
Deleting Files in the Celeste Peer-to-Peer Storage System

Gal Badishi∗† Germano Caronni‡ Idit Keidar† Raphael Rom†‡ Glenn Scott‡

†Department of Electrical Engineering, The Technion – Israel Institute of Technology.
‡Sun Microsystems Laboratories.

Abstract

Celeste is a robust peer-to-peer object store built on top
of a distributed hash table (DHT). Celeste is a working sys-
tem, developed by Sun Microsystems Laboratories. During
the development of Celeste, we faced the challenge of com-
plete object deletion, and moreover, of deleting “files” com-
posed of several different objects. This important problem
is not solved by merely deleting meta-data, as there are sce-
narios in which all file contents must be deleted, e.g., due to
a court order. Complete file deletion in a realistic peer-to-
peer storage system has not been previously dealt with due
to the intricacy of the problem – the system may experience
high churn rates, nodes may crash or have intermittent con-
nectivity, and the overlay network may become partitioned
at times. We present an algorithm that eventually deletes
all file content, data and meta-data, in the aforementioned
complex scenarios. The algorithm is fully functional and
has been successfully integrated into Celeste.

1 Introduction

Two different technologies have been developed in re-
cent years: network storage systems and peer-to-peer net-
working. Network storage, exemplified by a variety of NAS
and SAN products, is a result of the realization that stored
data is sufficiently valuable that reliable and continuous ac-
cess to it is mandatory. Peer-to-peer systems have evolved
to create large distributed systems from small and unreliable
components, overcoming the cost of providing extremely
reliable units. It was only a matter of time before these
technologies merge to create peer-to-peer based storage sys-
tems. Examples of such systems, each emphasizing a differ-
ent aspect of data storage, are Farsite [1], OceanStore [5],
Venti [9], Freenet [4], and Ivy [6].

Each of these systems contains an overlay network, typ-
ically constructed on top of a distributed hash table (DHT),
providing routing and object location services to a storage

∗Supported by the Israeli Ministry of Science.

management system. Most of these storage systems con-
sider aspects of data replication, reliability, security, and
storage maintenance, but almost none of them addresses
data deletion directly. It is noteworthy that Plaxton et al. [8],
in their seminal paper, do address data deletion at the DHT
level. However, their system does not address more com-
plex (and perhaps higher level) issues of security, trust, and
access control, which we consider crucial. Moreover, their
system is static, rendering deletion a much easier problem
than in a dynamic system as considered herein.

One can identify three tiers of data deletion. The first
tier is access-based deletion, in which data is not actually
removed but access to it is made harder. File systems typ-
ically delete pointers to the data (sometimes by modifying
the file’s meta-data). Another approach is to use data en-
cryption in which case data deletion amounts to destroying
the relevant keys [7]. This is the easiest of all tiers and re-
lies on the inability to ever access data without pointers to
it or decrypt data without knowing the relevant keys. In
some cases, access-based deletion may be insufficient, such
as due to court orders. Company lawyers, such as Sun Mi-
crosystem’s, often demand that a storage system will have
the ability to completely delete the contents of a file, so as
to comply with the judge’s ruling.

The second tier of deletion is data obliteration, in which
data itself, not just the access means to it, are completely re-
moved from the system. It is a better approach to data dele-
tion as it is independent of future technological advances.
This tier does not necessarily replace the first tier, but rather
augments it with much stronger deletion guarantees.

The third tier is data annihilation, in which all traces of
the data are removed from all media on which it is stored.
This tier is extremely costly to implement and is typically
reserved to national security related data. In this paper, we
deal with data obliteration, i.e., the second tier.

Robustly obliterating a file in a survivable peer-to-peer
storage system is a real challenge. The main difficulty lies
in the mere fact that the storage system is designed to be sur-
vivable and to provide availability even when nodes crash
and links fail. To allow that, the system usually cuts a file

1

into multiple objects, replicates all of them, and stores their
copies on different nodes. To enable complete deletion, all
of these chunks must be located and deleted. What is worse
is that the storage system might try to maintain a minimum
number of copies available, so as to guarantee availability.
This stands in contrast to what the deletion algorithm wishes
to do. Additionally, nodes may join or leave the system at
arbitrary times, in an orderly fashion, or simply by crashing
or becoming part of a distinct network partition. The ob-
jects these nodes hold might re-enter the system at unknown
times in the future. By this time, the node at which the
deletion request was initiated may be unavailable. The sys-
tem should always know whether an object that has entered
the system should in fact be deleted. Finally, secure dele-
tion means that only authorized nodes should be allowed to
delete a specific file.

We present a deletion (in the sense of data obliteration)
algorithm designed to operate on top of typical DHTs. The
algorithm was implemented in Celeste [3], which is a large
scale, distributed, secure, mutable peer-to-peer storage sys-
tem that does not assume continuous connectivity among
its elements. Celeste was designed and implemented at Sun
Microsystems Labs. Our deletion algorithm is founded on a
separate authorization and authentication mechanism to al-
low deletion of stored objects. It is based on secure deletion
tokens, one per object, that are necessary and sufficient to
delete an object.

