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Abstract

We present Selective Multi-Versioning (SMV), a new STM that reduces the number of aborts, espe-
cially those of long read-only transactions. SMV keeps old object versions as long as they might be
useful for some transaction to read. It is able to do so while still allowing reading transactions to be
invisible by relying on automatic garbage collection to dispose of obsolete versions.

SMV is most suitable for read-dominated workloads, for which it achieves much better performance
than previous solutions. It has an up to×7 throughput improvement over a single-version STM and more
than a two-fold improvement over an STM keeping a constant number of versions per object. We show
that the memory consumption of algorithms keeping a constant number of versions per object might
grow exponentially with the number of objects, while SMV operates successfully even in systems with
stringent memory constraints.
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1 Introduction

Transactional memory [19, 31] is an increasingly popular paradigm for concurrent computing in multi-core
architectures. Most transactional memory implementations today are software toolkits, or STMs for short.
STMs speculatively allow multiple transactions to proceed concurrently, which leads to aborting transactions
in some cases. As system load increases, aborts may become frequent, especially in the presence of long-
running transactions, and may have a devastating effect on performance [4]. Reducing the number of aborts
is thus an important challenge for STMs.

Of particular interest in this context is reducing the abort rate of read-only transactions. Read-only
transactions play a significant role in various types of applications, including linearizable data structures with
a strong prevalence of read-only operations [20], or client-server applications where an STM infrastructure
replaces a traditional DBMS approach (e.g., FenixEDU web application [11]). Particularly long read-only
transactions are employed for taking consistent snapshots of dynamically updated systems, which are then
used for checkpointing, process replication, monitoring program execution, gathering system statistics, etc.

Unfortunately, long read-only transactions in current leading STMs tend to be repeatedly aborted for
arbitrarily long periods of time. As we show below, the time for completing such a transaction varies
significantly under contention, to the point that some read-only transactions simply cannot be executed
without “stopping the world”. As mentioned by Cliff Click [1], this kind of instability is one of the primary
practical disadvantages of STM; Click mentions multi-versioning [6] (i.e., keeping multiple versions per
object), as a promising way to make program performance more predictable.

Indeed, by keeping multiple versions it is possible to assure that each read-only transaction successfully
commits by reading a consistent snapshot [5] of the objects it accesses, e.g., values that reflect updates by
transactions that committed before it began and no partial updates of concurrent transactions. This way,
multiple versions have the potential to improve the performance of single-versioned STMs [18, 15, 14, 12],
which, as we show below, might waste as much as 80% of their time because of aborts in benchmarks with
many read-only transactions.

Nevertheless, previously suggested multi-versioned STMs did not fully realize this potential. As we
show in this paper, this happened mainly because of an inefficient management of old object versions (see
Section 2). Instead of keeping a variable number of versions based on demand, multi-versioned STMs
existing today keep a constant number of versions for each object [27, 9, 28]. As we show below, this
approach does not provide enough of a performance benefit for read-only transactions, and, even worse, it
causes severe memory problems in long executions. We further demonstrate in Section 3 that the memory
consumption of algorithms keeping k versions per object might grow exponentially with the number of
objects. The challenge is, therefore, to devise an approach for efficient management of old object versions.

In Section 4, we present Selective Multi-Versioning (SMV), a novel STM algorithm that addresses this
challenge. SMV keeps old object versions that are still useful to potential readers, and removes ones that
are obsolete. This way, read-only transactions can always complete – they neither block nor abort – while
for infrequently-updated objects only one version is kept most of the time.

SMV achieves this while allowing read-only transactions to remain invisible [14], i.e., having no effect
on shared memory. At first glance, combining invisible reads with effective garbage collection may seem
impossible — if read-only transactions are invisible, then other transactions have no way of telling whether
potential readers of an old version still exist! To circumvent this apparent paradox, we use separate GC
threads, such as those available in managed memory systems. Such threads have access to all the threads’
private memories, so that even operations that are invisible to other transactions are visible to the garbage
collector (in an unmanaged system, one would need to explicitly implement the GC threads). SMV ensures
that old object versions become garbage collectible (GCable) once there are no transactions that can safely
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read them.
In Section 5 we evaluate different aspects of SMV’s performance. We implement SMV in Java1 and

study its behavior for a number of benchmarks (red-black tree microbenchmark, STMBench7 [17] and
Vacation [10]). We compare SMV to a TL2-style single-versioned STM [12], to a k-versioned variant of the
same algorithm, which keeps k versions per object similarly to LSA [27], and to a simple global read-write
lock approach.

We find that SMV is extremely efficient for read-dominated workloads with long-running transactions.
For example, in STMBench7 with 64 threads, the throughput of SMV is seven times higher than that of
a TL2-style algorithm and more than double than those of 2- and 8-versioned STMs. Furthermore, in an
application with one thread constantly taking snapshots and the others running update transactions, neither
TL2 nor the k-versioned STM succeeds in taking a snapshot, even when only one concurrent updater is
running. In contrast, the performance of SMV remains stable for any number of concurrent updaters.

We compare the memory demands of the algorithms by limiting Java heap size. Whereas k-versioned
STMs crash with a Java OutOfMemoryException, SMV continues to run, and its throughput is degraded
by less than 25% even under stringent memory constraints.

