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Abstract—We consider the problem of overcoming (distributed) denial-of-service (DoS) attacks by realistic adversaries that have

knowledge of their attack’s successfulness, for example, by observing service performance degradation or by eavesdropping on

messages or parts thereof. A solution for this problem in a high-speed network environment necessitates lightweight mechanisms for

differentiating between valid traffic and the attacker’s packets. The main challenge in presenting such a solution is to exploit existing

packet-filtering mechanisms in a way that allows fast processing of packets but is complex enough so that the attacker cannot

efficiently craft packets that pass the filters. We show a protocol that mitigates DoS attacks by adversaries that can eavesdrop and

(with some delay) adapt their attacks accordingly. The protocol uses only available efficient packet-filtering mechanisms based mainly

on addresses and port numbers. Our protocol avoids the use of fixed ports and instead performs “pseudorandom port hopping.” We

model the underlying packet-filtering services and define measures for the capabilities of the adversary and for the success rate of the

protocol. Using these, we provide a novel rigorous analysis of the impact of DoS on an end-to-end protocol and show that our protocol

provides effective DoS prevention for realistic attack and deployment scenarios.

Index Terms—Protocols, reliability, availability, serviceability.

Ç

1 INTRODUCTION

DENIAL-OF-SERVICE (DoS) attacks have proliferated in
recent years, causing severe service disruptions [6].

The most devastating attacks stem from distributed DoS
(DDoS), where an attacker utilizes multiple machines
(often thousands) to generate excessive traffic [16]. Due to
the acuteness of such attacks, various commercial solu-
tions and off-the-shelf products addressing this problem
have emerged. The main goal of all solutions is to provide
lightweight packet-filtering mechanisms that are adequate
for use in high-speed networks, where per-packet analysis
must be efficient.

The most common solution uses an existing firewall/

router (or protocol stack) to perform rate limiting of traffic

and to filter messages according to header fields like

address and port number. Such mechanisms are cheap

and readily available and are therefore very appealing.

Nevertheless, rate limiting indiscriminately discards mes-

sages, and it is easy to spoof (fake) headers that match the

filtering criteria: An attacker can often generate spoofed

packets containing correct source and destination Internet

Protocol (IP) addresses and arbitrarily chosen values for

almost all fields used for filtering.1 Therefore, the only hope

in using such efficient filtering mechanisms to overcome

DoS attacks lies in choosing values that are unknown to the
adversary. For example, the Transmission Control Protocol
(TCP)’s use of a random initial sequence number is a simple
version of this approach but is inadequate if the attacker has
some (even limited) eavesdropping capability.

More effective DoS solutions are provided by expensive
commercial devices that perform stateful filtering [19], [20],
[21]. These solutions specialize in protecting a handful of
commonly used stateful protocols, for example, TCP; they
are less effective for stateless traffic such as the User
Datagram Protocol (UDP) [21]. Such expensive solutions are
not suitable for all organizations.

Finally, the most effective way to filter out offending
traffic is using secure source authentication with message
authentication codes (MACs), as in IP security (IPsec) [3].
However, this requires computing a MAC for every packet,
which can induce significant overhead and, thus, this
approach may be even more vulnerable to DoS attacks.
Specifically, it is inadequate for use in high-speed networks
with high volumes of traffic.

Our goal is to address DoS attacks on end hosts, for
example, in corporate networks, assuming that the network
leading to the hosts is functional. (A complementary
solution protecting the end network can be deployed at
the ISP.) In this paper, we focus on fortifying the basic
building block of two-party communication. Specifically,
we develop a DoS-resistant datagram protocol, similar to
UDP or raw IP. Our protocol has promising properties,
especially in overcoming realistic attack scenarios where
attackers can discover some of the control information
included in protocol packets, as also described in [1]. We
assume that a realistic adversary can detect whether its
attack is successful or not and adjust its behavior accord-
ingly. However, this adjustment takes some time, as it
involves gathering information from the system, processing
it to decide on the proper adjustment and then notifying all
the attacking nodes (massive attacks employ many nodes).
We believe that our ideas, with some practical adjustments,
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1. An exception is the TTL field of IP packets, which is automatically
decremented by each router. This is used by some filtering mechanisms, for
example, BGP routers that receive only packets with maximal TTL value
(255) to ensure that the packets were sent by a neighboring router and the
Hop Counter Filtering proposal [9].
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have the potential to find their way into future DoS
protection systems. For example, these ideas can be
integrated into IPsec [3]. Our formal analysis proves the
effectiveness of our ideas and, thus, shows that their
realization into a working system is highly beneficial.

The key to exploiting lightweight mechanisms that can
filter high-speed traffic is using a dual-layer approach: On the
one hand, we exploit cheap, simple, and readily available
measures at the network layer; on the other hand, we
leverage these network mechanisms to provide sophisti-
cated defense at the application layer. The latter allows for
more complex algorithms as it has to deal with significantly
fewer packets than the network layer and may have closer
interaction with the application. The higher layer dynami-
cally changes the filtering criteria used by the underlying
layer, for example, by closing certain ports and opening
others for communication. It is important to note that the
use of dynamically changing ports instead of a single well-
known port does not increase the chance of a security
breach, as a single application is listening on all open ports.

The main contribution of our work is in presenting a
formal framework for understanding and analyzing the
effects of the proposed solutions to the DoS problem. The
main challenges in attempting to formalize DoS resistance
for the first time are coming up with appropriate models for
the attacker and the environment, modeling the function-
ality that can be provided by underlying mechanisms such
as firewalls, and defining meaningful metrics for evaluating
suggested solutions. We capture the functionality of a
simple network-level DoS mitigation solution by introdu-
cing the abstraction of a port-based rationing channel. It is
important to note that our use of ports just serves as an
example. In fact, any field that appears on all packets can be
used as the filtering criterion, and our analysis and
suggested protocol apply to all such fields. For simplicity,
we henceforth use the term “port” to refer to any filtering
criterion that can be dynamically changed by the applica-
tion level. Our primary metric of an end-to-end commu-
nication protocol’s resistance to DoS attacks is the success
rate, which is the worst case expected portion of valid
application messages that successfully reach their destina-
tion, under a defined adversary class.

Having defined our model and metrics, we proceed to
give a generic analysis of the communication success rate
over a port-based rationing channel in different attack
scenarios. We distinguish between directed attacks, where
the adversary knows the port used, and blind attacks, in
which the adversary does not know the port. Not surpris-
ingly, we show that directed attacks are extremely harmful:
With as little as 100 machines (or a sending capacity
100 times that of the protocol) the success rate is virtually
zero. On the other hand, the worst-case success rate that an
attacker can cause in blind attacks in realistic scenarios is
well over 90 percent even with 10,000 machines.

