
On Avoiding Spare Aborts in Transactional Memory

Idit Keidar Dmitri Perelman

Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

idish@ee.technion.ac.il, dima39@tx.technion.ac.il

Abstract

This paper takes a step toward developing a theory for understanding aborts in transactional memory
systems (TMs). Existing TMs may abort many transactions that could, in fact, commit without violating
correctness. We call such unnecessary aborts spare aborts. We classify what kinds of spare aborts can
be eliminated, and which cannot. We further study what kinds of spare aborts can be avoided efficiently.
Specifically, we show that some unnecessary aborts cannot be avoided, and that there is an inherent
tradeoff between the overhead of a TM and the extent to which it reduces the number of spare aborts.
We also present an efficient example TM algorithm that avoids certain kinds of spare aborts, and analyze
its properties and performance.



1 Introduction

The emergence of multi-core architectures raises the problem of efficient synchronization in multithreaded
programs. Conventional locking solutions introduce a host of well-known problems: coarse-grained locks
are not scalable, while fine-grained locks are error-prone and hard to design. Transactional memory [11, 15]
has gained popularity in recent years as a new synchronization abstraction for multithreaded systems, which
has the potential to overcome the pitfalls of traditional locking schemes. A transactional memory toolkit,
or TM for short, allows threads to bundle multiple operations on memory objects into one transaction.
Similarly to database transactions [16], transactions are executed atomically: either all of the transaction’s
operations appear to take effect simultaneously (in this case, we say that the transaction commits), or none
of transaction’s operations are seen (in this case, we say that transaction aborts). We formally define the
model and correctness criterion in Section 3.

A transaction’s abort may be initiated by a programmer or may be the result of a TM decision. In the
latter case, we say that the transaction is forcefully aborted by the TM. For example, when one transaction
reads some object A and then writes to some object B, while another transaction reads the old value of B
and then attempts to write A, one of the transactions must be aborted in order to ensure atomicity. The
Achilles’ heel of most existing TMs is the fact that they perform unnecessary (spare) aborts, i.e., aborts
of transactions that could have committed without violating correctness; see Section 2. Spare aborts have
several drawbacks: work done by the aborted transaction is lost, computer resources are wasted, and the
overall throughput decreases. Moreover, after the aborted transactions restart, they may conflict again,
leading to livelock and degrading performance even further.

The aim of this paper is to advance the theoretical understanding of TM aborts, by studying what kinds of
spare aborts can or cannot be eliminated, and what kinds of spare aborts can or cannot be avoided efficiently.
Specifically, we show that some unnecessary aborts cannot be avoided, and that there is an inherent tradeoff
between the overhead of a TM and the extent to which it refrains from spare aborts.

Previous works introduced two related notions: commit-abort ratio [7] and permissiveness [8]. The
latter stipulates that in runs that does not violate correctness criterion, no aborts should happen. However,
while shedding insight on the inherent limitations of online TMs, these notions do not provide an interesting
yardstick for comparing TMs. This is because under these measures, all online TMs inherently perform
poorly for some worst-case workloads, as we show in Section 4.

In Section 5, we then define measures of spare aborts that are appropriate for online TMs. Intuitively,
our strict online permissiveness property allows a TM to abort some transaction only if not aborting any
transaction would violate correctness. Unline ealier notions, strict online permissiveness does not prevent
the TM taking an action that might lead to an abort in the future. Thus, the information available to the TM
at every given moment suffices to implement strict online permissiveness. Clearly, this property depends on
the correctness criterion the TM needs to satisfy. In this paper, we consider opacity or slight variants thereof
(see Section 3). In this context, strict online permissiveness prohibits aborting a transaction whenever the
execution history is equivalent to some sequential one. We prove that strict online permissiveness cannot
be satisfied efficiently by showing a reduction from the NP-hard view serializability [13] problem. We
then define a more relaxed property, online permissiveness, which allows the TM to abort transactions if
otherwise it would have to change the serialization order between already committed transactions.

In Section 6, we show a polynomial time TM protocol satisfying online permissiveness. The protocol
maintains a precedence graph of transactions and keeps it acyclic. Unfortunately, we show that the graph
must contain some committed transactions. But without removing any committed transactions, detecting
cycles in the precedence graph would be impractical as it would induce a high runtime complexity. Hence,
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we define precise garbage collection rules for removing transactions from the graph. Even so, a naı̈ve traver-
sal of the graph would be costly; we further introduce optimization techniques that decrease the number of
nodes traversed during the acyclity check.

Finally, we note that our goal is not to build a better TM, but rather to understand what can and what
cannot be achieved, and at what cost. Future work may further explore the practical aspects of the complexity
vs. spare-aborts tradeoffs; our conclusions appear in Section 7.

2 Related Work

Most existing TM implementations, e.g., [10, 6, 5, 4] use two-phase locking, which aborts one transaction
whenever two overlapping transactions access the same object and at least one access is a write. While easy
to implement, this approach may lead to high abort rates, especially in situations with long-running transac-
tions and contended shared objects. Aydonat and Abdelrahman [2] referred to this problem and proposed a
solution based on a conflict serializability graph and multi-versioned objects in order to reduce the number
of unnecessary aborts. However, their solution still induces spare aborts, and does not characterize exactly
when such aborts are avoided. Moreover, they implement a stricter correctness criterion than opacity, which
inherently requires more aborts. Riegel et al. [14] looked at the problem of spare aborts from a different
angle, and introduced weaker correctness criteria, which allow TMs to reduce the number of aborts.