In Section 2, we describe the system in which our dele-
tion algorithm operates, namely, a storage system, (Celeste
in our case), running atop a DHT, as well as the crypto-
graphic authorization and authentication mechanisms used.
Section 3 presents our deletion algorithm. This section de-
scribes the algorithm abstractly, without linking it to a par-
ticular implementation.

In Section 4, we formally prove sufficient conditions for
the algorithm’s success. Roughly speaking, we prove that
in a stable network partition P that includes at least one
copy of each of the meta-data objects describing a file F ,
if any node in P tries to delete F (at any point in time),
then the algorithm guarantees complete deletion of the con-
tents of all data and meta-data objects associated with F in
P . Moreover, when such a partition P merges with another
partition P ′, our algorithm ensures complete deletion of all
data objects associated with F in P ∪ P ′.

In Section 5, we validate the effectiveness of the al-
gorithm through simulations in typical settings. First, we
present static simulations showing that in a stable partition,
complete deletion is achieved promptly. These simulations
validate the correctness proof of Section 4, and demonstrate
the deletion time in stable situations, where eventual com-
plete deletion is ensured. Moreover, the algorithm is scal-
able: as the underlying communication is based on a DHT
overlay, deletion time increases like the routing time over a

DHT – logarithmically with the number of nodes. We fur-
ther show that the deletion time increases linearly with the
number of versions the file has, but decreases with the num-
ber of replicas, since each node holding a copy of a meta-
data object of a file participates in the deletion process. At
the same time, a larger number of replicas increases the
message load on the system. Secondly, we simulate the al-
gorithm in dynamic settings, where nodes constantly crash
and recover. These simulations enact scenarios that are
not covered by the correctness proof of Section 4, which
only considers eventually-stable settings. Nevertheless, in
these simulations, complete file deletion is always success-
ful. Moreover, the time it takes for a file to be completely
obliterated from the system is proportional to the time it
takes failed nodes holding the file’s objects to recover.

Finally, Section 6 addresses some implementation issues
that arise when implementing our algorithm in a real sys-
tem, namely Celeste. Section 7 concludes.

2 System Architecture

We model our peer-to-peer system as a dynamic, inter-
mittently connected, overlay network of nodes that may join
or leave the system in an orderly fashion and can also crash
unexpectedly. Additionally, the overlay network may be-
come partitioned due to link failures. Crashed nodes may
come back to life, retaining their previous state. In this pa-
per we do not deal with nodes that transfer state information
from other nodes. Such a state transfer will only facilitate
the deletion process, and thus our results provide a lower
bound on the algorithm’s robustness.

Our system is composed of two layers, similar to
Oceanstore [5, 11]. The lower layer is a DHT that is used
for locating, storing and retrieving objects. Any DHT can
be used, as long as it provides the interface and semantics
described below. Exemplar DHTs are Tapestry [14], Pas-
try [12], Chord [13], and CAN [10]. Above the DHT layer
resides the Celeste layer [3]. Celeste provides a secure, sur-
vivable, mutable object store utilizing the DHT.

The Celeste layer. Each object in the DHT has a global
universal identifier (GUID), e.g., a 256-bit number. A Ce-
leste object is comprised of two parts, the data and the meta-
data. The meta-data contains information about the object,
and is used both by the DHT and by Celeste. (Note that
Celeste’s meta-data is different from the filesystem’s notion
of a file meta-data, which is typically stored in a separate
Celeste object). The integrity of objects in the DHT can be
verified, and nodes do not store objects that fail an integrity
check. With respect to verifiability, an object belongs to one
of two categories: (1) A self-verifiable object is an object
whose GUID is a hash of a mixture of its data section and
its meta-data section. (2) A signed object is an object whose
GUID is arbitrary, but its meta-data contains a digital sig-
nature that allows verification of the object’s integrity. It is

important to note that no two objects have the same GUID.
Not even self-verifiable objects with an identical data sec-
tion (their meta-data section is different).

General information about the file is saved as an object of
a special type, called an AObject. Among others it includes
the GUID of the latest version. Thus the GUID of the AOb-
ject (AGUID) is a lead to all the versions of the file. Each
file update generates a new version containing information
on that update. Each version is described by a special ob-
ject called a VObject, whose GUID is called a VGUID. The
AObject contains the VGUID of the latest version of the file,
and each VObject contains the VGUID of the previous ver-
sion of the file. Since the AObject is mutable but maintains
the same GUID, it is a signed object. In contrast, VObjects
are self-verifiable. We note here that having versions is very
similar to having different files represent different updates
to the same core file. In that respect, versioning is just a
property of our system, and can be replaced by other means
for file updates.

For simpler storage and management, the file’s data con-
tents are divided into blocks. Each block is stored as a sep-
arate self-verifiable object called a BObject, whose GUID
is called a BGUID. Each VObject contains a list of all the
BGUIDs that hold the data for that version of the file. The
relations among these entities are depicted in Figure 1. Note
that all Celeste objects are replicated in the DHT.

The DHT layer. The DHT layer provides the Celeste
layer with primitives of object storage and retrieval. The
DHT recognizes nodes and stored objects. Every object
is assigned a root which is uniquely chosen among the
live nodes in the system. The root is determined based on
the object’s GUID. (Nodes and objects have GUIDs drawn
from the same space.) For example, the object’s root can be
the live node with the lowest GUID that is not lower than
the object’s GUID (if no such node exists, then the root is
the node with the lowest GUID).

