s.t. o, o′ ∈ σx, if o′ <σ o then o′ <π o.80

Such π is called a serialization of σ. An object is OSC(A) if all of its histories

are OSC(A).

We assume that ∀x ∈ X, dix(v0) ∈ A. Linearizability and sequential consis-

tency are both special cases of OSC(A): (1) we get linearizability using A that

consist of all of the objects’ operations; and (2) we get sequential consistency85

with A that consists only of dummy initialization operations, which means that

there is no operation that precedes an A-operation, i.e., OSC3 is null, and we

left with the sequential specification and process order of an object.

If A consists of the objects’ update operations, denoted U , then OSC(U)

captures the semantics of coordination services: (1) updates are globally ordered90

(by OSC3); and (2) all operations see some prefix of that order (by OSC3), while

respecting each client process order (by OSC2).

4. OSC(A) Composability via Leading A-Operations

In this section we show that a history σ of OSC(A) objects satisfies OSC(A),

if σ has leading ordered A-operations. Generally, we prove the composition by95

ordering every A-operation oA on object x, according to the first event e ∈ σ

4



s.t. e ≤σ roA and ioA <πx e. Then, we extend that order to a total order

on all operations, by placing every non-A-operation after the A-operation that

precedes it in their object’s serialization. Finally, we show that if σ has leading

ordered A-operations, then the total order satisfies OSC(A).Intuitively, we can100

think of the leading A-operations as a barrier for the non-A-operations, that

maintains the total order between objects.

Given a history σ of OSC(A) objects, and a set of serializations Π = {πx}x∈X

of {σx}x∈X, we define a strict total order on all operations in Π. We refer to an

operation o ∈ A as an A-operation, and define the future set of an A-operation105

as follows:

Definition 2 (A-operation future set). Given a history σ of OSC(A) objects,

an object x ∈ σ, a serialization πx of σx, and an A-operation oA ∈ σx, the

future set of oA in πx is Fπx
σ (oA) , {o ∈ πx|oA ≤πx o}.

We now define an A-operation’s first response event to be the earliest re-110

sponse event of an operation in its future set.

Definition 3 (First response event). Given a history σ of OSC(A) objects, an

object x ∈ σ, a serialization πx of σx, and an A-operation oA ∈ πx, the first

response event of oA in πx, denoted frπx
σ (oA), is the earliest response event in σ

of an operation in Fπx
σ (oA).115

Note that it is possible that frπx
σ (oA) is oA’s response event. We make two

observations regarding first responses:

Observation 1. Given OSC(A) objects’ σ, an object x ∈ σ, a serialization πx

of σx, and an A-operation oA ∈ πx, then ioA <σ fr
πx
σ (oA).

Proof. By definition, frπx
σ (oA) is a response event in σ of an operation o s.t.120

oA ≤πx
o. If frπx

σ (oA) <σ ioA , i.e., ro <σ ioA , then o <σ oA, a contradiction to

OSC3.

Observation 2. Let σ be OSC(A) objects’ history, and let πx be a serialization

of σx for some x. For two A-operations o, o′ ∈ πx, if o <πx
o′, then frπx

σ (o) ≤σ
frπx
σ (o′).125

5



Proof. Since o <πx o
′, we get Fπx

σ (o′) ⊂ Fπx
σ (o). By Definition 3, frπu

σ (o′) is a

response event of an operation o1 ∈ Fπx
σ (o′), and therefore o1 ∈ Fπx

σ (o). Thus,

frπx
σ (o) is either frπx

σ (o′) or an earlier response event in σ.

To define our strict total order on operations we begin with A-operations:

Definition 4 (A-Π-order). Let σ be a history of OSC(A) objects. Let Π =130

{πx}x∈X be a set of serializations of {σx}x∈X. Let x, y ∈ X, then for two A-

operations oA ∈ πx and o′A ∈ πy, we define their A-Π-order, denoted <AΠ,

as follows: (<) If x = y, i.e., oA, o
′
A ∈ πx, then oA <AΠ o′A iff oA <πx

o′A;

otherwise, (fr) x 6= y, and oA <AΠ o′A iff frπx
σ (oA) <σ fr

πy
σ (o′A).

Lemma 1. For a history σ of OSC objects and a set of serializations Π =135

{πx}x∈X of {σx}x∈X, A-Π-order is a strict total order on A-operations in Π.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from

the definition of <AΠ. We show that <AΠ satisfies transitivity.