Gramoli et al. [7] referred to the problem of spare aborts and introduced the notion of commit-abort
ratio, which is the ratio between the number of committed transactions and the overall number of trans-
actions in the run. Clearly, the commit-abort ratio depends on the choice of the transaction that should be
aborted in case of a conflict. This decision is the prerogative of a contention manager [10]. Attiya et al. [1]
showed a Ω(s) lower bound for the competitive ratio for transactions’ makespan of any online deterministic
contention manager, where s is the number of shared objects. Their proof, however, does not apply to our
model, because it is based upon the assumption that whenever multiple transactions need exclusive access
to the same shared object, only one of these transactions may continue, while others should be immediately
aborted. In contrast, our model allows the TM to postpone the decision regarding which transaction should
be aborted till the commit, thus introducing additional knowledge and improving the competitive ratio. In
this paper, we show that every TM is Ω(L) competitive in terms of commit-abort ratio, where L is the num-
ber of live transactions in the system. This result suggests that it is not interesting to compare (online) TMs
by their commit-abort ratio, as the distance from the optimal result turns out to be an artifact of the workload
rather than the algorithm, and every TM has a workload on which it performs poorly by this measure.

Input acceptance is also a notion presented by Gramoli et al. [7] — a TM accepts a certain input pattern
if it commits all of its transactions. The authors compared different TMs according to their input acceptance
patterns. Guerraoui et al. [8] introduced the related notion of π-permissiveness. Informally, a TM satisfies
π-permissiveness for a correctness criterion π, if every history that does not violate π is accepted by the
TM. Thus, π-permissiveness can be seen as optimal input acceptance. However, Guerraoui et al. focused on
a model with single-version objects, and their correctness criterion was based upon conflict serializability,
which is stronger than opacity and thus allows more aborts. They ruled out the idea of ensuring permissive-
ness deterministically, and instead provide a randomized solution, which is always correct and avoids spare
aborts with some positive probability. In contrast, we do not limit the model to include single-version objects
only, and our correctness criterion is a generalization of opacity [9], we focus on deterministic guarantees.
Although permissiveness does not try to regulate the decisions of the contention manager, we show that no
online TM may achieve permissiveness. Intuitively, this results from the freedom of choice for returning
the object value during the read operation — returning the wrong value might cause an abort in subsequent
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operations, which is avoided by a clairvoyant (offline) algorithm.

3 Preliminaries and System Model

Transactions. Our definition of Transactional Memory (TM) is based on [9]. A TM allows threads to run
transactions. Transactions perform operations on shared objects. The objects considered in this paper are
read/write registers. The status of a transaction may be either live, aborted, or committed. A transaction can
perform operations as long as it is live. Each transaction has a unique identifier (id). Retrying an aborted
transaction is interpreted as creating a new transaction with a new id. The maximal possible number of live
transactions is L.

The API of the TM includes the following operations. The operation startTransaction() returns the id
of a newly created transacton. The status of a newly created transaction is always live. When Ti is live,
it can invoke the following operations: read(Ti,o), which returns the value of register o, and write(Ti,o,v),
which writes value v to register o. When Ti wishes to terminate, it invokes operation tryCommit(Ti) or
tryAbort(Ti). If tryCommit(Ti) returns Ci, the status of Ti changes to committed, while tryAbort(Ti) always
returns Ai, indicating that Ti is aborted. The abort value Ai may also be returned as a response to read,
write or tryCommit invocations, in which case we say that the TM forcefully aborts transaction Ti. If the
TM forcefully aborts transaction Tj as a result of another transaction’s operation, then the returned value of
the subsequent operation of Tj will be Aj . The read-set and the write-set of Ti are denoted as read(Ti) and
write(Ti) respectively, and are not known in advance.

The calls to the TM are blocking — the invoking thread waits for a response before invoking more
operations. We assume that TM operations issued by different threads are executed sequentially. This
allows to us neglect issues related to overlapping operation executions, which are not the focus of this paper;
in practice, such sequential executions can be implemented using locks for blocking implementations, or
well-known non-blocking solutions, e.g., [6]. Note, however, that transactions may overlap.

The TM guarantees that each operation invocation eventually gets a response, even if all other threads are
sleeping. This limits the TM’s behavior upon operation invocation, so that it may either return an operation
response, or abort a transaction, but cannot wait for other transactions to invoke operations.

Transaction histories. A transaction history is the sequence of operations issued by transactions in a given
TM execution, ordered by the time at which they are issued. Two histories H1 and H2 are equivalent if they
contain the same transactions and each transaction Ti issues the same operations with the same responses
in both. A history H is complete if it does not contain live transactions. If history H is not complete, we
may build from it a complete history Complete(H) by adding an abort operation for every live transaction.
History H ′ is an extension of H for a given TM, if (1) H is a prefix of H ′ and (2) H ′ is a possible history
in the given TM. We define committed(H) to be the subsequence of H consisting of all the operations of all
the committed transactions in H .

The real-time order on transactions is as follows: if the first event of transaction Ti is issued after the last
response of transaction Tj in H , then Tj ≺H Ti. Transactions Ti and Tj are concurrent if neither Tj ≺H Ti,
nor Ti ≺H Tj . A history S is sequential if it has no concurrent transactions. A sequential history S is legal
if it respects the sequential specification of each object accessed in S. Transaction Ti is legal in S if the
largest subsequence S′ of S, such that, for every transaction Tk ∈ S′, either (1) k = i, or (2) Tk is committed
and Tk ≺S Ti, is a legal history.
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Correctness. Our correctness criterion generalizes the opacity condition of Guerraoui and Kapalka [9].
Let Γ(H) be a partial order on transactions. A TM satisfies Γ-opacity if for every history H generated by
the TM there exists a sequential history S, s.t.:

• S is equivalent to Complete(H).

• Every transaction Ti ∈ S is legal in S.

• If (Ti, Tj) ∈ Γ(H), then Ti ≺S Tj .

When Γ(H) includes all the ordered pairs of non-concurrent transactions in H , the above definition
boils down to opacity. The use of Γ makes it possible to require the order for some subset of transactions
according to any arbitrary rule; e.g., Riegel et al. [14] considered demanding real-time order only from
transactions belonging to the same thread. We define a more general criterion in order to broaden the scope
of our results. In the rest of this paper, we will assume that Γ(H) is a subset of the real-time order on
transactions, unless stated otherwise.

4 Limitations of Previous Measures

4.1 Commit-Abort Ratio

The commit-abort ratio (τ ) [7] is the ratio between the number of committed transactions and the overall
number of transactions in the history. Unfortunately, no online TM may guarantee commit-abort ratio
optimally. Recall that L is the number of live transactions. We show that every TM is Ω(L) competitive in
terms of its commit-abort ratio.