The root of an object is ultimately responsible to track
the whereabouts of copies of the object. To that end the root
of an object keeps soft-state information about the location
of each copy of the object in the system, through the use of
backpointers – a list of nodes that hold the object’s copies
(for efficiency, these backpointers may also be cached on
other nodes).

A node’s DHT layer provides its Celeste with the ability
to send messages to Celeste layers on other reachable nodes,
as well as with the following local functions:

• storeObject. Stores an object locally and sends a pub-
lish message to the object’s root. The publish happens
both immediately and periodically, as long as the ob-
ject is stored. The publish message allows the root to
maintain its soft-state tracking information, by saving
a backpointer to the publisher. Backpointers expire
after some time, to make sure only up-to-date infor-

mation is saved. Thus, it is important for the publish
rate to be sufficiently high to avoid unnecessary back-
pointer expiration in the root.

• retrieveObject. Utilizes a backpointer in the object’s
root or on the way to it, to fetch a copy of the object if
one exists.

Problem definition. We tackle the problem of com-
pletely deleting file contents from a peer-to-peer storage
system. The deletion entails removing all the versions of the
file, their contents and their associated meta-data, limiting
the operation to authorized entities. The challenge lies in
securely obliterating all these data in a survivable, dynamic,
failure-prone system that continuously strives to keep repli-
cated objects available even when nodes crash and links fail.

Mechanisms for deletion. Our object deletion mecha-
nism relies on a deletion token (DT) and its hashed version–
the deletion token hash (DTH). A deletion token may be any
number, e.g., a random 256-bit number. A single deletion
token is associated with every object in Celeste (but differ-
ent objects may have the same deletion token). The object’s
deletion-token hash, i.e., the hash of the deletion token, is
stored in the object’s meta-data. Conversely, the object’s
deletion token is kept away from the object prior to deletion.
Celeste considers a user authorized to delete an object if it
presents the object’s deletion token. A correct node agrees
to delete an object only when supplied with a deletion to-
ken that hashes to the object’s deletion-token hash stored in
the object’s meta-data. For efficiency reasons, in Celeste all
objects belonging to the same file have the same deletion-
token. To provide for secure deletion, the file’s deletion to-
ken is only known to entities that are allowed to delete the
file. The aforementioned mechanisms for object integrity
verification must include the deletion token hash.

A user that wishes to delete an object needs to expose the
object’s deletion token by supplying it to nodes that hold the
object. Once a deletion token is exposed, it is no longer se-
cret, and every node can use it to request other nodes to
delete copies of the object (obviously containing the corre-
sponding deletion-token hash).

3 Deletion Algorithm

This section discusses the algorithm for deleting a file.
The algorithm is presented in pseudocode in Figures 2
and 3. Implementation issues are deferred to Section 6.

The deletion of a file starts at one or more (authorized)
nodes and propagates to all the nodes that hold the file’s ob-
jects throughout the system. To start the deletion sequence,
a node invokes deleteFile with two parameters: the file’s
AGUID, and an appropriate exposed deletion token. To get
the gears of the deletion process in motion, all that delete-
File does is create one copy of an AObject corresponding
to that file with an exposed deletion token. Such a copy

Figure 1. The relations between Celeste objects comprising a file.

is called a deletion object. A deletion object with GUID
g serves as a permanent indication that the object whose
GUID is g must be deleted. Creating such a deletion object
does not necessitate fetching a copy of the original object;
rather, an empty object with the same GUID and type and
an exposed deletion token is created. After creating such an
object, deleteFile invokes the procedure deleteObject for it.

Let us now overview the steps taken in the deletion of
any object (cf. deleteObject, Figure 2). A node that begins
the deletion process for an object O is called a deleter of
O. The deleter must have O’s valid deletion token. If the
deleter has already deleted O in the past, (in which case it
has a local copy of O with an exposed deletion token), then
it performs no further operations. As explained earlier, an
object O is deleted by storing a deletion object with O’s
GUID and an exposed deletion token. When an AObject or
VObject is deleted, the deleter does some extra processing
before storing this object, in order to ensure that the ob-
jects (VObjects and BObjects) that O points to will also be
deleted, as will be explained shortly.

After creating a deletion object DO, the deleter calls the
DHT’s storeObject procedure in order to store a local copy
of the deleted object. If a local copy of O already exists,
then storeObject replaces it by DO, since O and DO have
the same GUID. In addition, storeObject issues a publish
message, which winds its way to O’s root, (again, since O
and DO have the same GUID, they have the same root). The
deletion process is then continued by the root.

Thus, the mechanism of locally storing an object with an
exposed deletion token serves as a persistent way to notify
the object’s root that the object should be deleted. Note that
in a fault-prone dynamic system, an object’s root may fail
(crash) before completing the deletion, or even before being
notified. But in this case, another node becomes the new
root and since every Celeste replica periodically broadcasts
a publish message toward the object’s current root, the new
root is eventually notified, and the deletion continues.