Our goal is therefore to “keep the attacker in the dark” so
that it will have to resort to blind attacks. Our basic idea is
to change the filtering criteria (that is, ports) in a manner
that cannot be predicted by the attacker. This port-hopping
approach mimics the technique of a frequency-hopping
spread spectrum in radio communication [22]. We assume

that the communicating parties share a secret key unknown
to the attacker; they apply a pseudorandom function [8] to
this key in order to select the sequence of ports they will
use. Note that such port hopping has negligible effect on the
communication overhead for realistic intervals between
hops and thus can be used even in high-speed networks.
The remaining challenge is synchronizing the processes so
that the recipient opens the port currently used by the
sender. We present a protocol for doing so in a realistic
partially synchronous model, where processes are equipped
with bounded-drift bounded-skew clocks, and message
latency is bounded.

The paper proceeds as follows: Section 2 details related
work. Section 3 details our models for the communication
channel and the adversary. Section 4 provides a generic DoS
analysis. Section 5 describes our port-hopping protocol and
analyzes its effectiveness. Section 6 concludes.

2 RELATED WORK

Our work continues the line of research on prevention of
DDoS attacks, which focuses on filtering mechanisms to
block and discard the offending traffic. Our work is unique
in providing a rigorous model and analysis, which constitute
the first step in formally modeling and evaluating the
effectiveness of possible filtering and rate-limiting mechan-
isms. Since our formal framework is not restricted to port-
based filtering but rather operates with any filtering based
on per-packet fields, our model and analysis can be used in
evaluating future protocols and may assist in examining and
comparing the solutions that exist now.

Most closely related is the work on Secure Overlay
Services (SOS) [12], followed by the work on Mayday [1].
Both propose realistic and efficient mechanisms that do not
require global adoption yet allow a server to provide
services immune to DDoS attacks. These solutions, like
ours, utilize efficient packet-filtering mechanisms between
the server and predefined trusted “access point” hosts. The
basic ideas of filtering based on ports or other simple
identifiers (“keys”) and even of changing them already
appear in [1], [12] but without analysis and details.
Additionally, Andersen [1] provides a discussion of attack
types and limitations, justifying much of our model,
including the assumption that the exposure of the identifier
(port) number may be possible but not immediate.
Furthermore, Andersen [1] mentions blind and targeted
attacks (where blind attacks are attacks in which the
adversary does not know the valid identifier) and asserts
that the damage to the system is much more severe when
targeted attacks are launched. We prove that this is indeed
the case and give exact quantities for the maximum
performance degradation in both attack scenarios. Both
SOS and Mayday require the setup of an overlay network
consisting of several nodes and use several levels of
indirection to obscure the identity of the nodes that may
prove to be a promising attack target. These levels of
indirection may increase latency by a factor of 5 or even 10
[12]. In contrast, our solution does not require additional
hosts, preserves communication characteristics, and is
simple to construct and maintain.
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Additional work [23] employs an overlay network
similar to SOS, which uses spread-spectrum-like path
diversity to counter DoS attacks. The system also uses
secret keys to authenticate valid messages. Like SOS, it
requires additional nodes to construct the overlay network,
and the additional overhead has an impact on message
throughput and latency.

There are other several proposed methods to filter
offending DoS traffic. Some proposals, for example, that
by Krishnamurthy et al. [13], [10], filter according to the
source IP address. This is convenient and efficient, allowing
implementation in existing packet-filtering routers. How-
ever, IP addresses are subject to spoofing; furthermore,
using a white list of source addresses of legitimate clients/
peers is difficult, since many hosts may have dynamic IP
addresses due to the use of a network address translator
(NAT), Dynamic Host Configuration Protocol (DHCP), and
mobile-IP. Some proposals try to detect spoofed senders
using new routing mechanisms such as “path markers”
supported by some or all of the routers en route, as in Pi
[25], Stateless Internet Flow Filter (SIFF) [26], Active Internet
Traffic Filtering (AITF) [2], and Pushback [15], but global
router modification is difficult to achieve. Few proposals try
to detect spoofed senders using only existing mechanisms,
such as the hop count (Time-to-Live (TTL)), as in Hop-
Count Filtering (HCF) [9]. However, empirical evaluation of
these approaches show rather disappointing results [5].

A different approach is to perform application-specific
filtering for predefined protocols [11], [18]. Such protection
schemes are cumbersome, only work for a handful of well-
known protocols, and are usually restricted to attackers that
transmit invalid protocol packets.

IPsec [3] performs filtering at the IP layer, by authenti-
cating messages using MACs, based on shared secret keys.
IPsec ensures that higher level protocols only receive valid
messages. However, the work required to authenticate each
message is invested for each incoming packet that has a
valid security parameter index (SPI). Once the SPI, which is
sent in the clear, is known, an attacker can perform a DoS
attack by overloading IPsec with many bogus packets to
authenticate. In contrast, our solution ensures that the
authentication phase is reached only for packets that are
valid with high probability by constantly changing the
cleartext filtering identifier, for example, the SPI.

In earlier work, we have presented Drum [4], a gossip-
based multicast protocol resistant to DoS attacks. Drum
does not use pseudorandom port hopping, and it heavily
relies on well-known ports that can be easily attacked.
Therefore, Drum is far less resistant to DoS attacks than the
protocol we present here. Finally, Drum focuses on multi-
cast only, and as a gossip-based protocol, it relies on a high
level of redundancy, whereas the protocol presented herein
sends very little redundant information.

Independent of our work, Lee and Thing [14] examined
the use of port hopping to mitigate the effect of DoS attacks.
However, they concentrated more on implementation and
empirical results, providing only a very brief analysis of
their method. Even so, their empirical results do not state the
strategy the attacker employs for its attack, and it is not clear
whether the adversary cannot launch a better attack against
their protocol. Conversely, we provide a thorough formal
analysis of the environment and our protocol. We formally
model the communication channel and the adversary and

provide rigorous proofs for the correctness and effectiveness
of our protocol under the best attack the adversary can
possibly launch.

Wang et al. [24] provide simulation results for various
DDoS attacks on general proxy networks and the applica-
tions protected by them. However, they do not provide any
theoretical analysis and only deal with general proxy
networks.

3 MODEL AND DEFINITIONS

3.1 Overview

We consider a realistic semisynchronous model, where
processes have continuously increasing local clocks with
bounded drift � from real time. Each party may schedule
events to occur when its local clock reaches a specific value
(time). There is a bound � on the transmission delay, that is,
every packet sent either arrives within � time units or is
considered lost. Notice that although we assume that
messages always arrive within � time, this is only a
simplification, and our results are valid even if a few
messages arrive later than that; therefore, � should really
be thought of as the typical maximal round-trip time and
not as an absolute bound on a message’s lifetime (for
example, 1 second rather than 60 seconds).

Our goal is to send messages from a sender A to a
recipient B in spite of attempts to disrupt this communica-
tion by an adversary. The basic technique available to the
adversary is to clog the recipient by sending many packets.
The standard defense deployed by most corporations is to
rate-limit and filter packets, typically by a firewall. We
capture this type of defense mechanism using a port-based
rationing channel machine, which models the first-in, first-
out (FIFO) communication channel between A and B, as
well as the filtering mechanism. To send a message, A
invokes a ch_send(m) event, a message is received by the
channel in a net_recv(m) event, and B receives messages via
ch_recv(m) events. We assume that the adversary cannot
clog the communication to the channel and that there is no
message loss other than in the channel. The channel
discards messages when it performs rate limiting and
filtering.