In summary, we present the first STM that can successfully execute long read-only transactions concur-
rently with frequent updates. We do so by introducing a new approach for maintaining multiple versions.
Our conclusions appear in Section 6.

2 Related Work

As noted above, most existing STMs are single-versioned. Of these, SMV is most closely related to
TL2 [12], from which we borrow the ideas of invisible reads, commit-time locking of updated objects,
and a global version clock for consistency checking. In a way, SMV can be seen as a multi-versioned
extension of TL2.

Among multi-versioned STMs, the closest to SMV is LSA [27]. LSA, as well as its snapshot-isolation
variation [28], implements a simple solution to garbage collection: it keeps a constant number of versions for
each object. However, this approach leads to storing versions that are too old to be of use to any transaction
on the one hand, and to aborting transactions because they need older versions than the ones stored on the
other. In contrast, SMV keeps versions as long as they might be useful for ongoing transactions, and makes
them GCable by an automatic garbage collector as soon as they are not. For infrequently updated objects,
SMV typically keeps a single version.

Other previous suggestions for multi-versioned STMs [4, 24, 22, 7, 25] were based on cycle detection in
the conflict graph, a data structure representing all data dependencies among transactions. Cycle detection
incurs a high cost (quadratic in the number of transactions), which is clearly not practical. Moreover, it
requires reads to be visible in order to detect future conflicts, which can be detrimental to performance.
Earlier work [22, 25] specified GC rules based on precedence information as to when old versions can be
removed. However, these algorithms were too complex to be amenable to practical implementation, and
did not specify when these GC rules ought to be checked. Aydonat and Abdelrahman [4] propose to keep
each version for as long as transactions that were active at the time the version was created exist, but the
authors do not specify how this rule can be implemented efficiently. Other theoretical suggestions for multi-
versioned STMs ignored the issue of GC altogether [24]. In contrast, in this paper we present a simple
algorithm, which implements invisible reads, and exploits the automatic GC available in languages with
managed memory.

1The code is publicly available in http://tx.technion.ac.il/˜dima39/publications.html
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The idea of keeping information as long is it might be needed by on-going transactions was recently
used by Bronson et al. [8] for implementing concurrent collections. However, that paper deals with specific
data structures rather than general purpose STMs.

Instead of multi-versioning, STMs can avoid aborts by reading uncommitted values and then having
the reader block until the writer commits [26], or by using read-write locks to block in case of concur-
rency [13, 2]. These approaches differ from SMV, where transactions never block and may always progress
independently. Moreover, reads, which are invisible in SMV, must be visible in these “blocking” approaches.
In addition, reading the values of uncommitted transactions might lead to cascading aborts.

3 Exponential Memory Growth
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Figure 1: Example demonstrating exponential memory growth even for an STM keeping only 2 versions of each object. A linked
list causes a binary tree to be pinned in memory because previous node versions continue to keep references to already deleted
nodes.

Before introducing SMV, we first describe an inherent memory consumption problem of algorithms
keeping a constant number of object versions. A naı̈ve assessment of the memory consumption of a k-
versioned STM would probably estimate that it takes up to k times as much more memory as a single-
versioned STM.

We now illustrate that, in fact, the memory consumption of a k-versioned STM in runs with n trans-
actional objects might grow like kn. Intuitively, this happens because previous object versions continue to
keep references to already deleted objects, which causes deleted objects to be pinned in memory.

Consider, for example, a 2-versioned STM in the scenario depicted in Figure 1. The STM keeps a linked
list of three nodes. When removing node 30 and inserting a new node 40 instead, node 30 is still kept as
the previous version of 20.next. Next, when node 20 is replaced with node 25, node 30 is still pinned in
memory, as it is referenced by node 20. After several additional node replacements, we see that there is a
complete binary tree in memory, although only a linked list is used in the application.

More generally, with a k-versioned STM, a linked list of length n could lead to Ω(kn) node versions
being pinned in memory. This demonstrates an inherent limitation of any algorithm that keeps a constant
number of versions for each object. SMV overcomes this limitation by keeping old object versions only as
long as they might be needed by live read-only transactions. Our observation is confirmed by the empirical
results shown in Section 5.6, where the algorithms keeping k versions cannot terminate in the runs with a
limited heap size, while SMV does not suffer from any serious performance degradation.
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4 Selective Multi-Versioning Algorithm

We present Selective Multi-Versioning, a new object-based STM algorithm. Section 4.1 presents the princi-
ples underlying SMV’s design. The data structures used by SMV are described in Section 4.2. Section 4.3
presents the basic idea of the algorithm, and Section 4.4 discusses some practical optimizations.

4.1 Design Principles

SMV’s main goal is to reduce aborts in workloads with read-only transactions, without introducing high
space or computational overheads. SMV is based on the following design choices:

Invisible reads. Read operations can only modify the reading transaction’s private memory, and do not
affect global memory. Invisible reads have been argued to be important for performance, especially in
multi-core systems, where updates to global memory cause caches to thrash [14, 27].

Multi-versioning for reads. Read-only transactions always commit. We achieve this by allowing read-
only transaction Ti to observe a consistent snapshot corresponding to Ti’s start time — when Ti reads object
oj , it finds the latest version of oj that has been written before Ti’s start.