The root begins to engage in the deletion process upon

deleteFile(AGUID a, exposed token t):
create deletion object O with

GUID=a, deletionToken=t, type=AObject
deleteObject(O)

deleteObject(object DO):
if !isValid(DO) then return
/* if object is already deleted do nothing */
if isStoredLocally(DO.GUID) then

O = getLocalObject(DO .GUID)
if O.deletionToken! =null then return

/* handle object deletion according to type */
if DO.type == AObject then

deleteAObject(DO .GUID, DO.deletionToken)
else if DO .type == VObject then

deleteVObject(DO .GUID, DO.deletionToken)
else

storeObject(DO)

/* Deletion Procedure at the Object’s Root */
Upon receiving publish message for object O from N :

if O.deletionToken! =null then
if isDeleted(O.GUID) then return
if !isValid(O) then return
deleteObject(O)
for each backpointer! =me in backpointers(O.GUID) do

send deletion request with O to backpointer
markDeleted(O.GUID)

else /* O is not deleted */
if isDeleted(O.GUID) then

DO = getFromLocalStore(O.GUID)
send deletion request for DO to N

Upon receiving deletion request with DO:
if !isStoredLocally(DO .GUID) then return
deleteObject(DO)

Figure 2. Basic deletion procedures at each
node.

deleteAObject(AGUID a, deletion token t):
/* If local copy exists, delete last VObject(s) */
if isStoredLocally(a) then

O = getLocalObject(a)
for each lastVGUID in O.lastVGUIDs do

deleteVObject(lastVGUID, t)
/* Store deletion object */
create deletion object O with

GUID=a, type=AObject, deletionToken=t
storeObject(O)

deleteVObject(VGUID v, deletion token t):
if isStoredLocally(v) then

O = getLocalObject(a)
for each b in O.BGUIDs do

create deletion object BO with
GUID=b, deletionToken=t, type=BObject

deleteObject(BO)
for each prevVGUID in O.prevVGUIDs do

if prevVGUID != null then
deleteVObject(prevVGUID, t)

/* Store deletion object */
create deletion object O with

GUID=v, type=VObject, deletionToken=t
storeObject(O)

Figure 3. Deletion procedures for AObjects
and VObjects.

receipt of a publish message for an object O with an ex-
posed deletion token. If the root has already deleted the
object with O.GUID in the past, or if O does not have a
valid deletion token, then the root performs no further op-
erations. The root deletes the object by calling the dele-
teObject procedure discussed above. The root then sends a
deletion request message to each of the other nodes holding
O, according to the known backpointers for O. The dele-
tion request contains the published information for O, in-
cluding the exposed deletion token and GUID. Finally, the
root marks the deletion, that is, stores the information that
O.GUID has been deleted. If the root subsequently receives
a publish message for O, then it sends a deletion request to
the node that sent the publish message.

Upon receiving a deletion request for O, the receiving
node checks that is has O. If so, it deletes it using the dele-
teObject procedure.

AObjects are deleted in the procedure deleteAObject (see
Figure 3). As before, the object is deleted by creating a dele-
tion object with the object’s GUID and an exposed deletion
token, and storing it using the DHT’s storeObject proce-
dure. However, if the deleter holds a local copy of the ob-
ject, then it cannot simply over-write it with a deletion one.
This is because the AObject is the head of the linked list that
contains all the file’s VGUIDs, i.e., it is the head of the list
that points to each version of the file. Thus, if the deleter
has a local copy of the deleted AObject, it first initiates the
deletion process for O.lastVGUID (by calling deleteVOb-

ject), and only then deletes O’s contents and stores it locally.
Several “last” versions may exist due to partition merging.

VObjects are deleted in the procedure deleteVObject (see
Figure 3). As before, the deleter creates a deletion object
with the object’s GUID and an exposed deletion token, and
stores it. As with AObjects, before a node N deletes a VOb-
ject Vi from its local store, it must ensure that earlier ver-
sions will eventually also be deleted. First, N deletes all
the BObjects that are part of version i, by creating corre-
sponding deletion objects and calling deleteObject for each
of them. Then, N checks whether an earlier version, Vi−1

was indeed created (several such versions may exist, due
to merging). If so, it continues with the deletion process by
calling deleteVObject for Vi. Finally, N deletes the contents
of the object and stores it with an exposed deletion token.

4 Correctness

In this section, we discuss the deletion algorithm’s guar-
antees: we show sufficient conditions for complete deletion
of a file. Although, as the simulations in the next section
show, the algorithm succeeds in deleting files even in highly
dynamic settings, it is very hard to reason about the algo-
rithm in such settings. For the sake of reasoning about the
algorithm, we examine stable periods. That is, we examine
runs in which the system eventually stabilizes (the stabiliza-
tion can occur either before or after the deletion initiation).
Formally, stabilization is defined as follows:

Definition 1 (Stability). We say that partition P (consisting
of a set of nodes) is stable in a time interval if in that interval
all nodes can communicate with each other, nodes do not
join or leave P , and no versions are added to files. We say
that partition P is eventually stable from time T onwards if
it is stable in [T,∞).

Note that in particular, nodes do not crash and crashed
nodes do not recover in P in a stable interval. We do not
explicitly state the interval when it is clear from context.