The channel machine is formally defined in Section 3.2.
We now provide an intuitive description of its functionality.
Since we assume that the attacker can spoof packets with
valid addresses, we cannot use these addresses for filtering.
Instead, the channel filters packets using port numbers,
allowing deployment using existing efficient filtering me-
chanisms. Specifically, let the set � of port numbers be
f1; . . . ;  g. Our solutions can be used with larger values of  ;
however, this may require modified filtering mechanisms.
The buffer space of the channel is a critical resource. The
channel’s interface includes the allocaction, which allows B
to break the total buffer space of R messages into a separate
allocation of Ri messages per port i 2 �, as long as
R �

P 
i¼1 Ri. For simplicity, we assume that the buffers are

read and cleared together in a single deliver event, which
occurs exactly once on every integer time unit. If the number
of packets sent to port i since the last deliver exceeds Ri, a
uniformly distributed random subset of Ri of them is
delivered.
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We define several parameters that constrain the adver-
sary’s strength. The most important parameter is the attack
strength C, which is the maximal number of messages that
the adversary may inject to the channel between two deliver
events.

As shown in [1], attackers can utilize different techniques
to try to learn the port numbers expected by the filters (and
used in packets sent by the sender). However, these
techniques usually require considerable communication
and time. To simplify, we allow the adversary to eavesdrop
by exposing messages, but we assume that the adversary
can expose packets no earlier than E time after they are sent,
where E is the exposure delay parameter. The exposure delay
reflects the time it takes an attacker to expose the relevant
information, as well as to distribute it to the (many)
attacking nodes, possibly using a very limited bandwidth
(for example, if sending from a firewalled network). Our
protocol works well with as little as E > 5�.

Since the adversary may control some behavior of the
parties, we take a conservative approach and let the
adversary schedule the app_send(m) events in which the
application (at A) asks to send m to B. To prevent the
adversary from abusing these abilities by simply invoking
too many app_send events before a deliver event, we define
the throughput T � 1, as the maximal number of app_send
events in a single time unit. We further assume that
R � �T , that is, that the capacity of the channel is sufficient
to handle the maximal rate of app_send events.

Since we focus on connectionless communication such as
UDP, our main metric for resiliency to DoS attacks is its
success rate, namely, the probability that a message sent by A
is received by B.

Definition 1 (Success rate �). Let E be any execution of a given
two-party protocol operating over a given port-based rationing
channel with parameters �, R, C, �, �, E, and T , with
adversary ADV . Let endðEÞ be the time of the last deliver
event in E. Let sentðEÞ ðrecvðEÞÞ be the number of messages
sent (respectively, received) by the application, in app send
(respectively, app recv) events during E, prior to endðEÞ ��
(respectively, endðEÞ). The success rate � of E is defined as
�ðEÞ ¼ recvðEÞ

sentðEÞ . The success rate of adversary ADV is the
average success rate over all executions of ADV . The success
rate of the protocol, denoted �ð�; R; C;�;�; E; T Þ, is the
worst success rate over all adversaries ADV .

Finally, a protocol can increase its success rate by
sending redundant information, for example, multiple
copies or error-correcting codes. We therefore also consider
a system’s message (bit) complexity, which is the number of
messages (respectively, redundant bits) sent on the channel
per each application message.

3.2 Formal Model and Specifications

We model the system as a collection of interacting state
machines. Each state machine is defined by its state
(variables), set of possible initial states, and deterministic
state transitions associated with input and output events.
To allow machines to make random choices, initial states
include random tapes.

We model the adversary as one of the deterministic state
machines of which the system is composed. The adversary
controls, among other things, the scheduling of events. That

is, it defines the next event that will occur in any system
state, as well as the progress of time (via the advance event).
Thus, an execution of the system is completely defined by its
initial state and number of steps.2 The possible choices of
random tapes define a probability space on executions.

A port-based rationing channel models a FIFO-ordered
rate-limited communication channel with port-based mes-
sage filtering. Fig. 1 provides specifications for a channel
from A to B; we assume that an equivalent channel is used
from B to A. The net_recv event models the arrival of the
next message from A (in FIFO order) to the channel’s buffer,
allowing the adversary control of network latency (up to �).

The recipient uses the alloc operation to designate ration
values Ri for ports i 2 � ¼ f1; . . . ;  g. If Ri > 0, we say that
port i is open. We use InðiÞ to denote the set of messages in
the input buffer designated with port i. The channel
delivers all messages from InðiÞ if jInðiÞj � Ri and a
random subset of Ri messages from InðiÞ if jInðiÞj > Ri.

The adversary can inject messages directly into the buffer
using inj events and can snoop on the contents of messages
using expose events, under the restrictions above.

4 ANALYZING THE SUCCESS RATE IN A SINGLE

SLOT WITH A SINGLE PORT

This section provides a generic analysis of the probability of
successfully communicating over a port-based rationing
channel under different attacks, when messages are sent to
a single open port p. This analysis is independent of the
timing model and the particular protocol using the channel
and can therefore serve to analyze different protocols that
use such channels, for example, the one we present in the
ensuing section. We focus on a single deliver event and
analyze the channel’s delivery probability, which is the
probability for a valid message in the channel’s buffer to
be delivered in that event. Since every ch_send(m) event
eventually results in m being added to the channel’s buffer,
we can use the channel’s delivery probability to analyze the
success rates of higher level protocols.

Let Rp denote the ration allocated to port p in the last
alloc event and let InðpÞ be the contents of the channel’s
buffer for port p (see Section 3.2 for more details). Consider
a deliver event of a channel from A to B when A sends
messages only to port p. We introduce some notations:3

. Rp ¼ R is the value of the channel’s Rp when deliver
occurs.

. ap ¼ a is the number of messages whose source is A
in the channel’s InðpÞ when deliver occurs. We
assume that a � R. If ap < Rp (that is, a < R), we say
that there is overprovisioning on port p.

. cp is the number of messages whose source is not A
in InðpÞ when deliver occurs.

Assume that 1 � a � R. If cp < R� aþ 1, then B receives
A’s messages, and the attack does not affect the commu-
nication from A to B on port p. Let us now examine what
happens when cp � R� aþ 1.
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Lemma 1. If cp � R� aþ 1, then the channel’s delivery

probability is R
cpþa .

Proof. The channel delivers m 2 InðpÞ if it is part of the R

messages read uniformly at random from the cp þ a
available messages. Thus, the delivery probability is R

cpþa .tu
If the attacker knows that B has opened port p, it can

direct all of its power to that port, that is, cp ¼ C, where we

assume that C � R� aþ 1. We call this a directed attack.