Managed garbage collection based on real-time order. Old object versions are removed once there are
no longer live read-only transactions that can consistently read them. To achieve this with invisible reads,
SMV relies on the omniscient garbage collection mechanism available in managed memory systems. Thus,
SMV needs only ensure that unneeded data is GCable, i.e., once the version of the object cannot be read by
any transaction, this version is not strongly referenced by any live memory object.

Global version clock. Like TL2 [12] and LSA [27], SMV uses a global version clock to detect conflicts.
Each transaction reads the clock when it begins, and update transactions increment the clock upon commit.
Each object is tagged with the version clock of the transaction that wrote it. Though the global version clock
is a contention-point, many practical optimizations were introduced to reduce the overhead associated with
it [12, 29]. Such optimizations are orthogonal to our work, and are therefore beyond the scope of this paper.
Perelman et al. [25] show that such global contention is essential for any multi-versioned STM that allows
all read-only transactions to commit (more formally, such an STM cannot be disjoint access parallel [21]).

4.2 Overview of Data Structures

curPoint
Tx dsc

time point 9

ver = 5

o1

data5

Tw updates o1
and commits

curPoint

on

ver = 10

o1 on

data5data10

Tr dsc
start = 9

Tw dsc

Tx dsc
time point 9

Tw dsc
time point 10

Tr dsc
start = 9

Figure 2: Transactional descriptor of Tw with time point 10 references the over-written version of o1.
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Before introducing the data structures of SMV, we give a brief reminder of the garbage collection mech-
anism in managed memory systems. An object can be reclaimed by the garbage collector once it becomes
unreachable from the call stack or global variables. Reachability is a transitive closure over strong mem-
ory references: if a reachable object o1 has a strong reference to o2, then o2 is reachable as well (strong
references are the default ones in Java). In contrast, weak references [16] do not protect the referenced ob-
ject from being GCed; an object referenced by weak references only is considered unreachable and may be
removed.

As in other object-based STMs, transactional objects in SMV are accessed via object handles. An object
handle includes a history of object values, where each value keeps a versioned lock [12] – data structure with
a version number and a lock bit. In order to facilitate automatic garbage collection, object handles in SMV
keep strong references only to the latest (current) versions of each object, and use weak references to point
to other versions.

Each transaction is associated with a transactional descriptor, which holds the relevant transactional
data, including a read-set, a write-set, status, etc. In addition, transactional descriptors play an important
role in keeping strong references to old object versions, as we explain below.

Version numbers are generated using a global version clock. However, unlike previous implementations
of such clocks [12, 27], SMV’s version clock consists of a list of transactional descriptors, rather than a
scalar variable. Transactional descriptors act as “time points” organized in a one-directional linked list.
Upon commit, an update transaction appends its transactional descriptor to the end of the list (a special
global variable curPoint points to the latest descriptor in this list). For example, if the current global version
is 100, a committing update transaction sets the time point value in its transactional descriptor to 101 and
adds a pointer to this descriptor from the descriptor holding 100.

Version management is based on the idea that old object versions are pointed to by the descriptors of
transactions that over-wrote these versions (see Figure 2). A committing transaction Tw includes in its
transactional descriptor a strong reference to the previous version of every object in its write set before
diverting the respective object handle to the new version.

When a read-only transaction Ti begins, it keeps (in its local variable startTP) a pointer to the latest
transactional descriptor in the list of committed transactions. This pointer is cleared upon commit, making
old transactional descriptors at the head of the list GCable.

This way, active read-only transaction Tr keeps a reference chain to version oj
i if this version was

over-written after Tr’s start, thus preventing oj
i ’s garbage collection. Once there are no active read-only

transactions that started before oj
i was over-written, this version stops being referenced and thus becomes

GCable .
Figure 2 illustrates the commit of an update transaction Tw that writes to object o1. In this example,

Tw and a read-only transaction Tr both start at time 9, and hence Tr references the transactional descriptor
of time point 9. The previous update of o1 was associated with version 5. When Tw commits, it inserts
its transactional descriptor at the end of the time points list with value 10. Tw’s descriptor references the
previous value of o1.

This way, the algorithm creates a reference chain from Tr to the previous version of o1 via Tw’s descrip-
tor, which ensures that the needed version will not be GCed as long as Tr is active. Assume Tr then wants
to read object o1. Tr determines that it cannot read the latest version because its version (10) is greater than
Tr’s start time. Hence, Tr reads the previous object version, whose version (5) is earlier than its start time
(10).
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4.3 Basic Algorithm

We now describe the SMV algorithm. For the sake of simplicity, we present the algorithm in this section
using a global lock for treating concurrency on commit. In Section 4.4 we will remove this lock and show
how to make commit operations lock-free.

SMV handles read-only and update transactions differently. We assume that transaction’s type can
be provided to the algorithm beforehand by a compiler or via special program annotations. If not, each
transaction can be started as read-only and then restarted as update upon the first occurrence of a write
operation.

Handling update transactions. The protocol for update transaction Ti is depicted in Algorithm 1. The
general idea is similar to the one used in TL2 [12] and LSA [27]. An update transaction Ti aborts if some
object oj read by Ti is over-written after Ti begins and before Ti commits. Conflicts are detected using the
global time points list. Upon starting, Ti saves the value of the latest time point in a local variable startTime,
which holds the latest time at which an object in Ti’s read-set is allowed to be over-written.

A read operation of object oj first reads the latest version of oj via the object handle, and then checks
whether this version is valid for Ti (function validateRead, lines 34–36). The validation procedure checks
that oj is not locked and that its version is not greater than Ti.startTime. If the validation fails, the transaction
is aborted.