We use the style of [14] to depict transactional runs. Objects are represented as horizontal lines o1, o2,
etc. Transactions are drawn as polylines with circles corresponding to accesses to the objects. Filled circles
indicate writes, and empty circles indicate reads. Commit is indicated by the letter C, and abort by the letter
A. If the TM implements the access to the object as if it had appeared in past, the dashed arc indicates the
point in time at which the access to the object appears according to the TM serialization.

Lemma 1. Every TM is Ω(L) competitive in terms of its commit-abort ratio.

o1

T1
o2

T2

T3

C A

o3

... T4TL

A A A...

(a) Run r1: T2 commits, all other transactions
abort: τ = 1

L

o1

T1
o2

T2

T3

CA

o3

... T4TL

A A A...

(b) Run r2: T1 commits, all other transactions
abort: τ = 1

L

Figure 1: No online TM may know whether to abort T1 or T2 in order to obtain an optimal commit-abort ratio.

Proof. Consider the scenarios depicted in Figure 1. The runs are indistinguishable until the time when TL

tries to commit. Transactions T1 and T2 cannot both commit because both write o1 after reading its previous
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value. In run r1 (Figure 1(a)), the TM commits T2, then T1 aborts and then the transactions T3 · · ·TL try to
write to o3 and must be aborted because they conflict with T2, resulting in τ = 1

L . In run r2 (Figure 1(b)),
the TM aborts T2, T1 commits and then the transactions T3 · · ·TL try to write to o2 and therefore must be
aborted, resulting again in τ = 1

L . The optimal offline TM in these cases would abort only one transaction,
yielding τ = L−1

L . The online TM, however, cannot distinguish between r1 and r2 at the moment it should
decide whether to abort T1 or T2, hence the competitive ratio is Ω(L).

4.2 Permissiveness

Since requiring an optimal commit-abort ratio is too restrictive, we consider a weaker notion that limits
aborts only in runs where none are necessary: a TM provides permissiveness [8] if it accepts every possible
set of input patterns satisfying Γ-opacity. Gramoli et al. showed that existing TM implementations do not
accept all inputs they could have, and hence are not permissive. We show that this is an inherent limitation.

o1

T1
o2

T2C

At0

T3

o3 C

(a) Run r1: T2 reads the value v1

o1

T1
o2

T2C

At0

T3

o3 C

T4

(b) Run r2: T2 reads the value v0

Figure 2: At time t0, no online TM knows which value should be returned to T2 when reading o1 in order to allow
for commit in the future.

The formal impossibility illustrated in Figure 2 is captured in the following lemma:

Lemma 2. For any Γ, there is no online TM implementation providing optimal Γ-opacity-permissiveness.

Proof. Consider the scenario depicted in Figure 2. All the objects have initial values, v0. All the transactions
start at the same time, t0, and are therefore not ordered according to the real-time order, thus the third
condition of our correctness criterion holds for any Γ.

T1 writes values v1 to o2 and o1. At time t0, there is a read operation of T2 and the TM should decide
what value should be returned. In general, the TM has four possibilities: (1) return v1, (2) return v0, (3)
return some value v′ different from v0 and v1, and (4) abort T2. If the TM chooses to abort, then opacity-
permissiveness is violated and we are done. (3) is not possible, for returning such a value would produce a
history, for which any equivalent sequential history S would violate the sequential specification of o1 and
thus would not be legal.

Consider case (1): the TM returns v1 for T2 at time t0. This serializes T2 after T1. Consider run r1

depicted in Figure 2(a), where T3 tries to write to o3 and commit. In this run, the TM has to forcefully abort
T3, because not doing so would produce a historyH with no equivalent sequential history: T1 ≺ T2 ≺ T3 ≺
T1. However, if T2 would read v0 in run r1, then T2, T1 and T3 would be legal, and no transaction would
have to be forcefully aborted. So Γ-opacity-permissiveness is violated.

In case (2), the TM returns v0 for transaction T2 at time t0, serializing T2 before T1. Consider run r2

depicted in Figure 2(b). Transaction T4 writes to o2, and afterwards reads and writes to o3. Transaction T4

has to be serialized after T1, because T1 has read v0 from o2. When T2 will try to write to o3 and commit,
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the TM will have to forcefully abort some transaction, because not doing so would produce a history with
no equivalent sequential history: T2 ≺ T1 ≺ T4 ≺ T2. But if T2 would read v1 in run r2, then no transaction
would have to be forcefully aborted. So again, Γ-opacity-permissiveness is violated.

Runs r1 and r2 are indistinguishable to the TM at time t0. Therefore, no online TM can accept both of
the patterns, while an offline TM can accept both of them.

5 Online permissiveness: limitations and costs

5.1 Strict Online Opacity-Permissiveness

We next define a property that prohibits unnecessary aborts, and yet is possible to implement.

Definition 1. A TM satisfies strict online Γ-opacity-permissiveness if the TM forcefully aborts transaction
Ti only when not aborting any live transaction violates Γ-opacity for the given Γ.

Note that this property does not define which transaction should be aborted if abort happens, and does
not prohibit returning a value that will cause aborts in the future. For example, in the scenarios depicted in
Figure 2, at time t0, a TM satisfying this property may return either value, even though this might cause an
abort in the future.

An algorithm satisfying strict online opacity-permissiveness should be able to detect whether returning
a given value creates a history satisfying Γ-opacity. We show that this cannot be detected efficiently. To this
end, we recall a well-known result about checking the serializability of the given history, which was proven
by Papadimitriou [13].

Given history H , the augmented history H̄ is the history, which is identical to H , except two additional
transactions: Tinit that initializes all variables without reading any, and Tread that is the last transaction of
H̄ , reading all variables without changing them. The set of live transactions in H is defined in the following
way: (1) Tread is live in H , (2) If for some live transaction Tj , Tj reads a variable from Ti, then Ti is also
live in H . Note that aborted transaction cannot be live according to this definition (no transaction may read
the values written by the aborted one). Transaction is dead if it is not live. Two histories H and H ′ are view
equivalent if and only if (1) they have the same sets of live transactions and (2) Ti reads from Tj in H if and
only if Ti reads from Tj in H ′. History H is view serializable, if for any prefix H ′ of H , complete(H ′) is
view equivalent to some serial history S.