Corollary 1. In a directed attack at rate C on B’s port p, the

delivery probability for messages sent to the attacked port p is
R

Cþa , assuming that 1 � a � R, and C � R� aþ 1.

Lemma 2. For fixed R and cp such that 1 � a � R and

cp � R� aþ 1, the probability of B receiving only invalid

messages on port p decreases as a increases.

Proof. The channel delivers only invalid messages if no

message of the a valid messages is read. The correspond-

ing probability is
cp
cpþa �

cp�1
cpþa�1 � � �

cp�Rþ1
cpþa�Rþ1 , which clearly

decreases as a increases. tu

4.1 Blind Attack

We define a blind attack as a scenario where A sends

messages to a single open port p, and the adversary cannot

distinguish this port from a random one. We now analyze

the worst-case delivery probability under a blind attack.
In general, an adversary’s strategy is composed of both

timing decisions and injected messages. The timing

decisions affect a, the number of messages from A that

are in the channel at a given delivery slot. Given that a is

already decided, we define the set of all strategies of an

attacker with sending rate C as

SðCÞ ¼�
n
fcigi2� j 8i 2 � : ci 2 IN [ f0g ^

X 
i¼1

ci ¼ C
o
:

Each strategy s 2 S is composed of the number of messages

the attacker sends to each port. Note that since the

adversary wishes to minimize the delivery probability, we

restrict the discussion to the set of attacks that fully utilize

the attacker’s capacity for sending messages.
Consider some fixed a, C, and R. We define �Bða;C;R; sÞ

as the channel’s delivery probability under attack strategy

s 2 S. Since S is a finite set, �B has at least one minimum

point, and we define the delivery probability to be that

minimum:

�Bða; C;RÞ ¼� min
s2SðCÞ

�Bða; C;R; sÞ:

We sometimes use �B instead of �Bða; C;RÞ when a, C, and

R are clear from context. We want to find lower bounds on

�B, depending on the attacker’s strength. We say that port

pi is attacked in strategy s if cpi > 0. We partition SðCÞ
according to the number of ports being attacked as follows:

Sk ¼
� fs 2 SðCÞ j Exactly k ports are being attacked in sg:

Consider a fixed sk 2 Sk and denote by p1; p2; . . . ; pk the

ports that the attacker attacks under strategy sk at rates of

cp1
; cp2

; . . . ; cpk messages, respectively, where
Pk

i¼1 cpi ¼ C,

cpi > 0. Then, we assume that 8i cpi � R� aþ 1 (otherwise,

even if pi ¼ p, the probability of B receiving A’s messages is

exactly 1).
We now find a lower bound on �B as follows: We first

derive a lower bound on f�Bða; C;R; skÞjsk 2 Skg; this

lower bound is given as a function of k in Corollary 2.

Incidentally, the worst degradation occurs when the
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attacker divides its power equally among the attacked
ports, that is, when it sends C

k messages to each attacked
port (this is proven in Lemma 3). Then, we show lower
bounds on �Bða; C;RÞ by finding the k that yields the
minimum value.

Proposition 1. Consider some fixed k, a, C, R, and sk 2 Sk
and denote the ports attacked under sk by p1; p2; . . . ; pk
with attacking rates of cp1

; cp2
; . . . ; cpk , respectively. Then,

�Bða; C;R; skÞ ¼  �k
 þ 1

 

Pk
i¼1

R
cpiþa

.

Proof. The probability that B does not deliver A’s message is

Xk
i¼1

Pr½pi ¼ p� � 1� R

cpi þ a

� �
¼ 1

 

Xk
i¼1

1� R

cpi þ a

� �

¼ k

 
� 1

 

Xk
i¼1

R

cpi þ a
:

Thus, the delivery probability is  �k
 þ 1

 

Pk
i¼1

R
cpiþa

. tu
The proofs of the following lemmas appear in Appendix A.

Lemma 3. Consider some fixed k, a, C, R, and sk 2 Sk and

denote the ports attacked under sk by p1; p2; . . . ; pk with

attacking rates of cp1
; cp2

; . . . ; cpk , respectively. Then, under a

blind attack with strategy sk, the worst (that is, minimal)

expected delivery probability of the system is achieved when

8i cpi ¼ C
k .

From Proposition 1 and Lemma 3, we get the following
corollary:

Corollary 2. Under a blind attack, if k, a, C, and R are fixed,

then the expected delivery probability for sk 2 Sk is bounded

from below as follows:

�Bða; C;R; skÞ �
 � k
 
þ 1

 
�
Xk
i¼1

R
C
k þ a

¼  � k
 
þ 1

 
� kR
C
k þ a

¼  � k
 
þ k2R

 ðC þ kaÞ :

We now define �BðkÞ ¼� minsk2Sk �BðskÞ. We get that for
each k

�BðkÞ ¼
 � k
 
þR
 
� k2

C þ ka :

To find a lower bound, we continue this analysis as if k is
continuous. The derivative of �BðkÞ is then

�0BðkÞ ¼
�1

 
þR
 
� 2kðC þ kaÞ � k

2a

ðC þ kaÞ2

¼ R
 
� 2kC þ k

2a

ðC þ kaÞ2
� 1

 

¼ R� 1

 
�R
 
� C

2 þ ð2kC þ k2aÞða� 1Þ
ðC þ kaÞ2

:

We now state two lemmas that show that �Bða; C;RÞ is
bounded from below by the function fða; C;RÞ presented
in (1).

Lemma 4. Let R ¼ a. Then, an adversary with C �  cannot

decrease the expected delivery probability lower than  a
Cþ a ,

and an adversary with C �  cannot decrease the expected
delivery probability lower than 1� C

 ð1þaÞ .

Lemma 5. Let a < R. Then, an adversary with C �  affiffiffiffiffi
R

R�a

p
�1

cannot decrease the expected delivery probability lower than
 R

Cþ a , and an adversary with C �  affiffiffiffiffi
R

R�a

p
�1

cannot decrease

the expected delivery probability lower than

 a� C
ffiffiffiffiffiffiffi
R
R�a

q
� 1

� �
 a

þR
 
�
C

ffiffiffiffiffiffiffi
R
R�a

q
� 1

� �2

a2
ffiffiffiffiffiffiffi
R
R�a

q :

We conclude the following corollary:

Corollary 3. �Bða;C;RÞ is bounded from below by the following
function fða; C;RÞ:

fða; C;RÞ ¼

 a
Cþ a if R ¼ a and C �  ;
1� C

 ð1þaÞ if R ¼ a and C <  ;
 R

Cþ a if R > a and C �  affiffiffiffiffi
R
R�a

p
�1
;

 a�C
ffiffiffiffiffi
R
R�a

p
�1

� �
 a

þ R
 �

C
ffiffiffiffiffi
R

R�a

p
�1

� �2

a2
ffiffiffiffiffi
R

R�a

p if R > a and C <  affiffiffiffiffi
R
R�a

p
�1
;

0 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

Corollary 3 provides us with some insights of the
adversary’s best strategy and of the expected degradation
in delivery probability. If no overprovisioning is used (that
is, R ¼ a), then the adversary’s best strategy is to attack as
many ports as possible. This is due to the fact that even a
single bogus message to the correct port degrades the
expected delivery probability. When the adversary has
enough power to target all of the available ports with at
least one message, it can attack with more messages per
attacked port, and the delivery probability asymptotically
degrades much like the function 1

C . When not all ports are
attacked, the adversary would like to use its remaining
resources to attack more ports rather than target a strict
subset of the ports with more than one bogus message per
port. The degradation of the expected delivery probability
is then linear as the attacker’s strength increases.