A write operation (lines 10–13) is invisible to other transactions, as it postpones the actual work until
the time of commit. Write creates a copy of the object’s latest version for local updates, and adds it to Ti’s
local write set.

Algorithm 1 SMV algorithm for update transaction Ti.
1: Upon Startup:
2: Ti.startTime← curPoint.commitTime

3: Read oj :
4: if (oj ∈ Ti.writeSet) then return Ti.writeSet.get(oj )
5: data← oj .latest
6: if ¬validateRead(oj ) then abort
7: readSet.put(oj )
8: return data

9: Write to oj :
10: if (oj ∈ Ti.writeSet) then update Ti.writeSet.get(oj ); return
11: localCopy← oj .latest.clone()
12: writeSet.put(〈oj , localCopy〉)
13: update localCopy

14: Function validateReadSet() B verify that none of the objects in the
read-set has been over-written after being read by Ti

15: foreach oj ∈ Ti.readSet do:
16: if (oj .isLocked() ∨ oj .version > Ti.startTime) then return

false
17: return true

18: Commit:
19: foreach oj ∈ Ti.writeSet do: oj .lock()
20: if ¬validateReadSet() then abort

B txn dsc should reference the over-written data
21: foreach oj ∈ Ti.writeSet do:
22: Ti.prevVersions.put(〈oj , oj .latest〉)
23: timeLock.lock()
24: Ti.commitTime← curPoint.commitTime + 1

B update and unlock the objects
25: foreach 〈oj , data〉 ∈ Ti.writeSet do:
26: oj .version← Ti.commitTime
27: oj .weak references← oj .weak references ∪ oj .latest
28: oj .latest← data
29: oj .unlock()
30: curPoint.next← Ti

31: curPoint← Ti

32: timeLock.unlock()

33: Function validateRead(Object oj )
34: if (oj .isLocked()) then return false
35: if (oj .version > Ti.startTime) then return false B oj has been

over-written
36: return true

Commit (lines 19–32) consists of the following steps:

1. Lock the objects in the write set (line 19). Deadlocks can be detected using standard mechanisms (e.g.,
timeouts or Dreadlocks [23]), or may be avoided if acquired in the same order by every transaction.

2. Validate the read set (function validateReadSet, lines 15–17).
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3. Insert strong references to the over-written versions to Ti’s descriptor’s prevVersion structure (line 22).
In this way the algorithm guarantees that the over-written versions stay in the memory as long as Ti’s
descriptor is referenced by some read-only transaction.

4. Lock the time points list (line 23). Recall that this is a simplification; we show in Section 4.4 how we
avoid such locking.

5. Set the commit time of Ti to one plus the value of the commit time of the descriptor referenced by
curPoint.

6. Update and unlock the objects in the write set (lines 25–29). Set their new version numbers to the
value of Ti.commitTime. Keep weak references to old versions.

7. Insert Ti’s descriptor to the end of the time points list and unlock the list (lines 30–32).

Algorithm 2 SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP← curPoint

3: Read oj :
4: latestData← oj .latest
5: if (oj .version ≤ Ti.startTP.commitTime) then return latestData
6: return the latest version ver in oj .weak references, s.t.
7: ver.version ≤ Ti.startTP.commitTime

8: Commit:
9: Ti.startTP← ⊥

Handling read-only transactions. The pseudo-code for read-only transactions appears in Algorithm 2.
Such transactions always commit without waiting for other transactions to invoke any operations. The
general idea is to construct a consistent snapshot based on the start time of Ti. At startup, Ti.startTP points
to the latest installed transactional descriptor (line 2); we refer to the time value of startTP as Ti’s start time.

For each object oj , Ti reads the latest version of oj written before Ti’s start time. When Ti reads an object
oj whose latest version is greater than its start time, it continues to read older versions until it finds one with
a version number older than its start time. Some old enough version is guaranteed to be found, because the
updating transaction Tw that over-wrote oj has added Tw’s descriptor referencing the over-written version
somewhere after Ti’s starting point, preventing GC.

The commit procedure for read-only transactions merely removes the pointer to the starting time point,
in order to make it GCable, and always commits.

4.4 Allowing Concurrent Access to the Time Points List

We show now how to avoid locking the time points list (lines 23, 32), so that update transactions with disjoint
write-sets may commit concurrently. We first explain the reason for using the lock. In order to update the
objects in the write-set, the updating transaction has to know the new version number to use. Choosing the
version number and adding the descriptor to the list must be part of the same atomic action, so that two
different transactions do not get the same number.

But if a transaction exposes its descriptor before it finishes updating the write-set, then some read-only
transaction might observe an inconsistent state, as exemplified by the scenario depicted in Figure 3(a).
Consider transaction Tw that updates objects o1 and o2. The value of curPoint at the beginning of Tw’s
commit is 9. Assume Tw first inserts its descriptor with value 10 to the list, then updates object o1 and
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pauses. At this point, o1.version = 10, o2.version < 10 and curPoint → commitTime = 10. A new
read-only transaction starts with time 10 and successfully reads the new value of o1 and the old value of
o2, because they are both less than or equal to 10, thus obtaining an inconsistent snapshot. Intuitively, the
problem is that the new time point becomes available to the readers as a potential starting time before all the
objects of the committing transaction are updated.

curPoint

ver = 10

o1 o2

data5data10

Tx dsc
time point 9

Tw dsc
time point 10

data5

ver = 5

Tr dsc
start = 10

(a) Tr’s start time is 10, which
causes inconsistent snapshot.

curPoint

ver = 10

o1 o2

data5data10

Tx dsc
time point 9
ready = true

Tw dsc
time point 10
ready = false

Tr dsc
start = 9

data5

ver = 5

readyPoint

(b) Tr’s start time is 9 ac-
cording to the latest ready time
point.