In a partition P , our requirement from the algorithm is to
completely delete the contents of all replicas of all objects
pertaining to a deleted file. Formally:

Definition 2 (Deletion). An object copy is said to be deleted
if its deletion token is exposed in its meta-data section and
it has empty data contents. An object is deleted in partition
P if all its copies in P are deleted. A file F is deleted in P
if all objects pertaining to F are deleted in P .

The dynamic failure-prone nature of the system renders
the deletion problem (in the obliteration sense) unsolvable
in some scenarios. Consider, for example, a file with two
versions, and a stable partition P in which no node holds
a copy of last version’s VObject. Since the only pointer
to the first version is in that VObject, there is no way for
the algorithm to discover the first version’s objects, even

if they do exist in P , and hence, there is no way to delete
them. Therefore, in order to identify partitions where com-
plete deletion is possible, we examine the nodes to which
objects are assigned by Celeste when they are first stored,
or at any time prior to the initiation of a deletion algorithm
that should erase them:

Definition 3 (Assigned copies). A node N is an assigned
copy of object O pertaining to a file F if a copy of O is
stored at N at a time t so that deleteFile(F .GUID) is not
invoked before time t.

This definition allows us to define a sufficient prerequisite
for complete deletion of a file F in a partition P :

Definition 4 (Complete-deletion prerequisite for file F).
We say that partition P fulfills the complete-deletion pre-
requisite for file F , if F ’s AObject is assigned to some live
node N in P , N has received the up-to-date version of F ’s
AObject (pointing to the most recent version), and for each
version that belongs to file F there is a live node in P to
which the corresponding VObject is assigned.

We now turn to state some of the algorithm’s guarantees.
The proofs of the following theorem, as well as additional
proven guarantees, are given in our full paper [2].

Theorem 1. Let F be a file, and let AObj be the AObject
representing F . If the following holds for partition P : (1) P
is eventually stable from time T ; (2) P fulfills the complete-
deletion prerequisite for file F at time T ; and (3) A live node
in P holds a copy of the deleted AObj, DAObj , at time T ,
then all objects in P associated with file F are eventually
deleted.

Corollary 1. Let F be a file, and let AObj be the AObject
representing F . If the following holds for partition P : (1)
P is eventually stable from time T ; and (2) P fulfills the
complete-deletion prerequisites for F at time T , then if a
node N in partition P tries to delete file F at any time τ
(before or after T), all objects in P associated with file F
are eventually deleted.

5 Simulation Results

Our deletion algorithm is implemented in Celeste, and
was successfully tested in an environment containing a rel-
atively small number of nodes. However, we would like to
analyze the algorithm’s expected behavior in actual deploy-
ment scenarios where many nodes are present. To test the
effectiveness of our algorithm, we simulate it in diverse set-
tings. The simulation is round-based. In each round, nodes
perform whatever processing they need to do, and messages
propagate at most one hop in the overlay network. Since the
system is intended to be deployed in WANs, a round rep-
resents about 200 msecs. In each experiment, nodes pub-
lish their locally stored object copies every 20 seconds (100

rounds), and backpointers expire 100 seconds after receiv-
ing the last publish message. Each data point in each graph
represents the average result of 500 experiments.

The system is composed of a single partition. In some
experiments the partition is static, while in others nodes
leave and join the partition by crashing and coming back to
life, respectively. Messages sent between nodes are routed
through intermediate nodes in the overlay. The number of
hops it takes a message to reach its final destination is drawn
from a bell-shaped distribution with a minimum of a single
hop and a maximum logarithmic in the number of nodes.
This latency distribution is typical in peer-to-peer overlays,
and resembles one measured in Chord [13].

At the beginning of each experiment, a file is stored on
random nodes. That is, all copies of each of the objects
representing the file are stored on randomly-chosen nodes
in the partition, such that no two copies of the same object
are stored on the same node. After storing the file, an ini-
tial state, i.e., running or crashed, is selected for each node,
according to the scenario that is being evaluated. After the
nodes run for a while, a live node chosen uniformly at ran-
dom attempts to delete the file.

We measure the time till complete deletion, i.e., the
amount of time from the moment that some node initiates
the deletion sequence, until all copies of objects associated
with the file are deleted.

We do not consider nodes joining and leaving the parti-
tion, but rather nodes crashing and either staying down or
coming back to life with their previous state intact. A node
that comes back to life with its previous state, immediately
publishes all of its objects and expires all of its stale back-
pointers. We note that this is a worst-case approach, which
gives us an upper bound on the time till complete deletion.
Obviously, the deletion time would not be higher had recov-
ered nodes received state updates upon recovery.

We first evaluate our protocol in a static partition where
all nodes remain up. This allows us to validate our simula-
tion and provide insight on the impact of several parameters
on the algorithm’s performance. We then turn to examine
our protocol in a dynamic setting, where nodes constantly
crash and recover.

Failure-free operation. We first evaluate our deletion
algorithm in a static, failure-free partition. Unless otherwise
noted, the replication count is 5, and the file is represented
by 1 AObject, 1 VObject, and 10 BObjects. I.e., the file has
a single version with 10 data blocks, and there are 60 object
copies stored in the DHT and associated with the file.