When overprovisioning is used ðR > aÞ, it affects the
attack and its result in two ways. First, the attacker’s best
strategy may not be to attack as many ports as it can, since a
single bogus message per port does not do any harm now.
Second, for an adversary with a given strength, the
degradation in delivery probability is lower when over-
provisioning is used than when it is not employed. We can
see in (1) that if the attacker has enough power to attack all
the ports, the overprovisioning ratio R

a is also the ratio by
which the delivery probability is increased, compared to the
case where R ¼ a.

4.2 Actual Values

Fig. 2 shows the expected worst-case delivery probabilities
for various attack scenarios on a single port. For directed
attacks, we show the actual delivery probability, and for
blind attacks, the lower bound fða; C;RÞ is shown. We
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chose  ¼ 65; 536, the number of ports in common Internet
protocols, for example, UDP. Fig. 2a illustrates the major
difference between a directed attack and a blind one: Even
for a relatively weak attacker ðC � 100Þ, the delivery
probability under a directed attack approaches 0, whereas
under a blind attack, it virtually remains 1.

Fig. 2b examines blind attacks by much stronger
adversaries (with C up to 10,000 for R ¼ 1 and up to
20,000 for R ¼ 2). We see that the delivery probability
gradually degrades down to a low of 92.5 percent when
R ¼ 1. If we use an overprovisioned channel, that is, have
a ¼ 1 (one message from A) when R ¼ 2, the delivery
probability improves to almost 95 percent for C ¼ 20; 000.
(The ratio C

R is the same for both curves.) Fig. 2c shows the
effect of larger overprovisioning. We see that the cost-
effectiveness of overprovisioning diminishes as R

a increases.
The idea of hopping can essentially be applied to any

changeable header field. For instance, other than the port
numbers used in the TCP and UDP, one may decide to use
the SPI field of IPsec, which consists of 32 bits, or the Key
field of the Generic Routing Encapsulation (GRE), as
suggested in WebSOS [17]. Fig. 3 shows the effect of
hopping using IPsec’s SPI field instead of using TCP/UDP
ports. We can see that doubling the number of bits used for
the filtering index has a substantial effect on the delivery
probability. Using IPsec also has the added bonus of
protecting all higher level protocols, for example, Internet
Control Message Protocol (ICMP), TCP, UDP, and so forth.

5 DOS-RESISTANT COMMUNICATION

We now describe a protocol that allows for DoS-resistant
communication in a partially synchronous environment.
The protocol’s main component is an acknowledgment
(ack)-based protocol. B sends acks for messages it receives
from A, and these acks allow the parties to hop through
ports together. However, although the ack-based protocol
works well as long as the adversary fails to attack the
correct port, once the adversary identifies the port used, it
can perform a directed attack that renders the protocol
useless. By attacking the found data port or simultaneously
attacking the found data and ack ports, the adversary can
effectively drop the success rate to 0, and no port hopping
will occur. To solve this matter, there is a time-based
proactive reinitialization of the ports used for the ack-based
protocol, independent of any messages passed in the
system.

5.1 Ack-Based Port Hopping

We present an ack-based port-hopping protocol, which uses
two port-based rationing channels, from B to A (with ration
RBA) and vice versa (with ration RAB). For simplicity, we
assume that RAB ¼ 2RBA ¼ 2R. B always keeps two open
ports for data reception from A, and A keeps one port open
for acks from B. The protocol hops ports upon a successful
round-trip on the most recent port used, using a pseudoran-
dom function PRF �.4 In order to avoid hopping upon
adversary messages, all protocol messages carry authenti-
cation information, using a second pseudorandom function
PRF on f0; 1g�. (We assume that PRF and PRF � use
different parts of A and B’s shared secret key.)

The protocol’s pseudocode appears in Fig. 4. Both A and
B hold a port counter P , initialized to some seed (for
example, 1). Each party uses its counter P in order to
determine which ports should be open and which ports to
send messages to. B opens port pold using the ðP � 1Þth
element in the pseudorandom sequence and pnew, using P .
A sends data messages to the P th port in the sequence and
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Fig. 2. Delivery probability per slot in various attack scenarios on a single port,  ¼ 65; 536. (a) Blind versus directed, R ¼ a ¼ 1. (b) Blind, a ¼ 1.

(c) Blind, a ¼ 1.

Fig. 3. Blind mode delivery probability per slot for different values of  ,

R ¼ a ¼ 1.

4. Intuitively, we say that fkeyðdataÞ is pseudorandom function ðPRF �Þ if
for inputs of sufficient length, it cannot be distinguished efficiently from a
truly random function r over the same domain and range by a probabilistic
polynomial-time (PPT) adversary that can receive gðxÞ for any values of x,
where g ¼ r with probability half and g ¼ f with probability half. For
definition and construction, see [8].



opens the P th port in the second pseudorandom sequence

designated for acks. When B receives a valid data message

from A on port pold, it sends an ack to the old ack port.

When it receives a valid message on port pnew, it sends an

ack to the P th ack port and then increases P . When A

receives a valid ack on port pack, it increases P . We note that

several data messages may be in transit before a port hop

takes place, since it takes at least one round-trip time for a

port hop to take effect, and in a high-speed network,

multiple messages are sent within this time span. The proof

of the next theorem is given in Appendix B.

Theorem 1. When using the ack-based protocol, the probability

that a data message that A sends to port p arrives when p is

open is 1 up to a polynomially negligible factor.5

In order to compute the throughput that the protocol can

support in the absence of a DoS attack (that is, when C ¼ 0),

we need to take latency variations into consideration. Since

messages sent up to � time apart can arrive in the same

delivery slot, a throughput T � R=� ensures a � R. Since

the protocol uses two incoming ports with the same rations,

we require T � R
2� , that is, a � R

2 .
We now analyze the protocol’s success rate under DoS

attacks. We say that the adversary is in blind mode if it

cannot distinguish the ports used by the protocol from

random ports. We first give a lower bound on the success

rate in blind mode and then give a lower bound on the

probability to be in blind mode at a given time t. Finally, �

is bounded by the probability to be in blind mode

throughout the execution of the protocol times the success
rate in blind mode.