Theorem 1 (Papadimitriou). Testing whether the history H is view-serializable is NP-complete in the size
of the history, even if H has no dead transactions.

Lemma 3. For any Γ, detecting whether the history H satisfies Γ-opacity is NP-complete in the size of the
history.

Proof. We will show a reduction from the NP-complete problem of detecting view-seializability of history
H without dead transactions to the problem of detecting whether some history H ′ satisfies Γ-opacity. Con-
sider history H with no dead transactions. In the absence of aborted transactions, the definition of view
serializability differs from the definition of opacity only in the fact that opacity refers to the partial order Γ,
which is a subset of a real-time order. We construct history H ′, which is identical to history H except the
following addition: for each Ti in H , we add start(Ti) at the beginning of H ′. We will show that H is view
serializable if and only if H ′ satisfies Γ-opacity.

H is view serializable if and only if there exists a legal sequential history S, which is view equivalent to
Complete(H). All the transactions in H ′ are concurrent (start(Ti) follows before any other event for every
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Ti), therefore the third condition of Γ-opacity vacuously holds for any Γ. In the absence of aborts in H ′,
H ′ satisfies Γ-opacity if and only if there exists a legal sequential history S′, so that every transaction in H ′

issues the same invocation events and receives the same response events as in S′. Therefore, H ′ satisfies
Γ-opacity if and only if H ′ is view-serializable.

5.2 Online Opacity-Permissiveness

o1
T1

T2

o2

o3

T4

T3

C

C C

C

t0

Figure 3: The order of transactions T1 and T2 is changed after their commit time.

Intuitively, the problem with strict online opacity-permissiveness lies in the fact that the order of com-
mitted transactions may be undefined and may change in the future. Consider, for example, the scenario
depicted in Figure 3. Transactions T1 and T2 are not ordered according to real-time order, therefore Γ has no
effect. At time t0, the serialization order is T1 → T2, as o1 holds the value written by T2. When T3 commits,
the serialization order of T1 and T2 becomes undefined, since T3 overwrites o1 before any transactios reads
the value written by T2. And when T4 commits, the serialization order becomes T2 → T4 → T1 → T3. If
the partial serialization order induced by the run cannot change after being defined, the problem becomes
much easier. We capture this intuition with the following definition:

Definition 2. A TM maintains λ-persistent ordering if it builds incrementally a partial transactional order
λ according to the following rules: (1) initially λ is empty (2) at any point of time, λ must order exactly all
the pairs of committed transactions Ti, Tj , s.t. write(Ti) ∩ write(Tj) 6= ∅, (3) each time λ is updated, its
new value must preserve the order previously defined by the old one.

In other words, if Ti and Tj are committed transactions in H that have written to the same object in a
given TM, then they are ordered by λ and their order will persist in every extension of the run.

We now define a more relaxed property, online Γ-opacity-permissiveness, which may be satisfied at a
reasonable implementation cost.

Definition 3. A TM satisfies online Γ-opacity-permissiveness for a given Γ if the TM maintains λ-persistent
ordering for some λ consistent with Γ, and the TM forcefully aborts transaction Ti only when not aborting
any live transaction violates (Γ ∪ λ)-opacity.

Note that Definition 3 implies that each committing transactions should define its serialization order with
regard to all other committed transactions that have written to the same objects. To the best of our knowing,
all existing TMs do in fact define the order on two transactions that write to the object by the time the
latter commits. We note that this requirement might be limiting for TMs that wish to exploit the benefits of
commutative or write-only operations (see [12]), and do not necessarily define the serialization point of the
committed transactions. However, this limitation is essential for an effective check of the opacity criterion.
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6 The AbortsAvoider Algorithm

We now present AbortsAvoider, a TM algorithm implementing online opacity-permissiveness. The basic
idea behind AbortsAvoider is to maintain a precedence graph of transactions, and keep it acyclic, as ex-
plained in Section 6.1. The key challenge AbortsAvoider faces is that completed transactions cannot always
be removed from the graph, whereas keeping all transactions forever is clearly impractical. We call trans-
actions that are not live but were not removed from the graph zombies 1. We address this challenge in
Section 6.2, presenting a garbage collection mechanism for removing zombie transactions from the graph.
In Section 6.3 we present another optimization, which shortens paths in the graph to reduce the number
of zombie transactions traversed during the acyclity check. Our complexity analysis appears in the same
section.

6.1 Basic Concept

Information bookkeeping. Every object is accessed via an object handle which points to the version list
of the object, holding the values written to the object during the run. The object handle points to the last
installed version, o.latest as in JVSTM [3]. Read returns some version from the list, and write creates a
new version which is inserted to the list upon commit (not necessarily at the end). The object version o.vn

includes the data, o.vn.data, the writer transaction, o.vn.writer, and a set of readers, o.vn.readers. Each
transaction has a status, a readList and a writeList. An entry in readList points to the version that has been
read by the transaction. A writeList entry points to the object that should be updated after commit, the
updated data, and the version after which the new version should be added. Transactions may point one to
each other, forming a directed graph called CGA.

Characterization graph. A characterization graph CG is a directed labelled graph that reflects the
dependencies between the transactions as they are created during the the run. The vertexes of CG are
transactions, the edges of CG are as follows:

o
object handle

o.vn

writer

readers

o.vn-1

writer

readers

Figure 4: Object versions and the characterization graph, CG.