Figure 4(a) shows the time in rounds till complete dele-
tion as a function of the number of nodes. Since the number
of nodes is depicted on a logarithmic scale, we can see that
the deletion time increases linearly. Due to this scalabil-
ity, there is little importance in choosing a specific number
of nodes to simulate. Henceforth, we simulate 1000 nodes.

10
2

10
3

10
4

15

20

25

30

Number of nodes

ro

u
n

d
s

ti
ll

co
m

p
le

te
 d

el
et

io
n

(a) Dependency on number of nodes (log), 1 version.

1 1.5 2 2.5 3 3.5 4 4.5 5
20

25

30

35

40

45

50

Number of versions

ro

u
n

d
s

ti
ll

co
m

p
le

te
 d

el
et

io
n

(b) Dependency on number of versions, 1000 nodes.

Figure 4. Average time till complete deletion, 10 blocks per version, 5 copies per object.

Figure 4(b) shows the time till complete deletion as a func-
tion of the number of versions. As expected, each additional
version incurs the same overhead. Henceforth, we evaluate
the algorithm for files with a single version. We have also
measured the impact of increasing the number of of blocks
(BObjects) per version, and found that it has a negligible
effect on the time till complete deletion. (The graph is not
shown here due to space considerations).

Figure 5(a) depicts the time in rounds till complete dele-
tion as a function of the number of replicas per object. We
can see that the more replicas there are, the faster the dele-
tion completes. It is obvious that the deletion time should
not increase as the number of copies increases, as all object
copies are deleted roughly in parallel by simultaneous dele-
tion requests sent from the object’s root. The decrease in
deletion time happens since having more copies per object
increases the chance that some node holds copies of both
the AObject and the VObject. Since the file has only a sin-
gle version, all object copies associated with the file can be
deleted in parallel when that node calls deleteAObject.

Figure 5(b) shows the number of messages in transit, i.e.,
the number of messages that have not yet reached their final
destination. The peak at round 0 are all the publish mes-
sages sent by the nodes storing the object copies for the file.
The number of publish messages is exactly the number of
objects across nodes. For example, for a single version with
replication factor of 5 we get 60 stored object copies. The
number of messages quickly drops and stays low, as only
publish messages are sent. The deletion is initiated at round
30 by a node chosen uniformly at random.

We see that the more versions we have, the longer it
takes the system to become quiescent. This is due to the
mostly-sequential nature of deleting several versions. We
also see that when there are more replicas, more messages
are sent per round. This expected behavior occurs since all
backpointers are notified simultaneously, and all nodes stor-
ing a deleted object immediately publish it. The number of

deleted objects is higher than the number of object copies,
since nodes, e.g., roots, may hold deleted objects simply as
an indication that the object is scheduled for deletion. This
is the reason for the increase in the number of messages
when the deletion completes, compared to the number of
messages before the deletion starts – there are simply more
objects to publish. Finally, the number of messages drops
to 0 when the round number approaches 100. This is simply
an artifact of the experiments being shut down.

The results of this section validate Theorem 1. We fur-
ther note that when the assumptions of Theorem 1 hold in
a partition, the time till complete deletion after the partition
stabilizes (i.e., from time T onwards) is no worse, and often
better than the time till complete deletion measured in our
failure-free evaluations. This is due to the smaller number
of live nodes in the partition.

Dynamic simulations. We now simulate the algorithm
in a partition that is never eventually stable. Each node is
either crashed or running at any given time, and crashed
nodes eventually run again, and vice versa. Node session
times (time to failure) and down times (time to recovery)
are distributed exponentially. When crashed nodes recover,
they hold the same objects and backpointers they had when
they crashed, and they immediately publish their stored ob-
jects and expire stale backpointers. We measure the time till
complete deletion, that is, we must wait for crashed nodes
holding parts of the file to recover before we can declare
success. In all of our simulations, all of the files were even-
tually completely deleted. Thus, our algorithm achieves
its goals under broader circumstances than formally estab-
lished in the previous section.

We start all experiments in the partition’s steady state,
i.e., the node’s initial state, up or down, is determined with
respect to its uptime - the percentage of time in which the
node is alive. Figure 6 shows the average time till complete
deletion as a function of the nodes’ uptime, where all nodes
have the same uptime. Each node’s average session time is

0 5 10 15 20 25 30 35 40 45 50
18

19

20

21

22

23

24

25

26

Number of copies

ro

u
n

d
s

ti
ll

co
m

p
le

te
 d

el
et

io
n

(a) Dependency on number of replicas, 1 version.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Round number

m

es
sa

g
es

 in
 t

ra
n

si
t

3 vers 20 copies
1 ver 20 copies
3 vers 5 copies
1 ver 5 copies

(b) Message overhead.

Figure 5. Average time till complete deletion and message overhead for 1000 nodes, 10 blocks per
version.

1 hour, i.e., a node fails on average after one hour of op-
eration. We observe that the higher the uptime, the faster
the deletion process completes. This is expected, as there
is a lower probability of a data object residing on a crashed
node at deletion time. When an object resides on a crashed
node, the deletion process cannot complete before that node
recovers. Having understood the dependence on uptime, we
fix it at 99% for our next experiments, and measure the ef-
fect of other parameters.