Let oA, o′A, and o′′A be three A-operations s.t. uo1 <AΠ uo2 <AΠ uo3; we need

to prove that uo1 <AΠ uo3. We consider four cases according to the condition140

by which each of the pairs is ordered:

(<,<) If ∃x ∈ X oA, o
′
A, o
′′
A ∈ πx, then oA <πx

o′A <πx
o′′A implies oA <πx

o′′A,

and thus oA <AΠ o′′A.

(<,fr) If ∃x, y ∈ X, x 6= y : oA <πx o
′
A, o′′A ∈ πy, and frπx

σ (o′A) <σ fr
πy
σ (o′′A),

by Observation 2, frπx
σ (oA) ≤σ frπx

σ (o′A), therefore frπx
σ (oA) <σ fr

πy
σ (o′′A), and145

oA <AΠ o′′A.

(fr,<) If ∃x, y ∈ X, x 6= y : oA ∈ πx, o′A <πy o
′′
A, and frπx

σ (oA) <σ fr
πy
σ (o′A),

by Observation 2, fr
πy
σ (o′A) ≤σ fr

πy
σ (o′′A). We get frπx

σ (oA) <σ fr
πy
σ (o′′A), there-

fore oA <AΠ o′′A.

(fr,fr) If ∃x, y, z ∈ X, x 6= y, y 6= z : oA ∈ πx, o′A ∈ πy, and o′′A ∈ πz, this150

means that frπx
σ (oA) <σ fr

πy
σ (o′A) and fr

πy
σ (o′A) <σ fr

πz
σ (o′′A). By transitivity

of <σ, frπx
σ (oA) <σ frπz

σ (o′′A). If z 6= x, then oA <AΠ o′′A. If z = x, by the

contrapositive of Observation 2, oA <πx o
′′
A, and oA <AΠ o′′A.

6



We extend <AΠ to a weak total order in the usual way: o1 ≤AΠ o2 if

o1 <AΠ o2 or o1 = o2. For a history σ, a serialization πx of σx, and an operation155

o in πx, the last A-operation before o in πx, denoted lAπx
(o), is the latest

A-operation in the prefix of πx that ends with o. Note that if o is an A-

operation then lAπx(o) = o; and that since every history starts with a dummy

initialization, every operation that is not in A is preceded by at least one A-

operation and so lAπx
(o) is well-defined. We use last A-operations to extend160

the A-Π-order to a strict total order on all operations in Π.

Definition 5 (Π-order). Let σ be a history of OSC(A) objects. Let Π =

{πx}x∈X be a set of serializations of {σx}x∈X, and let x and y be objects in

X. For two operations o1 ∈ πx, and o2 ∈ πy, we define Π-order, denoted <Π,

as follows:165

(lAπx
(o1) 6= lAπy

(o2)) if the last A-operation before o1 and o2 are different, then

o1 <Π o2 iff lAπx(o1) <AΠ lAπy (o2);

(lAπx(o1) = lAπy (o2)) otherwise, x = y, and o1 <Π o2 iff o1 <πx o2.

We now observe that <Π generalizes all the serializations πx ∈ Π:

Observation 3. Let σ be a history of OSC(A) objects, and πx ∈ Π a serializa-170

tion of σx for some object x ∈ X. For two operations o1, o2 ∈ πx, if o1 <πx
o2

then o1 <Π o2.

Proof. Since o1 <πx o2, then lAπx(o1) ≤πx lAπx(o2). If lAπx(o1) = lAπx(o2)

then by Definition 5, o1 <Π o2. Otherwise, by Definition 4, lAπx
(o1) <AΠ

lAπx
(o2) and by Definition 5, o1 <Π o2.175

Lemma 2. Let σ be a history of OSC(A) objects, and Π = {πx}x∈X be a set of

serializations of {σx}x∈X, then Π-order is a strict total order on all operations

in Π.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from

the definition of <Π. We show that <Π satisfies transitivity.180

7



Let o1, o2, and o3 be three operations on objects x, y, z, resp., s.t. o1 <Π

o2 <Π o3; we need to prove that o1 <Π o3.

For every oi and oj , by Definition 5, oi <Π oj implies lAπi
(oi) ≤AΠ lAπj

(oj).