If (Tj , Ti) ∈ Γ, then CG contains (Tj , Ti) labelled LΓ (Γ order). If Ti reads o.vn and Tj writes o.vn,
then CG contains (Tj , Ti) labelled LRaW (Read after Write). If transaction Ti writes o.vn and Tj writes
o.vn−1, then CG contains (Tj , Ti) (Write after Write) labelled LWaW . If transaction Ti writes o.vn and Tj

reads o.vn−1, then CG contains (Tj , Ti) labelled LWaR (Write after Read).
We say that a read operation of Ti readi(o) in H is local if it is preceded in H|Ti by the write opera-

tion writei(o,v). A write operation writei(o,v) is local if it is followed in H|Ti by another write operation
writei(o,v’). The non-local history ofH is the longest subsequence ofH not containing local operations [9].

1A zombie is a reanimated human corpse. Stories of zombies originated in the Afro-Caribbean spiritual belief system of Vodou,
which told of the people being controlled as laborers by a powerful sorcerer.
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Note that the characterization graph does not refer to the local operations. Below we present lemmas that
link the acyclity of CG to Γ-opacity and online permissiveness.

Lemma 4. If the CG of a run is acyclic, then the non-local history H of the run satisfies Γ-opacity.

Proof. Let H be a history over transactions {T1 . . . Tn}. Let HC be a history equal to H with the following
additions: for every live transaction Ti ∈ H , we add Ai to HC . Clearly, HC = Complete(H).

Since CG is acyclic, it can be topologically sorted. Let Ti1, . . . , Tin be a topological sort of CG, and let
S be the sequential history Ti1, . . . , Tin.

Clearly, S is equivalent to HC because both of the histories contain the same transactions and each
transaction issues the same operations and receives the same responses in both of them.

We prove now that every Ti ∈ S is legal. Assume by contradiction that there are non-legal transactions
in S. Let Ti be the first such transaction. If Ti is non-legal, Ti reads a value of object o that is not the latest
value written to o in S by a committed transaction. S contains only non-local operations, and therefore Ti

reads the version o.vn written by another transaction Tj . Therefore, there is an edge from Tj to Ti in the
CG. It follows that Tj is committed in S and ordered before Ti according to the topological sort. If the
value of o.vn is not the latest value written in S before Ti, then there exists another committed transaction
T ′j that writes to o and is ordered between Tj and Ti in S. If T ′j writes to a version earlier than o.vn, then
there is a path from T ′j to Tj in the CG, and therefore T ′j is ordered before Tj in S. If T ′j writes to a version
later than o.vn, then there is a path from Ti to T ′j in the CG, and therefore T ′j is ordered after Ti in S. In any
case, T ′j cannot be ordered between Tj and Ti in S, contradiction.

Finally, for each pair (Ti, Tj) ∈ Γ, the CG contains an edge from Ti to Tj . Therefore, according to the
topological sort, S preserves the partial order Γ.

Summing up, Complete(H) is equivalent to a legal sequential history S, and S preserves partial order Γ.
Therefore H is Γ-opaque.

Lemma 5. Consider a TM that forcefully aborts a transaction only if not aborting any transaction would
create a cycle in the characterization graph of the run. Then this TM satisfies online opacity-permissiveness.

Proof. We need to show a partial transactional order λ, s.t. λ-persistent ordering is maintained in the TM
and there is a cycle in the CG if and only if (Γ ∪ λ)-opacity is violated. We define λ in the following
way: if two committed transactions Ti and Tj have written to the same object to the versions o.vn and o.vm

respectively, where n < m, then Ti < Tj according to λ.
We show first that λ-persistent ordering is maintained in the TM. Clearly, the initial value of λ is an

empty set. Transactions Ti and Tj are ordered by λ if and only if they are both committed and write(Ti) ∩
write(Tj) 6= ∅. Finally, the updates of λ preserve the order induced by the previous values of λ.

We want to show now that if there is an edge (Ti, Tj) in the CG, then any legal sequential history S
preserving Γ ∪ λ and equivalent to Complete(H) should order Ti before Tj . Consider two transactions Ti

and Tj s.t. there is an edge (Ti, Tj) in the CG. If the edge is labelled LΓ, then (Ti, Tj) ∈ Γ, therefore S
should order Ti before Tj . If the edge is labelled LRaW , then Tj reads a value written by Ti and S should
order Ti before Tj . If the edge is labelled LWaW , then Ti and Tj are committed transactions writing to the
same object, Ti < Tj according to λ(H), hence S should order Ti before Tj . If the edge is labelled LWaR,
then Ti reads o.vn while Tj writes o.vn+1. From one side, Tj should be ordered after the o.vn.writer in S
(LWaW edge, see above), from the other side Tj cannot be ordered between o.vn.writer and Ti, because Ti

must read the value written by o.vn.writer in S. Therefore, Tj should be ordered after Ti in S.
Summing up, an edge (Ti, Tj) in the characterization graph induces the order of Ti before Tj in any

legal sequential history S preserving Γ∪ λ(H) and equivalent to Complete(H). Therefore, if CG contains a
cycle, no such sequential history may exist and the TM cannot satisfy Γ ∪ λ-opacity.
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A characterization graph was previously used by Guerraoui and Kapalka [9]. However, the graph they
built was a function of history H and some total order chosen on the set of transactions in H . In our case,
the characterization graph depends on an algorithm’s run, including its internal decisions, i.e., which object
version is accessed in each operation.

Simplified Γ-AbortsAvoider Algorithm. Γ-AbortsAvoider is depicted in Algorithm 1 in Appendix A.
A read operation looks for the latest possible object version to read without creating a cycle in CGA. Write
operations postpone the actual work till the commit. The commit operation is more complicated. Intuitively,

o1

T1 T2
o2

o3 T3

C

C

C

Figure 5: Checking the written objects in a greedy way during the commit may lead to a spare abort.

for each object written during transaction, the algorithm should find a “place” in the object’s version list
to insert the new version without creating a cycle. Unfortunately, checking the objects one after another in
a greedy way can lead to spare aborts, as we illustrate in Figure 5. Committing T3 first seeks for a place
to install the new version of o1 and decides to install it after the last one (serializing T3 after T2). When
T3 considers o2, it discovers that the new version cannot be installed after the last one, because T3 should
precede T1, but it also cannot be installed before the last one, because that would make T3 precede T2, so T3

is aborted. However, installing the new version of o1 before the last one would have allowed T3 to commit,
hence aborting T3 violates Γ-no-spare aborts.