80 82 84 86 88 90 92 94 96 98 100
0

500

1000

1500

2000

2500

3000

Uptime percentage

T
im

e
ti

ll
co

m
p

le
te

 d
el

et
io

n
 (

se
cs

)

Figure 6. Average time till complete deletion
vs. node uptime, 1000 nodes, 1 version, 10
blocks per version, 5 copies per object, aver-
age session time 1 hour.

Figure 7 shows CDFs of the time till complete deletion
measured for 500 deletions. Figure 7(a) shows the depen-
dency on the nodes’ average session time. The longer the
session time, the longer it takes to delete the file. Since the
average uptime is fixed to 99%, a longer session time means
that if a node is down when the deletion request is issued,
it will take the node longer to come back to life. This is

exactly the time in which the data object is unreachable and
cannot be deleted. Once the node comes back to life, the
object it holds can be deleted promptly.

Figure 7(b) shows the how the number of object copies
affects the time till complete deletion in a failure-prone sys-
tem. We can see that fewer replicas mean better deletion
times, in contrast to the result we get in a failure-free sys-
tem, as depicted in Figure 5(a). The reason for this is that
having more copies in a failure-prone system increases the
probability that a crashed node has an object that needs to
be deleted. The deletion process only completes when all
such crashed nodes come back to life and receive deletion
requests for their objects.

6 Implementation Issues

We have implemented the deletion algorithm presented
in Section 3 in Celeste, a large-scale, peer-to-peer, secure
mutable storage system developed in Sun Microsystems
Labs. We now present some implementation specifics and
discuss their impact on the deletion algorithm. Celeste is
implemented in Java. It uses the hash function SHA-256 to
generate GUIDs for nodes and objects.

Erasure coding. In addition to replication, Celeste sup-
ports erasure coding as a way of providing redundancy with
reduced storage costs. In this case, a VObject points to frag-
ments in addition to blocks. The fragments are used when
the blocks are unavailable (unreachable). Fragment objects
(FObjects) are treated by the deletion algorithm the same
way as BObjects are. When an object is fragmented, the
GUIDs of its fragments are stored alongside the original
GUID itself (e.g., in the AObject or in another VObject).
If the VObject fragments are redundant, i.e., a complete
VObject exists as well, then they are treated like FObjects.
Otherwise, before deleting an object that points to a frag-
mented VObject, the fragmented VObject is reconstructed

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time till complete deletion (secs)

P
er

ce
n

ta
g

e
su

cc
es

sf
u

l d
el

et
io

n
s

Session time 15 mins
Session time 120 mins

(a) Dependency on session time, 5 copies per object.

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Time till complete deletion (secs)

P
er

ce
n

ta
g

e
su

cc
es

sf
u

l d
el

et
io

n
s

5 replicas per object
50 replicas per object

(b) Dependency on replication, 1 hour average session.

Figure 7. CDFs of 500 deletions showing dependency on session time and replication, 1000 nodes, 1
version, 10 blocks per version, 99% node uptime.

(by retrieving sufficiently many fragments), stored locally,
and deleted using deleteVObject. Inability to reconstruct the
VObject is equivalent to it being unreachable. In such cases,
Celeste relies on application users to re-try deletion. In gen-
eral, erasure coding makes the deletion process easier, since
each fragment has a different GUID and is not replicated.

Refreshing mechanism. Since some nodes may per-
manently depart from the system, Celeste implements a re-
freshing mechanism to ensure that enough copies (or frag-
ments) of a given object are available. To this end, it sup-
ports the role of a refresher, a node that creates new replicas
when their number in the partition is too low. In order to
work well with the deletion algorithm, we dictate that the
refresher be the object’s root. Thus, once the root is notified
of a deletion it ceases to refresh the object.

Access rights. Celeste provides support for version ac-
cess rights using encryption and digital signatures. For each
version of a file, Celeste maintains a list of nodes that may
either read, modify, or delete the version. When embarking
on the deletion of a file, Celeste first deletes the list data
used to access the file, effectively causing the file to be in-
accessible. (Note that this is what we call tier one deletion).

Preventing over-writing of deleted objects. Recall that
our deletion algorithm does not directly delete objects, but
rather replaces them with empty objects that have the same
GUID and the corresponding exposed deletion token in their
meta-data. Once this has happened, it is important to ensure
that the the deletion object will not be over-written by an-
other (new) data object having the same GUID, since the
correctness of our algorithm depends on the existence of
such a deletion object. To this end, we have modified the
DHT’s storeObject function so that it does not allow over-
writing an object with an exposed deletion token.

Protection against malicious attempts to prevent
deletion. Although our algorithm is not intended for use

with Byzantine nodes, Celeste takes extra measures to pre-
vent malicious nodes from jeopardizing the system. One
easy attack on the deletion algorithm can be realized by a
malicious node M as follows: M retrieves an object O that
it does not want deleted (e.g., the AObject of a file that M
wishes to “protect”), and changes its deletion token hash. It
then publishes the modified object, and causes correct nodes
to store it. Subsequently, if O is scheduled to be deleted, its
modified version will not be deleted from correct nodes that
hold it, since the correct deletion token cannot be validated
against the bogus deletion-token hash. Thus, correct nodes
will continue to store copies of O permanently. In order
to prevent such attacks, our implementation uses verifiable
deletion tokens. It is important to note that this mechanism
only overcomes attacks by nodes distinct from the object’s
root. If a malicious node succeeds in becoming an object’s
root, then it can still effectively prevent the deletion process
from propagating to correct nodes that hold the object.