By transitivity of ≤AΠ (Lemma 1), we get from lAπx
(o1) ≤AΠ lAπy

(o2) ≤AΠ

lAπz (o3) that lAπx(o1) ≤AΠ lAπz (o3).185

If lAπx
(o1) <AΠ lAπz

(o3) then by Definition 5 o1 <Π o3. If lAπx
(o1) =

lAπz
(o3), then by lAπx

(o1) ≤AΠ lAπy
(o2) ≤AΠ lAπz

(o3) we get lAπx
(o1) =

lAπy
(o2) = lAπz

(o3), and x = y = z. Therefore by o1 <Π o2 <Π o3 and

Definition 5, o1 <πx o2 <πx o3, and thus by Definition 5 o1 <Π o3.

Note that Π-order is always defined for compositions of OSC objects. Since190

it generalizes all the serializations πx (Observation 3), it preserves OSC1 and

OSC3. Nevertheless, OSC2 is not guaranteed.

To support OSC(A) composition we extend each object with a sync opera-

tion, which does not change the object’s state and does not return any value,

but belongs to A. For example, to compose OSC({dix(v0)|∀x ∈ X}) objects, we195

extend each of them to be an OSC({sync} ∪ {dix(v0)|∀x ∈ X}) object and then

compose them via adding sync operations.

We say that in a history σ there are leading ordered operations if for every

operation o 6∈ A by a process p in σ, the last operation of p before o is on the

same object. This also means that between every two operations o 6∈ A and200

o′ 6∈ A of different objects by the same process in σ, there is an operation oA ∈

A to the second object. We next prove that adding leading ordered operations

allows for correct OSC composition.

Theorem 1. If a history σ of OSC(A) objects has leading ordered operations,

then σ is OSC(A).205

Proof. Let Π = {πx}x∈X be a set of serializations of {σx}x∈X, and let π be

the sequential permutation of σ defined by <Π. We now prove that π satisfies

OSC(A). OSC1 and OSC3 follow immediately from Observation 3.

We prove OSC2. Let o1 and o2 be two operations in Π for which ∃p ∈ φ :

o1 <σ|p o2. We now show that o1 <Π o2.210

8



We start by proving the claim for two consecutive operations in σ|p. If both

operations are on the same object, then by Observation 3, o1 <Π o2, as needed.

Otherwise, ∃x, y ∈ X, x 6= y : o1 ∈ πx, o2 ∈ πy, and o1 immediately precedes

o2 in σ|p. By leading ordered operations, since o1 and o2 are not on the same

object, o2 is a A-operation and hence lAπy (o2) = o2.215

By definition, frπx
σ (lAπx

(o1)) ≤σ ro1 . Since ro1 <σ io2 , and by Observa-

tion 1, io2 <σ fr
πy
σ (o2), we get that frπx

σ (lAπx
(o1)) <σ fr

πy
σ (o2). By Defini-

tion 4, lAπx
(o1) <AΠ o2, and by Definition 5, o1 <Π o2.

Thus, every two consecutive operations oi, oi+1 ∈ Π that are in σ|p satisfy

oi <Π oi+1. By Lemma 2, <Π is a strict total order on all operations, and220

therefore by transitivity, we get o1 <Π o2.

Acknowledgments. We thank Alexey Gotsman for helpful comments on an ear-

lier draft. Kfir Lev-Ari is supported in part by the Hasso-Plattner Institute

(HPI) Research School. This work was partially supported by the Israeli Min-

istry of Science.225

[1] L. Lamport, How to make a multiprocessor computer that correctly executes

multiprocess programs, IEEE Trans. Comput. 28 (9) (1979) 690–691.

[2] M. P. Herlihy, J. M. Wing, Linearizability: A correctness condition for con-

current objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[3] P. Hunt, M. Konar, F. P. Junqueira, B. Reed, Zookeeper: Wait-free coordi-230

nation for internet-scale systems, in: USENIX ATC’10.

[4] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2)

(1998) 133–169.

[5] K. Lev-Ari, E. Bortnikov, I. Keidar, A. Shraer, Modular composition of

coordination services, in: USENIX ATC’16.235

[6] R. Vitenberg, R. Friedman, On the locality of consistency conditions, in:

DISC’03.

9


	Introduction
	Model and Notation
	Ordered Sequential Consistency
	OSC(A) Composability via Leading A-Operations