Figure 3: Transaction Tw updates o1 and o2 with version 10. Without a proper synchronization, transaction Tr might read a new version of o1

and an old version of o2.

To preserve consistency without locking the time points list, we add an additional boolean field ready
to the descriptor’s structure, which becomes true only after the committing transaction finishes updating all
objects in its write-set. In addition to the global curPoint variable referencing the latest time point, we keep
a global readyPoint variable, which references the latest time point in the ready prefix of the list. When
a new read-only transaction starts, its startTP variable references readyPoint (instead of curPoint as in the
original algorithm). In Figure 3(b), a read-only transaction Tr has a start time of 9, because the new time
point with value 10 is still not ready. Hence, Tr does not return the new value of o1. Generally, the use of
readyPoint guarantees that if a read-only transaction Tr reads an object version written by Tw, then Tw and
all its preceding transactions had finished writing their write-sets.

Note, however, that when using ready points we should make sure we do not violate the real time order.
That is, we should prevent a situation in which a transaction Tr that starts after Tw terminates has a start
time value smaller than Tw’s commit time, because in this case, Tr might not see the values written by Tw.

This situation might arise if update transactions become ready in an order that differs from their time
points order, thus leaving an unready transaction between ready ones in the list. To enforce real-time order,
a new read-only transaction first notes the time point of the latest ready transaction. If readyPoint does not
point to this transaction (because of a “gap” in ready transactions as explained above), it waits for the ready
point to reach this point before starting.

5 Implementation and Evaluation

5.1 Compared Algorithms

Our evaluation aims to check the specific novel aspect introduced by SMV, that is to say, keeping and
garbage collecting multiple versions. We compare SMV to the closest well-known algorithm, namely TL2
and a multiple-versioned variant thereof. We implement the following algorithms:

SMV – The algorithm described in Section 4.
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TL2-style – A single-versioned STM mimicking the basic operation of TL2 [12] with a single central global
version clock.

TL2 with time points – A variant of TL2, which implements the time points mechanism described in Sec-
tion 4.2. This way, we check the influence of the use of time points on the overall performance and
separate it from the impact of multi-versioning techniques used in SMV.

k-versioned – an STM based on a TL2-style’s logic and code, in which each object keeps a constant k,
number of versions (this approach resembles LSA [27]). Reads operate as in SMV, except that if no
adequate version is found, the transaction aborts. Update transactions have a behavior similar to that
of TL2.

Read-Write lock (RWLock) – a simple global read-write lock. The lock is acquired at the beginning of an
atomic section and is released at its end.

We use the Polite contention manager with exponential backoff [30] for all the algorithms: aborted transac-
tions spin for a period of time proportional to 2n, where n is the number of retries of the transaction.

5.2 Experiment Setup

All algorithms are implemented in Java. We use the following benchmarks for performance evaluation: 1) a
red-black tree microbenchmark; 2) the Java version of STMBench7 [17]; and 3) Vacation, which is part of
the STAMP [10] benchmark suite.

Red-black tree microbenchmark. The red-black tree data structure supports insertion, deletion, query
and range query operations. The initial size of the tree is 400000 nodes. Its behavior is checked both for
read-dominated workloads (80/20 ratio of read-only to update operations) and for workloads with update
operations only.

STMBench7. STMBench7 aims to simulate different behaviors of real-world programs by invoking both
read-only and update transactions of different lengths over large data structures, typically graphs. Workload
types differ in their ratio of read-only to update transactions: 90/10 for read-dominated workloads, 60/40
for read-write workloads, and 10/90 for write-dominated workloads. Operation types for both read-only
and update transactions include graph traversals of different lengths, structural modifications, and single
access operations. When running STMBench7 workloads, we bound the length of each benchmark by the
number of transactions performed by each thread (2000 transactions per thread unless stated otherwise). We
manually disabled long update traversals because they inherently eliminate any potential for scalability.

Vacation (Java port). Vacation emulates a travel reservation system, which is implemented as a set of
trees. It supports changing the size of the database, length of the benchmark, and other parameters that give
us control over the level of contention among threads; in our experiments we use the standard parameters
corresponding to vacation-high++.

Note that STAMP benchmarks are not suitable for evaluating techniques that optimize read-only trans-
actions, because these benchmarks do not have read-only transactions at all. We use one exemplary STAMP
application (Vacation) to compare SMV’s overhead with the overhead of a single-versioned STM in cases
without read-only transactions. Other STAMP benchmarks do not add any additional insight into this ques-
tion, and are therefore not included in the paper.
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Figure 4: In the absence of read-only transactions multi-versioning cannot be exploited. The overhead of SMV degrades through-
put by up to 15%.

Setup. In all our benchmarks, we defined transactional objects at the granularity of graph/data structure
nodes. This provides a reasonable compromise between the cost of copy-on-write and the overhead of
algorithmic bookkeeping. To support this, we re-implemented collections based on java.util.