Our commit operation thus works in iterations. We call the object version after which the new version
is to be installed a victim version. Initially, the victim version of every written object is the last one. In
each iteration, the algorithm traverses the written objects and for each one searches the latest possible victim
to install the new version without creating a cycle in CGA. When victim o.vn is found, an edge from Ti

to the writer of o.vn+1 is added to CGA. We add only the outgoing edges at this point, because changing
the victim from o.vn to o.vn−1 may remove some incoming edges to Ti but cannot remove outgoing ones.
After each iteration, there are possibly new outgoing edges added to CGA, and a new iteration should be
run. Once there is an iteration when no new edges are added, the algorithm commits — it installs the new
versions after their victims and adds all the edges to the CGA. Note that victim search is relevant only for
so-called blind writes; a write that is preceded by a read inserts the new version right after the read version.

The following theorem immediately follows from the protocol.

Theorem 2. Γ-AbortsAvoider forcefully aborts a transaction if and only if not aborting any transaction
would create a cycle in CGA.

Proof. The function validateGraph(newEdges) (line 41) returns false if and only if the new edges added to
CGA create a cycle in CGA. The read operation (line 7) of object o returns Ai if and only if reading any
version of o does not pass the check of validateGraph, i.e., reading any version of o creates a cycle in CGA.
Write operation (line 17) cannot forcefully abort any transaction because all the work is postponed till the
commit.
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Commit operation (line 46) tries to write the new versions for each object written during the transaction.
If the object is written in the non-blind way, then the new version must be installed directly after the version
which has been read. This is checked by validateWrite (line 85) function which returns false if and only if
adding the appropriate edges to the characterization graph creates a cycle in CGA.

It remains to show that commit function does not succeed to execute the blind writes if and only if that
would create a cycle in CGA. The first direction is a trivial one: CGA is checked for cycles every time we
try to insert the new version, that is why if the algorithm succeeds to commit, CGA with the addition of the
new edges is still acyclic. We will show now that if there exists a way to execute the blind writes without
creating a cycle in CGA, the algorithm will find it.

First of all, we will analyze the variable newEdges, which keeps a set of the edges which will be added
to CGA as a result of successful commit. We say that the edge (Ti, Tj), added to newEdges set during the
commit function is compulsory, if CGA must have a path from Ti to Tj if the commit succeeds (thus, the
edge represents a real, compulsory dependency).

Lemma 6. In commit function of AbortsAvoider algorithm, newEdges set contains compulsory edges only.

Proof. At the first stage of the commit, AbortsAvoider writes the non-blind writes. Non-blind write to
object o has only one choice for inserting the new object version (it should go directly after the object
version which has been read by Ti). Therefore, the edges added to newEdges set as a result of the non-blind
write are compulsory.

Consider the second stage of the commit, at which AbortsAvoider executes the blind writes. The only
edges added to newEdges at this stage are the outgoing edges from Ti. We will show by induction, that all
the edges in newEdges are compulsory. Induction basis. At the beginning of the second stage of commit,
newEdges set contains only the edges added as a result of the non-blind writes, which are compulsory, as
shown before. Induction step. Let’s assume, that all the edges added to newEdges by the algorithm so far
are compulsory. Consider the new edge (Ti, o.vk+1.writer) added to newEdges by the algorithm in line 67.
This edge is added because the algorithm has chosen o.vk to be a victim version for writing to object o. This
can happen only if all the versions o.vk′ for k′ > k did not suit to be victim versions for a given newEdges
set. But according to the induction assumption, newEdges set contains compulsory edges only, that is why
all the versions o.vk′ for k′ > k cannot be victim versions for the write operation. According the algorithm,
choosing any object version o.vk′ for k′ ≤ k (i.e., object version which is “older” than o.vk) would create a
path from Ti to o.vk+1.writer in CGA, finishing the proof.

For each object which should be written in a blind way the algorithm seeks a victim version starting from
the last one. The check of victim version o.vk is executed in the following way: the edges from newEdges
set, and the edges which should be put as a result of adding the new version after o.vk, are added to CGA,
afterwards CGA is checked for acyclity. As stated in Lemma 6, newEdges set contains compulsory edges
only, therefore if the check fails for the version o.vk, we know that neither o.vk, nor any other version later
than o.vk can be the victim version of o. The algorithm traverses the objects in iterations, till it finds a
combination of victim versions which does not create a cycle in CGA (and thus commits), or it arrives to
the earliest version of some object o and finds out that none of the versions of object o can be the victim
version (and thus aborts).

Corollary 1. Γ-AbortsAvoider satisfies Γ-opacity and online Γ-opacity-permissiveness.
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6.2 Reducing Edges and Garbage Collection

The simplified protocol described above processes a large amount of information in each check. Clearly,
any practical TM should take care of garbage collecting unused metadata. In our case, metadata consists
of the objects’ previous versions together with finished transactions. In this section, we describe how those
may be garbage collected. Moreover, CGA includes many redundant edges, we now explain how these can
be saved.

Read operations. Consider transaction Ti reading object o. The following lemma stipulates that some
of the edges added to descriptors graph in the simplified protocol are redundant, and in fact, the only edges
that need to be added by the protocol during read operations are incoming ones.

Lemma 7. When Ti reads o.vn, it suffices to add one edge from o.vn.writer to Ti in CGA.

Proof. We say that adding an edge (v1, v2) is unnecessary, if CGA already contains a path from v1 to v2,
thus adding this edge does not influence on the cycle detection. We will show that adding the outgoing edge
from Ti to o.vn.writer during a read is unnecessary. Therefore the only edge that need to be added by the
protocol is the edge from o.vn−1.writer to Ti.