Suppose that B opens port p with reception rate Rp and
that a � Rp messages from A are waiting in its channel,
along with cp messages from the adversary ðcp � 0Þ. By
Lemma 1, the success rate does not monotonically increase
with a. Since the adversary can control a by varying the
network delays, it can set a as high as possible for a delivery
slot. Therefore, the worst case occurs when a ¼ T�. Using
(1), we get that the success rate in blind mode is bounded
from below by fðT�; C;RÞ.

Note that the protocol begins in blind mode. We now
analyze the probability that the protocol keeps the adver-
sary in blind mode. The only way the adversary can learn of
a port used by the protocol is using an expose event E time
after a message is sent to that port. This information is only
useful for an attack if the port is still in use. Let us trace the
periodic sequence of events that causes the data port to
change (once it changes, acks for the old port are useless).
Assume that A continuously sends messages m1; m2; . . . to
B starting at time 0 and consider an execution without an
attack: 1) by time �, B receives a valid message from the
channel and sends an ack to A, 2) by time 2�, A receives the
ack and changes the sending port, and 3) B gets the last
message destined for the old port at most at time 3�.

If E � 3�, the adversary remains in blind mode. Now, let
us examine what happens under attack. In order to prevent
the port from changing, the adversary must either prevent
B from getting valid data messages or prevent A from
receiving acks. By Lemma 2, the probability that all valid
messages are dropped decreases when a increases. Thus,
(as opposed to the previous analysis), in order to increase
the probability that all valid messages are dropped, the
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Fig. 4. Two-party ack-based port hopping.

5. Namely, for every polynomial g > 0, there is some �g such that when
� � �g, then the probability � 1� gð�Þ.



adversary would like to decrease a to its minimum.
Obviously, the attacker would like to get out of blind
mode, and for that, it needs A to send at least one message
to B to expose the port being used, and so, a ¼ 1. We get
that the lower bound on the probability of a single message
to be received on a single port, as given in Section 4.1, is
�B ¼ fð1; C; R2Þ.
Lemma 6. If E ¼ 2k� for k > 0 and A sends messages to B at

least every 2� time units, then the probability that the port
changes while the attacker is still blind is at least
1� ð1� �2

BÞ
k.

Proof. The probability that the port does not change in a

single round-trip is at most 1� �2
B. Since A sends

messages to B every 2� time units, at the conclusion of

each maximal time round-trip, there is at least one new

message on its own round-trip. In order for the port not to

change while the adversary is still blind, every round-trip

needs to fail. Since the attacker can react only after

2k� time, there is time for k round-trips in which the

attacker is blind, even if none of them succeed. The

probability that all of them fail is less than ð1� �2
BÞ

k. If

one succeeds, the port changes. Therefore, the probability

that the port changes is at least 1� ð1� �2
BÞ

k. tu
The lower bound above is illustrated in Fig. 5a.

We now bound the probability to be in blind mode at

time t by assuming that once the attacker leaves the blind

mode it never returns to it. The bound is computed using a

Markov chain, where each state is the number of round-

trips that have failed since the last port change. In the last

state, all round-trips have failed before the exposure, and

thus, the attacker is no longer blind. The Markov chain for

E ¼ 4� is shown in Fig. 5d. We use the chain’s transition

matrix to compute the probability gðt; E; C;RÞ for remaining

in blind mode at time t. Fig. 5b shows values of g for

E ¼ 4�. We can see that the protocol works well only for a

limited time.
Finally, we note that the protocol’s message complexity

is 2, since it sends an ack for each message, and its bit
complexity is constant: log2ð Þ bits for the port plus � bits
for the authentication code.

5.2 Adding Proactive Reinitializations

We now introduce a proactive reinitialization mechanism

that allows choosing new seeds for the ack-based protocol

depending on time and not on the messages passed in the

system. We denote by tAðtÞ and tBðtÞ the local clocks of A

andB, respectively, where t is the real time. From Section 3.1,

we get that 0 � tAðtÞ � tj j � �, 0 � tBðtÞ � tj j � �. We also

assume that tA, tB � 0.

If A reinitializes the ack-based protocol and then sends

a message to B at time tAðt0Þ, this message can reach B

anywhere in the real-time interval ðt0; t0 þ��. Therefore,

the port used by A at tAðt0Þ must be opened by B at least

throughout this interval. To handle the extreme case where

A sends a message at the moment of reinitialization, B

must use the appropriate port starting at time tBðt0Þ � �.

(We note that t0 may also be � time units apart from

tAðt0Þ.) We define � as the number of time units between

reinitializations of the protocol and assume for simplicity

and effectiveness of resource consumption that � > 4�þ�

(see Fig. 6 for more details).
Every � time units, A feeds a new seed to the ack-based

protocol, and B anticipates it by creating a new instance of

the protocol, which waits on the new expected ports. Once

communication is established using the new protocol

instance or once it is clear that the old instance is not going

to be used anymore, the old instance is terminated. The
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Fig. 5. The effect of E on the ack-based protocol,  ¼ 65; 536. (a) Bound on the probability to hop before exposure, C
Rp
¼ 10; 000. (b) Bound ðgÞ on the

probability to stay in blind mode, Rp ¼ 1, C ¼ 10; 000, and E ¼ 4�. (c) Bound on the protocol’s success rate, � ¼ T ¼ Rp ¼ 1, C ¼ 10; 000, and

E ¼ 5�. (d) Markov chain for computing the lower bound in (b).



pseudocode for the proactive reinitialization mechanism

can be found in Fig. 6. Due to space considerations, we do

not detail the change in port rations at the recipient’s side as

protocol instances are created or terminated. We also note

that there is a negligible probability that more than one ack-

based protocol instance will share the same port. Even if

this happens, differentiating between instances can be

easily done by adding the instance number (that is, the

total number of times a reinitialization was performed) to

each message. The proof of the next theorem is given in

Appendix C.

Theorem 2. When using the ack-based protocol with proactive

reinitializations, the probability that a data message that A

sends to port p arrives when p is open is 1 up to a polynomially

negligible factor.

Proactive reinitialization every � time units allows us to

limit the expected degradation in the success rate for a

single ack-based protocol instance. Choosing � is therefore

an important part of the combined protocol. A small �

allows us to maintain a high success rate in the ack-based

protocol but increases the average number of ports that are

open in every time unit (due to running several protocol

instances in parallel). When several ports are used, the

ration for each one of them is decreased and so might the

success rate. On the other hand, choosing a high � entails a

lower success rate between reinitializations. We conclude

the discussion above and the results presented in Section 5.1

with the following theorem:

Theorem 3. Assume that if A sends a message to B in a single

reinitialization period, then A keeps sending messages to B at

least every 2� time units or until that period ends. Then, the

success rate of the proactively reinitialized ack-based protocol

with reinitialization periods of length � is bounded from below

by gð� þ�; E; C;RÞ � fðT�; C;RÞ up to a polynomially

negligible factor.

Fig. 5c shows the value of

gð� þ 1; E; 10; 000; 1Þ � fð1; 10; 000; 1; 1Þ:

We can see that the proactively reinitialized protocol’s

success rate stays over 90 percent even for � ¼ 100�, that is,

even for relatively long periods between reinitializations.