One way to realize verifiable deletion tokens in self-
verifiable objects, where the object’s GUID is the hash
of its data contents, is to make sure the deletion-token
hash is also part of the GUID. That is, GUID =
H(data|H(deletiontoken)), where H is a hash function,
e.g., SHA-256, and | is the concatenation sign. Now, forg-
ing a deletion-token hash changes the GUID of the object.

However, since correct nodes only store objects they can
validate, how can deletion objects be validated? In essence,
a simple deletion object DO only carries the deletion token
used for deletion, and has the same GUID as the object O
being deleted. If we have O, we can hash DO’s deletion
token and compare it to O’s deletion-token hash to verify
DO’s validity. The problem is that the root RootO of O and
DO receives the publish message for the first copy of DO,
and must verify DO before sending deletion requests to all
the nodes holding copies of O. If RootO did not previously

receive any publish message for O, it cannot verify DO . In
that case, it can either save DO in a limited “unverified” list,
or quietly discard it – it will be published again anyhow. If
RootO does have some backpointer to O, then it knows O’s
deletion-token hash, as it is part of the meta-data sent in a
publish message. RootO can then verify DO and continue.

But this solution assumes RootO can trust the pub-
lish message for O. When RootO receives a publish
message for O, it gets O’s GUID, and the deletion-
token hash, but it does not receive O’s data con-
tents. Consequently, RootO cannot verify the bind-
ing GUID = H(data|H(deletiontoken)) and must
blindly trust the publisher. To allow the root to ver-
ify publish messages and deletion objects in all situa-
tions, self-verifiable GUIDs can be calculated as GUID =
H(H(data)|H(deletiontoken)), and the meta-data por-
tion of all objects, including deletion objects, should also
include H(data), i.e., the hash of the object’s data contents.
For a deletion object DO, this is the hash of the deleted ob-
ject O’s data contents.

Finally, AObjects are mutable, and hence cannot be self-
verifiable; they are verified using digital signatures. Nat-
urally, the AObject’s deletion-token hash should also be
signed, so it cannot be fabricated.

Optimization for large files or small networks. When
deleting a file, messages containing the deletion token are
sent to all nodes involved in the deletion process. If the
number of objects related to the file to be deleted exceeds
some threshold in the order of n

log n , where n is the total
number of nodes in the system, a simple broadcast of the
deletion token may be better in terms of network load, and
perhaps even latency. The threshold is based on the ex-
pected propagation time (in hops) in the overlay network.

Garbage collection. To free space consumed by dele-
tion objects, it is possible to set an expiration time for every
object in the system, including those that are not deleted.
All objects belonging to the same file have the same expira-
tion time. Nodes can safely garbage collect (remove) an ob-
ject from their local store if that object’s expiration time has
passed. For every object associated with a file, the object’s
expiration time can only be set and modified by the file’s
creator, and only if the file has not been deleted yet. The
refresher maintains sufficient object copies in the system
only if the relevant file’s expiration time has not passed yet.
Thus, deleting a file with an expiration time set ensures that
eventually all objects of that file will be garbage collected.
However, since all state is soft, removing all deletion ob-
jects for a file will allow malicious nodes to reintroduce the
deleted file to the system after the expiration time passes.

7 Conclusions

We have presented an algorithm for complete deletion
of files (tier two deletion – including data obliteration) in

a peer-to-peer storage system. The complete deletion of a
file in such a system is an intricate operation, as it involves
deleting multiple replicas of many (data and meta-data) ob-
jects, which may not all be available at the same time.

We have rigorously proven our algorithm’s correctness
in eventually stable runs. Moreover, we have demonstrated,
using simulations, that the algorithm always succeeds to
delete multi-object files entirely, even in highly dynamic
fault-prone environments. Finally, we have discussed some
practical issues that arose when implementing the algorithm
in Celeste, a working peer-to-peer storage system developed
at Sun Microsystems labs.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In OSDI,
Dec 2002.

[2] G. Badishi, G. Caronni, I. Keidar, R. Rom, and G. Scott.
Deleting files in the Celeste peer-to-peer storage system. TR
CCIT 594, Department of EE, Technion, Jul 2007.

[3] G. Caronni, R. Rom, and G. Scott. Maintaining object order-
ing in a shared p2p storage environment. In 3rd International
IEEE Security in Storage Workshop, Dec 2005.

[4] I. Clarke, S. Miller, T. Hong, O. Sandberg, and B. Wiley.
Protecting freedom of information online with Freenet. IEEE
Internet Computing, Jan-Feb 2002.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An archi-
tecture for global-scale persistent storage. In ASPLOS, Nov
2000.

[6] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In OSDI, Dec 2002.

[7] Z. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. Ru-
bin. Secure deletion for a versioning file system. In FAST,
San Francisco, Dec 2005.

[8] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. TOCS, 32, 1999.

[9] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In FAST, 2002.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, 2001.

[11] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In FAST,
Mar 2003.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Nov 2001.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking. To Appear.

[14] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. IEEE JSAC, 22(1), Jan 2004.