The benchmarks are run on a dedicated shared-memory NUMA server with 8 Quad Core AMD 2.3GHz
processors and 16GB of memory attached to each processor. The system runs Linux 2.6.22.5-31 with swap
turned off. For all tests but those with limited memory, JVM is run with the AggressiveHeap flag on.
Thread scheduling is left entirely to the OS. We run up to 64 threads on the 32 cores.

Our evaluation study is organized as follows: in Section 5.3, we show system performance measure-
ments. Section 5.4 considers the latency and predictability of long read-only operations. In Section 5.5, we
examine how many versions should be used, and in Section 5.6, we analyze the memory demands of the
algorithms.

5.3 Performance Measurements

SMV overhead. As we mentioned earlier, the use of multiple versions in our algorithm can be exploited
by read-only transactions only. However, before evaluating the performance of SMV with read-only transac-
tions, we first want to understand its behavior in programs with update transactions only. In these programs,
SMV can hardly be expected to outperform its single-versioned counterparts. For update transactions, SMV
resembles the behavior of TL2, with the additional overhead of maintaining previous object versions. Thus,
measuring throughput in programs without read-only transactions quantifies the cost of this additional over-
head.

In Figure 4, we show throughput measurements for write-dominated benchmarks: Red-black tree (Fig-
ure 4(a)) and Vacation (Figure 4(c)) do not contain read-only transactions at all. The write-dominated STM-
Bench7 workload shown in Figure 4(b) runs 90% of its operations as update transactions, and therefore the
influence of read-only ones is negligible.

All compared STM algorithms show similar behavior in all three benchmarks. This emphasizes the
fact that the algorithms take the same approach when executing update transactions and that they all have a
common underlying code platform. The differences in the behavior of RWLock are explained by different
contention levels of the benchmarks. While the contention level in Vacation remains moderate even for 64
threads, contention in the write-dominated STMBench7 is extremely high, so that RWLock outperforms the
other alternatives.

Figure 4 demonstrates low overhead of SMV when the number of threads does not exceed 32; for 64
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Figure 5: By reducing aborts of read-only transactions, SMV presents a substantially higher throughput than TL2 and the k-
versioned STM. In read-dominated workloads, its throughput is ×7 higher than that of TL2 and more than twice those of the
k-versioned STM with k = 2 or k = 8. In read-write workloads its advantage decreases because of update transactions, but SMV
still clearly outperforms its competitors.

threads this overhead causes a 15% throughput drop. This is the cost we pay for maintaining multiple
versions when these versions are not actually used.

Throughput. We next run workloads that include read-only transactions, in order to assess whether the
overhead of SMV is offset by its smaller abort rate. In Figure 5 we depict throughput measurements of
the algorithms in STMBench7’s read-dominated and read-write workloads, as well as the throughput of
the red-black tree. We see that in the read-dominated STMBench7 workload, SMV’s throughput is seven
times higher than that of TL2. Despite keeping as many as 8 versions, the k-versioned STM cannot keep
up, and SMV outperforms it by more than twice. We further note that SMV is scalable, and its advantage
over a single-version STM becomes more pronounced as the number of threads rises. In the read-write
workload, the number of read-only transactions that can use multiple versions decreases, and the throughput
gain becomes 95% over TL2 and 52% over the 8-versioned STM.

We conclude that in the presence of read-only transactions the benefit of SMV significantly outweighs
its overhead. To explain this benefit, we next look at the amount of work wasted by the STMs due to aborts.

Amount of wasted work. As explained above, keeping multiple versions can potentially improve perfor-
mance by decreasing the abort rate. However, looking at the abort rate is not enough: there is a substantial
difference between a transaction that is aborted at the very beginning and a transaction aborted after running
for a long time. Hence, what we want to measure now is the “amount of wasted work” done by transactions
before they abort.

There is no strict way for defining wasted work. We therefore analyze two parameters: 1) number
of accesses to transactional objects during aborted transactions; and 2) time spent by the program inside
aborted transactions.

In Figure 6 we show the number of memory accesses performed by aborted transactions. Wasted mem-
ory accesses are undesirable mainly because of their disruptive influence on cache performance and their
negative role in power consumption. In addition, they give a good intuition for the overall efficiency of the
run.

We see that in the read-dominated workload of STMBench7 (Figure 6(a)), with 64 threads, more than
70% of the memory accesses in TL2 occur in aborted transactions. This occurs not only because of a high
abort rate, but also because the probability for a read operation by a long read-only transaction to require an
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(a) Wasted memory accesses in STMBench7’s
read-dominated workload.
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(b) Wasted memory accesses in STMBench7’s
read-write workload.
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Figure 6: Ratio of memory accesses in aborted transactions. In the read-dominated STMBench7 workload the use of selective
multi-versioning reduces the amount of wasted work by a factor of 3, outperforming k-versioned STMs by more than 30%. In the
RB tree read-dominated benchmark SMV succeeds to run most of the transactions, such that its wasted work is close to zero.
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Figure 7: The share of time spent in aborted transactions for read-dominated and read-write workloads. In read-dominated
workloads, SMV wastes less than 4% of time, while TL2 might waste more than 80% of the time inside aborted transactions. In
read-write workloads, all STMs lose more time because of the larger share of update transactions. SMV is still better than TL2 and
the k-versioned STMs by more than 20%.

old version increases over time. In SMV, wasted accesses amount to roughly 25% — a result that cannot be
achieved by the k-versioned STMs either. Somewhat surprisingly, even 8 versions do not suffice, and circa
45% of the memory accesses are wasted. We will show why this occurs in Section 5.5.