5.3 Feasibility Discussion

A router/firewall that has IPsec support can be easily
modified to support our hopping protocols. Such a router/
firewall already has properties we can use: It is able to filter
packets according to their SPI field, it has integrated
authentication and hash functions (that can be used as
PRFs), and it supports secret shared keys. The only thing
that is left to do is to perform SPI hopping. Thus, combining
our hopping protocols with IPsec allows for ease of
implementation while providing IPsec’s strong authentica-
tion capabilities for higher level protocols, along with our
robustness to DoS attacks, since hopping ensures that only
packets that are valid with high probability go through the
expensive authentication stage. We therefore believe that an
integration of our hopping protocols with IPsec is an
attractive choice.

The two-party communication protocols we presented
use a shared secret, known only to the two parties. Each
pair of communicating parties shares a different secret. An
integration of our protocols with IPsec in tunnel mode on a
gateway means that the gateway might have to deal with
several parties. The number of secrets that are stored on the
gateway is thus linear in the number of parties. However,
using a hash table, every SPI lookup takes Oð1Þ and, so,
filtering is done at Oð1Þ per packet. All packets that do not
contain the correct SPI are dropped at this filtering stage.

6 CONCLUSIONS AND DIRECTIONS FOR FUTURE

WORK

We have presented a model for port-based rationing
channels and a protocol robust to DoS attacks for commu-
nication over such channels. Our protocol is simple and
efficient and hence can sustain high loads of traffic, as
happens, for example, in high-speed networks. At the same
time, our analysis shows that the protocol is highly effective
in mitigating the effects of DoS attacks. Our formal
framework and suggested protocol apply not only to port-
based filtering but also to a much broader category of
filtering based on any packet identifier. Thus, our work
constitutes the first step in evaluating existing filtering and
rate-limiting mechanisms.

As the important field of application-level DoS mitiga-
tion is relatively new, there is much research space to
explore. Although our worst-case analysis is valuable, it can
be followed by simulations, experiments, and common case
analysis. Moreover, the system aspects of deploying such a
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protocol in today’s Internet are yet to be dealt with. We now
describe several exemplary future research directions.

Our model is realistic, as it only requires the underlying
channel to provide port-based filtering; therefore, it can be
efficiently implemented using existing mechanisms, typi-
cally at a gateway firewall or router. This raises an
interesting question regarding the trade-off between the
cost and the possible added value of implementing
additional functionality by the channel (for example, at
the firewall). We hope that future work will take further
strides toward defining realistic yet tractable models of the
channel and the adversary that will aid in answering this
question.

This work has focused on two parties only. It would be
interesting to extend it to multiparty scenarios such as
client-sever and multicast. These scenarios may require a
somewhat different approach and will obviously necessitate
analyses of their own. Furthermore, we required the parties
to share a secret key; we believe we can extend the solution
to establish this key using additional parties, for example, a
key distribution center, or using “proof of work” [7].

Our work has focused on resisting DoS attacks; however,
it could impact the performance and reliability properties of
the connection; in fact, it is interesting to explore combina-
tions between our model and problem and the classical
problems of reliable communication over unreliable chan-
nels and networks. Furthermore, since our work requires a
shared secret key, it may be desirable to merge it with
protocols using shared secret keys for confidentiality and
authentication, such as Secure Sockets Layer/Transport
Layer Security (SSL/TLS) and IPsec.

APPENDIX A

CHANNEL DELIVERY PROBABILITY ANALYSIS—
PROOFS OF LEMMAS

We now prove the lemmas from Section 4. Since a, C, and R

are constants, denote �BðskÞ ¼ �Bða; C;R; skÞ.
Lemma 3. Fix k, a, C, R, and sk 2 Sk and denote the ports

attacked under sk by p1; p2; . . . ; pk with attacking rates of

cp1
; cp2

; . . . ; cpk , respectively. Then, under a blind attack with

strategy sk, the worst (that is, minimal) expected delivery

probability of the system is achieved when 8i cpi ¼ C
k .

Proof. By Proposition 1, �BðskÞ ¼  �k
 þ 1

 

Pk
i¼1

R
cpiþa

. Calcu-

lating the partial derivatives of �BðskÞ, we get that
@�BðskÞ
@cpi

¼ 1
 � �R
ðcpiþaÞ

2 , that is, �BðskÞ is monotonically de-

creasing as we increase cpi and keep cpj the same for

j 6¼ i. Thus, the attacker wants to increase cpi to decrease

the delivery probability of the communication channel.

However, we have the constraint
Pk

i¼1 cpi ¼ C. Integrat-

ing this constraint into our delivery probability function

using a Lagrange coefficient denoted by � gives

�B0 ðskÞ ¼
 � k
 
þ 1

 

Xk
i¼1

R

cpi þ a
þ �

Xk
i¼1

cpi � C
 !

:

We now look for an extremum point by comparing the
partial derivatives of �B0 ðskÞ to zero:

@�B0 ðskÞ
@cpi

¼ 0;

1

 
� �R
ðcpi þ aÞ

2
þ � ¼ 0;

cpi ¼
ffiffiffiffiffiffi
R

 �

s
� a:

Putting the values of cpi into the constraint equation C ¼Pk
i¼1 cpi gives

C ¼
Xk
i¼1

ffiffiffiffiffiffi
R

 �

s
� a

 !

� ¼ R

 C
k þ a
� �2

:

Going back to the equation for cpi , we get

cpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

 � R

 C
kþað Þ2

vuut � a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

k
þ a

� �2
s

� a ¼ C
k
:

This result also fits our constraint cpi > 0, and we have an
extremum point for �BðskÞ at cpi ¼ C

k . (We note that C
k

might not be an integer, but since we want a lower
bound, this does not make a difference.) We denote this
extremum point by s�k. Now, we need to show that s�k is a
minimum point. If we show that �BðskÞ is convex, then
from the Kuhn-Tucker Theorem, we get that s�k is a global
minimum point. We proceed by showing that �BðskÞ is
convex.

We have already shown that @�BðskÞ
@cpi

¼ R
 � �1
ðcpiþaÞ

2 . We

get that �BðskÞ is twice continuously differentiable, and

the second derivative is

@2�BðskÞ
@cpi@cpj

¼
0 i 6¼ j;
R
 �

2ðcpiþaÞ
ðcpiþaÞ

4 i ¼ j:

(

We get that the Hessian of �BðskÞ is a positive diagonal
matrix. Thus, �BðskÞ is convex, and from the Kuhn-
Tucker Theorem, �Bðs�kÞ is a global minimum of the
delivery probability function �BðskÞ. tu

Lemma 4. Let R ¼ a. Then, an adversary with C �  cannot
decrease the expected delivery probability lower than  a

Cþ a ,
and an adversary with C �  cannot decrease the expected
delivery probability lower than 1� C

 ð1þaÞ .