The protocol adds outgoing edge from Ti to o.vn.writer if Ti reads version o.vn−1. According to the
algorithm, Ti tries first to read the latest version o.vn+k, if this read creates a cycle, it tries to read o.vn+k−1,
o.vn+k−2 and so on till it arrives to o.vn−1. Note, that before starting the read, the graphCGA was acyclic. If
Ti does not succeed to read o.vn+k, it means that adding an edge from o.vn+k.writer to Ti would create a cy-
cle, hence there is a path from Ti to o.vn+k.writer before the start of the read. When Ti tries to read o.vn+k−1

and does not succeed, it means that adding the edges {(o.vn+k−1.writer, Ti), (Ti, o.vn+k.writer)} creates
a cycle in CGA. As we have concluded, before the read, CGA contained a path from Ti to o.vn+k.writer
and was acyclic, therefore adding the single edge (o.vn+k−1.writer, Ti) creates a cycle in CGA, i.e. there
was a path from Ti to o.vn+k−1.writer before the read. Continuing in the same way, we conclude that be-
fore the read there was a path from Ti to o.vn.writer. Therefore, adding an edge from Ti to o.vn.writer is
unnecessary.

We thus modify the protocol so as not to add unnecessary edges (removing line 36 from the pseudo-code
in Appendix A). Using the optimization above, no incoming edge is ever added to a zombie transaction as a
result of a read operation.

Write operations. We say that a write operation to o is “blind” in Ti if it is not preceded by read of o in
Ti. Clearly, if the new object version o.vn is not a blind write (i.e. transaction Ti has read the version o.vn−1

and then installed o.vn), then no other transaction Tj will be able to install a new version between o.vn−1

and o.vn, for that would cause a cycle between Ti and Tj . Blind writes, however, are more problematic.
Consider, for example, the scenario depicted in Figure 6. At time t0, T1 has no incoming edges, but we
are still not allowed to garbage collect it as we now explain. There is a transaction T2 that read object o1

with a live preceding transaction T3. At the time of T3’s commit, it discovers that it cannot install the last
version of o1, and tries to install the earlier version. Had we removed T1 from CGA, this would have caused
a consistency violation, because we would miss the cycle between T1 and T3.

The example above demonstrates the importance of knowing that from some point onward, Ti may have
no new incoming edges. The lemma below shows that some edge additions can be saved:

Lemma 8. If Ti is a zombie transaction, and for each o.vn written blindly by Ti there is no reader with a
live preceding transaction, then no incoming edges need to be added to Ti in CGA.
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Figure 6: The blind write of transaction T1 does not allow to garbage collect it at time t0.

Proof. Consider a zombie transaction Ti satisfying conditions stated in the lemma. According to Lemma 7
no transaction may add incoming edges to Ti as a result of read operation. It remains to check the writes.
According to the protocol, the incoming edge to Ti may be added only if some transaction Tj installs the
version previous to the version o.vn written by Ti. First of all we should notice that o.vn should be written in
a blind way in order to make this scenario happen. Secondly, if Tj tries to insert a new version before o.vn,
it means that Tj failed to insert its version after o.vn, i.e. adding the edges from Ti and from the readers
of o.vn to Tj created a cycle. But we know that Tj can’t precede none of the readers of o.vn according to
the condition of the lemma, that is why there was a path from Tj to Ti before the write operation of Tj .
Therefore there is no need to add the edge from Tj to Ti when installing the version.

Garbage collection conditions. We say that a transaction is stabilized if no incoming edges may be
added to it in the future. At the moment when Ti has no incoming edges and it is stabilized, we know that Ti

will not participate in any cycle, and thus may be garbage collected. We thus remove from the graph every
transaction Ti s.t. (1) Ti is a zombie, (2) Ti has no incoming edges, and (3) for every object version o.vn

written by Ti in a blind way there is no transaction Tj that read o.vn and has a live preceding transaction. In
runs with no blind writes, the third condition always holds and the transactional descriptor may be garbage
collected at the moment it has no incoming edges.

When clearing the object versions, we should take into account, that the object version is needed as long
as there is a possibility that some transaction will need to read its value, and as long as its readers or writer
may participate in a cycle. Ti may need to read o.vn either if it is the latest version, or if Ti cannot read
o.vn+1 without creating a cycle, i.e., if there is a path from Ti to o.vn+1.writer. Therefore, if o.vn+1.writer
does not have incoming edges and will not have any incoming edge in the future, no transaction Ti will
ever read o.vn. Thus, object version o.vn may be garbage collected if (1) o.vn is not the latest one, (2)
o.vn+1.writer may be garbage collected, and (3) o.vn.readers and o.vn.writer may be garbage collected.

6.3 Path Shortening and Runtime Analysis

To detect cycles when committing Ti, AbortsAvoider runs DFS starting from Ti, traversing a set of nodes
we refer to as ingressi. We now present an optimization that reduces the number of nodes in ingressi.

Consider stabilized zombie Tj . The idea is to connect the ingress nodes to the egress nodes of Tj

directly, thus preventing from DFS traversing Tj . This becomes possible because Tj is stabilized and thus
may not have new ingress nodes, and the egress nodes do not miss the precedence info when they loose their
edges from Tj . Once a zombie transaction Tj satisfies the conditions of Lemma 8 that it can no longer have
additional incoming edges, (e.g., any transaction with no blind writes), we remove all of its outgoing edges
by connecting its ingress nodes directly to its egress nodes as described above, and indicate that Tj is a sink,
i.e., cannot have outgoing edges in the future. Once a transaction is marked as a sink, any outgoing edge that
should be added from it is instead added from its ingress nodes. Note that our path shortening only bypasses
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stabilized nodes. Had we bypassed also non-stabilized ones, we would have had to later deal with adding
incoming nodes to their egress nodes, which could require a quadratic number of operations in the number
of zombies. Hence, we chose not to do that.

Runtime complexity of the operations. Running DFS on ingressi takesO(V 2), where V is the number
of transactions preceding Ti, whose nodes have not been garbage collected. In the general case, V =
#zombies + #live. But if all the transactions preceding Dsci had no blind writes, V = #live.

o1
T1

o2 C

T2

C

T3

C

Tk

Figure 7: All object versions must be kept, as their writers have a live preceding transaction T2.