In read-write workloads most of the wasted accesses occur due to aborts of update transactions, hence
the differences between the algorithms are less significant — all the multi-versioned STMs show 10% less
wasted accesses than TL2.

In Figure 7, we show the amount of time wasted on eventually aborted transactions. This approach
approximates net CPU utilization and hence explains throughput results. We note that this approximation
works well only if the number of threads is less than or equal to the number of available cores (otherwise,
time measurements also count intervals in which the threads are suspended).

Here, the benefit of SMV is even more pronounced. We see that in the read-dominated workload, TL2
spends more than 80% of its time running aborted transactions! Interestingly, k-versioned STMs cannot
fully alleviate this effect either, succeeding to reduce the amount of wasted time to 36% only. In contrast,
SMV’s wastage does not rise above 3%. In the read-write workload, the differences between the algorithms
become less obvious, but the same tendency remains.
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Number of threads
1 4 8 16 32

TL2 1.3 21.6 68.5 103.6 358.5
SMV 1.3 1.4 2.4 3.6 11.9
2-versioned 1.3 4.1 22.9 45.2 204.5
8-versioned 1.3 6.8 10.6 22.2 79.4

(a) Maximum time (sec) for completing a long read-only op-
eration in STMBench7.

Number of threads
1 4 8 16 32

TL2 — — — — —
SMV 1.4 1.3 1.2 1.4 1.5
2-versioned — — — — —
8-versioned — — — — —

(b) Maximum time (sec) to take a snapshot in Vaca-
tion benchmark.

Figure 8: Maximum time for completing long read-only operations. Long read-only traversals in STMBench7 can be hardly
predictable for TL2 and k-versioned STMs: they might take hundreds of seconds under high loads. Vacation snapshot operation
run by TL2 or k-versioned algorithms cannot terminate even when there is only a single application thread. SMV presents stable
performance unaffected by the level of contention both for STMBench7 traversals and Vacation snapshots.

5.4 Latency and Predictability of Long Read-Only Operations

In the previous section we concentrated on overall system performance without considering specific transac-
tions. However, in real-life applications the completion time of individual operations is important as well. In
this section we consider two examples: taking system snapshots of a running application and STMBench7’s
long traversals.

Taking a full-system snapshot is important in various fields: it is used in client-server finance applica-
tions to provide clients with consistent views of the state, for checkpointing in high-performance computing,
for creating new replicas, for application monitoring and gathering statistics, etc. As for any other operation,
predictability of the time it takes to complete the snapshot is important, both for program stability and for
usability.

We first show the maximum time for completing a long read-only traversal, which is already built-in in
STMBench7 (see Table 8(a)). As we can see from the table, this operation takes only several seconds when
run without contention. However, when the number of threads increases, completing the traversal might
take more than 100 seconds in TL2 and k-versioned STMs. Unlike those algorithms, SMV is less impacted
by the level of contention and it always succeeds to complete the traversal in several seconds.

Next, we added the option of taking a system snapshot in Vacation. In addition to the original application
threads, we run a special thread that repeatedly tries to take a snapshot. We are interested in the maximum
time it takes to complete the snapshot operation. The results appear in Table 8(b). We see that neither
TL2 nor the k-versioned STM can successfully take a snapshot even when only a single application thread
runs updates in parallel with the snapshot operation. Surprisingly, even 8 versions do not suffice to allow
snapshots to complete, this is because within the one and a half seconds it takes the snapshot to complete
some objects are overwritten more than 8 times.

On the other hand, the performance of SMV remains stable and unaffected by the number of application
threads in the system. We conclude that SMV successfully keeps the needed versions. In Section 5.6, we
show that it does so with smaller memory requirements than the k-versioned STM.

We would like to note that while taking a snapshot is also possible by pausing mutator threads, this
approach could hardly be efficient. Pausing mutators is actually a privatization problem which has been
shown to be inherently costly [3].

5.5 How Many Versions to Keep

In the previous sections we have shown the benefits of keeping multiple versions for system throughput
and operation latency in benchmarks with many read-only transactions. We now consider the following
questions: how many versions do we need to keep in order to improve the performance?
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Figure 9: Version access histograms for STMBench7. The 2nd version is accessed less than 2.5% of the time, and it drops even
further for older versions. The histogram emphasizes the fact that in most cases, keeping a single version of an object is enough.
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(b) The share of memory accesses done by transactions before first
accessing a kth object version in STMBench7’s read-write workload.

Figure 10: The share of memory accesses done by transactions before first accessing a kth object version. Surprisingly, despite
extremely low access probabilities for version k in general (see Figure 9), the price of not keeping this version is high. For example,
at least 60% of memory accesses have to be redone at least once if an STM keeps a single object version. Furthermore, the “heavy
tail” in the graphs shows that keeping any constant number of versions per object does not prevent a high percentage of wasted
work.