The read operation seeks the proper version to read in the version list. Unfortunately, the number of
versions that need to be kept is limited only by the number of zombie transactions. Consider the scenario
depicted in Figure 7. Here, the only version of o2 that may be read by T1 is the first, all other versions are
written by transactions that T1 precedes. In order to find a latest suitable version, the read operation may
use a binary search – O(log(#zombies)) versions should be checked. Adding the edges takes O(#live). So
altogether, the read complexity isO(log(#zombies)·max{#live2, #zombies2}), andO(log(#zombies)·#live2)
when there are no blind writes.

The write operation postpones all the work till the commit. The number of iterations in the commit
phase is O(#writes · #zombies), and in each iteration O(#writes) validate operations should be run. So the
overall write cost is O(#writes · #zombies · #live2), and O(#live2) when there are no blind writes.

Finally, we would like to emphasize that although in the worst-case, these costs may seem high, in the
common case, where transactions do not perform blind writes, nodes are garbage collected immediately
upon commit. Moreover, the only nodes in ingressi where cycles are checked are transactions that conflict
with Ti. Typically, in practice, the number of such conflicts is low, suggesting that our algorithm’s common-
case complexity is expected to be good. On the other hand, if the number of conflicts is high, then most TMs
existing today would abort one of the transactions in each of these cases, which is not necessarily a better
alternative.

7 Conclusions

The paper took a step towards providing a theory for understanding TM aborts, by investigating what kinds
of spare aborts can or cannot be eliminated, and what kinds can or cannot be avoided efficiently. We have
shown that some unnecessary aborts cannot be avoided, and that there is an inherent tradeoff between the
overhead of a TM and the extent to which it reduces the number of spare aborts: while strict online opacity-
permissiveness is NP-hard, we presented a polynomial time algorithm AbortsAvoider, satisfying the weaker
online opacity-permissiveness property. Understanding the properties of spare aborts is still far from being
complete. For example, relaxations of the online opacity-permissiveness property or restrictions of the
workload may be amenable to more efficient solutions. Moreover, the implications of the inherent “spare
aborts versus time complexity” tradeoff we have shown are yet to be studied.
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A Pseudo-code

Algorithm 1 Simplified Γ-AbortsAvoider algorithm for transaction Ti.

1: procedure START()
2: status← live
3: readList.reset()
4: writeList.reset()
5: Tprev← the latest transaction preceding Ti by partial order Γ
6: addEdges({(Tprev, Ti)})

7: procedure READ(o)
8: if o ∈ Ti.writeList then return Ti.writeList[o].data
9: if o ∈ Ti.readList then return Ti.readList[o].data

10: (curVersion,newEdges)← version2Read(o)
11: if curVersion = NULL then return abort event Ai

12: addEdges(newEdges)
13: readNode← emptyReadNode()
14: readNode.version← curVersion
15: Ti.readList.insert(readNode)
16: return curVersion.data

17: procedure WRITE(o, v)
18: if o ∈ Ti.writeList then
19: Ti.writeList[o].data← v
20: return
21: writeNode← emptyWriteNode()
22: writeNode.object← o
23: if o ∈ Ti.readList then
24: writeNode.ver2Insert← Ti.readList[o].version
25: else
26: writeNode.ver2Insert← NULL
27: writeNode.data← v
28: Ti.writeList.insert(writeNode)

29: procedure VERSION2READ(o) : (version, edges)
30: curVersion← o.latest
31: while curVersion 6= NULL do
32: // add the edges, check the graph
33: addedEdges← ∅
34: addedEdges← addedEdges ∪ {(curVersion.writer, Dsci)}
35: if curVersion.next 6= NULL then
36: addedEdges← addedEdges ∪ {(Dsci, curVersion.next.writer)}
37: if validateGraph(addedEdges) = TRUE then
38: return (curVersion, addedEdges)
39: curVersion← curVersion.prev
40: return (NULL,NULL)

41: procedure VALIDATEGRAPH(newEdges) : boolean
42: // Look for a cycle in the graph with added newEdges
43: // Run DFS on the ingress of the Ti,
44: // while moving backward on the precedence edges.
45: // Return false if cycle found, true otherwise

46: procedure COMMIT
47: newEdges← ∅
48: blindWrites← ∅
49: //install the writes which are not blind
50: for each node o in Ti.writeList do
51: if o.ver2Insert 6= NULL then
52: (valid,addedEdges)← validateWrite(newEdges, o)
53: if valid = FALSE then return abort event Ai

54: newEdges← newEdges ∪ addedEdges
55: else
56: blindWrites← blindWrites ∪ o
57: //install the blind writes
58: repeat
59: newOutgoing← FALSE
60: allNewEdges← newEdges
61: for each node o in blindWrites do
62: (valid,addedEdges)← version2Write(newEdges, o)
63: if valid = FALSE then return abort event Ai

64: for each edge e in addedEdges do
65: allNewEdges← allNewEdges ∪ e
66: if e is outgoing from Ti ∧ e /∈ newEdges then
67: newEdges← e
68: newOutgoing← TRUE
69: until newOutgoing = FALSE
70: //commit point
71: for each node o in writList do
72: installVersion(o)
73: addEdges(allNewEdges)

74: procedure VERSION2WRITE(newEdges,o,v) : (version,edges)
75: if v = NULL then
76: curVersion← o.latest
77: else
78: curVersion← v
79: while curVersion 6= NULL do
80: //add the edges, check the graph
81: (valid, addedEdges)← validateWrite(newEdges, curVersion)
82: if valid = TRUE then return (curVersion, addedEdges)
83: curVersion← curVersion.prev
84: return (NULL,NULL)

85: procedure VALIDATEWRITE(newEdges, version) : (boolean, edges)
86: // add the edges, check the graph
87: addedEdges← ∅
88: addedEdges← addedEdges ∪ {(version.writer, Ti)}
89: for each reader ∈ version.readers do
90: addedEdges← addedEdges ∪ {(reader, Ti)}
91: if version.next 6= NULL then
92: addedEdges← addedEdges ∪ {(Ti, version.next.writer)}
93: if validateGraph(newEdges ∪ addedEdges) = TRUE then
94: return (TRUE, addedEdges)
95: return (FALSE, NULL)
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