Histogram of version accesses. In Figure 9 we show a histogram of previous version accesses in STM-
Bench7’s read-dominated and read-write workloads. At any point in time, we number object versions in
ascending order, starting from the latest one (the latest version is number 1, the one before it is number
2, etc.). For each number k, we count the percentage of accesses to version k out of the total number of
memory accesses.

We see from the graph that the percentage of accesses to an arbitrary old object version is extremely
small – it is less than 2.5% even for version 2. This observation intuitively suggests that keeping a constant
number of versions per object is wasteful, because for most of the objects, a single version is enough most
of the time.

But in the previous sections, we saw that even 8 versions do not suffice to allow long read-only transac-
tions to complete, and even with this many versions, aborts lead to a substantial percentage of wasted work.
To explain this apparent contradiction, we now examine how the number of versions can impact wasted
work.
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Wasted work lower bound. We now conduct the following experiment: while running SMV, for each
version number k, we keep the number of memory accesses executed by transactions before they first access
version k (if a transaction never accesses version k, the number is zero). In an STM that keeps k−1 versions
per object, the transactions would then abort, and these memory accesses would need to be redone at least
once. Thus, we obtain a lower bound on wasted memory accesses in a k-versioned STM.

Figure 10 shows the number of memory accesses done before first accessing some kth object version.
Surprisingly, this amount is relatively high: it starts from 60% for the second version and does not fall
below 10% even for the 9th version. According to the histogram in Figure 9, the likelihood of accessing
these versions is extremely low. So how can we get such a high number of memory accesses? The insight is
that if a transaction accesses the kth version of an object, it means that this object has been updated at least
k−1 times since this transaction began. This usually happens if a transaction has been already running for a
long period of time and has already accessed a large number of transactional objects. The older the version,
the less it is accessed, and thus the higher the amount of work executed before the access.

The direct conclusion from Figure 10 is that keeping previous versions is important despite the low
frequency of accessing them. Furthermore, the “heavy tail” in the graphs indicates that keeping a constant
number of versions per object will typically not be enough for reducing the amount of wasted work. This
observation is in line with the results in the previous sections.

5.6 Memory Demands

One of the potential issues with multi-versioned STMs is their high memory consumption. In this section
we compare memory demands of the different algorithms. To this end, we execute long-running write-
dominated STMBench7 benchmarks (64 threads, each thread running 40000 operations) with different lim-
itations on the Java memory heap. Such runs present a challenge for the multi-versioned STMs because of
their high update rate and limited memory resources. As we recall from Section 5.3, multi-versioned STMs
cannot outperform TL2 in a write-dominated workload. Hence, the goal of the current experiment is to study
the impact of the limited memory availability on the algorithms’ behaviors.

Memory limit
2GB 4GB 8GB 12GB 16GB

TL2 606.89 631.56 630.3 674.96 647.17
SMV 450.12 543.04 563.74 595.78 602.01
2-versioned — 515.32 532.7 550.61 533.01
4-versioned — — — — 281.98
8-versioned — — — — —

Table 1: Throughput (txn/sec) in limited memory systems: k-versioned STMs do not succeed to complete the benchmark, while
SMV performs well even with a 2GB memory limitation.

Table 1 shows how the algorithms’ throughput depends on the Java heap size. A “—” sign corresponds to
runs in which the algorithm did not succeed to complete the benchmark due to a Java OutOfMemoryException.
Notice that the 8-versioned STM is unable to successfully complete a run even given a 16GB Java heap size.
Decreasing k to 4, and then 2, makes it possible to finish the runs under stricter constraints. However, none
of the k-versioned STMs succeed under the limitation of 2GB. Unlike k-versioned STMs, SMV continues
to function under these constraints. Furthermore, SMV’s throughput does not change drastically — there is
a maximum decrease of 25% in throughput when Java heap size is shrinked 8-fold.

We explain the collapse of the k-versioned STM in Section 3, where we illustrate that its memory
consumption can become exponential rather than linear in the number of transactional objects.
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6 Conclusions

Many real-world applications invoke a high rate of read-only transactions, including ones executing long
traversals or obtaining atomic snapshots. For such workloads, multi-versioning is essential: it bears the
promise of high performance, reduced abort rates, and less wasted work.

Nevertheless, previously suggested multi-versioned STMs did not fully deliver on these promises. In
this paper, we have illustrated that the main reason for their limited success is due to keeping a constant
number of versions for each object. We saw that because of the heavy-tailed nature of memory accesses,
this constant number does not suffice for long traversals to complete. On the other hand, we illustrated that
the memory consumption of this approach may grow exponentially with the amount of transactional data.

We presented Selective Multi-Versioning, a new STM that delivers on the promises of multi-versioning.
It achieves high performance (high throughput, low and predictable latency, and little wasted work) in the
presence of long read-only transactions. Despite keeping multiple versions, SMV can work well in memory
constrained environments.

SMV keeps old object versions as long as they might be useful for some transaction to read. We do
so while allowing read-only transactions to remain invisible by relying on automatic garbage collection to
dispose of obsolete versions. More generally, we presented the idea of keeping old data as long as it might
be useful for some processes in the future by having such potential future users of the data keep references
that prevent the data’s garbage collection. We believe that this approach can be the key to achieving good
performance not only in STMs, but also in a range of concurrent data structures. SMV can be implemented
in unmanaged memory systems by introducing special GC threads for periodical inspection of stale data —
these threads can be fine-tuned to be more efficient that the Java alternative.
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