Proof. Let R ¼ a. We get that

�0BðkÞ ¼
R� 1

 
�R
 
� C

2 þ ð2kC þ k2RÞðR� 1Þ
ðC þ kRÞ2

:

We now show that �0BðkÞ < 0:

R� 1

 
�R
 
� C

2 þ ð2kC þ k2RÞðR� 1Þ
ðC þ kRÞ2

<
?

0;

0 <
?

C2:

Clearly, the last inequality holds, and we get that �BðkÞ
monotonically decreases as k increases. Thus, the
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adversary wants to choose k as large as possible. Ideally,

k ¼  , C �  ðR� aþ 1Þ ¼  , and we get

�Bða;R;CÞ �
a

 
�  2

C þ  a ¼
 a

C þ  a :

However, this attack requires substantial strength from
the adversary, that is, the adversary needs to be more than
 times stronger than B. If C �  ðR� aþ 1Þ ¼  , we get
that k ¼ C

R�aþ1 ¼ C. The resulting degraded delivery
probability is

�Bða;R; CÞ �
 � C
 
þ a
 
� C2

Cð1þ aÞ

¼  ð1þ aÞ � Cð1þ aÞ þ aC
 ð1þ aÞ

¼ 1� C

 ð1þ aÞ � 1�  

 ð1þ aÞ ¼ 1� 1

1þ a :

tu

Lemma 5. Let a < R. Then, an adversary with C �  affiffiffiffiffi
R

R�a

p � 1

cannot decrease the expected delivery probability lower than
 R

Cþ a , and an adversary with C �  affiffiffiffiffi
R

R�a

p � 1 cannot decrease

the expected delivery probability lower than

 a� C
ffiffiffiffiffiffiffi
R
R�a

q
� 1

� �
 a

þR
 
�
C

ffiffiffiffiffiffiffi
R

R�a

q
� 1

� �2

a2
ffiffiffiffiffiffiffi
R
R�a

q :

Proof. Since a < R, we get R � 2. Let us find the value of k

that minimizes the delivery probability:

�0BðkÞ ¼ 0;

R� 1

 
�R
 
� C

2 þ ð2kC þ k2aÞða� 1Þ
ðC þ kaÞ2

¼ 0;

ak2 þ 2Ck� C2

R� a ¼ 0:

Since k > 0, we get that the solution is

k ¼
�2C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2 þ 4C2a

R�a

q
2a

¼
�2C þ

ffiffiffiffiffiffiffiffiffi
4C2R
R�a

q
2a

¼
C

ffiffiffiffiffiffiffi
R

R�a

q
� 1

� �
a

:

Obviously, this value of k is not an integer. However, we

use it to bound the minimum delivery probability under

a blind DoS attack. First, we need to show that this value

of k is indeed a minimum point. We do this by showing

that the second derivative of �BðkÞ is always positive:

�00BðkÞ ¼
R

 

� 2xðC þ kxÞ C
2 þ ð2kC þ k2aÞða� 1Þ½ � � ð2C þ 2kaÞða� 1Þ

ðC þ kÞ4
:

It suffices to show that the numerator is always positive.

That is, we need to show that

að2C þ 2kaÞ C2 þ ð2kC þ k2aÞða� 1Þ
	 


> ð2C þ 2kaÞða� 1Þ:

This is clearly true, since a � 1, k � 1, and C � 1, and we

get a C2 þ ð2kC þ k2aÞða� 1Þ½ � > a� 1. Thus, �00BðkÞ is

always positive, and we have found a minimum point.
We also need the found k to be in range. Clearly,

k > 0. We still need to show that k � C
R�aþ1 :

k �
? C

R� aþ 1
;

C
ffiffiffiffiffiffiffi
R
R�a

q
� 1

� �
a

�
? C

R� aþ 1
;

a �
?

R� 1

R
:

The last inequality holds since a < R, a is an integer, and
R � 2. Thus, k � C

R�aþ1 .
We can now bound the expected delivery probability

�ða;R;CÞ from below. For the case where

k ¼
C

ffiffiffiffiffiffiffi
R

R�a

q
� 1

� �
a

�  ;

we get

�Bða;R;CÞ �
 � C

ffiffiffiffiffi
R

R�a

p
�1

� �
a

 
þR
 
�

C2
ffiffiffiffiffi
R
R�a

p
�1

� �2

a2

C þ C
ffiffiffiffiffi
R

R�a

p
�1

� �
a a

¼
 a� C

ffiffiffiffiffiffiffi
R

R�a

q
� 1

� �
 a

þR
 
�
C

ffiffiffiffiffiffiffi
R

R�a

q
� 1

� �2

a2
ffiffiffiffiffiffiffi
R
R�a

q :

For the case where
C

ffiffiffiffiffi
R

R�a

p
�1

� �
a >  , since �BðkÞ has just

one extremum point and it is a minimum point with
k >  , we get that the attacker’s best strategy is to choose
k ¼  , and we get

�Bða;R;CÞ �
 �  
 
þ  2R

 ðC þ  aÞ ¼
 R

C þ  a :

Note that we got the same result for R ¼ a and k ¼  .

However, the conditions for choosing k ¼  are different.

For R ¼ a, we choose k ¼ w if C � w. For R > a, we

choose k ¼  if
C

ffiffiffiffiffi
R

R�a

p
�1

� �
a >  . tu

APPENDIX B

ACK-BASED PROTOCOL—PROOF OF CORRECTNESS

Invariant 1. Let PA and PB be the P counters that A and B hold
in the ack-based protocol, respectively. The probability that
PB � PA 2 0; 1f g is 1 up to a polynomially negligible factor.

Proof. After the initialization stage, PA ¼ PB, and the
property PB � PA 2 0; 1f g holds.

When the counters are equal, the part of the protocol
that may update them proceeds as follows:

1. A sends a message to B on port

PRFSABðPAj 00data 00Þ:
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2. If the message reaches B in a valid state, B adds 1
to PB and sends an ack back to A on port
PRFSBAðPBj 00ack 00Þ.

3. If the ack reachesA in a valid state,A adds 1 to PA.

If steps 2 and 3 complete successfully, both counters

advance by 1 and remain equal to each other. If step 2

fails (message dropped or modified in transit), both

counters remain unchanged. If step 2 succeeds but step 3

fails (ack lost or changed in transit), PB is incremented by

step 1, but PA remains the same. Thus, if PA ¼ PB, the

next change of counters will still maintain the property

PB � PA 2 0; 1f g.
Now, suppose that we have reached the state where

PB ¼ PA þ 1. The portion of the protocol that may
update the counters proceeds as follows:

1. A sends a message to B on port

PRFSABðPAj 00data 00Þ:

2. If the message reaches B in a valid state, B sends
an ack back to A on port PRFSBAðPB � 1j00ack 00Þ.

3. If the ack reachesA in a valid state,A adds 1 to PA.

If steps 2 and 3 complete successfully, PA advances by

1 and the counters become equal to each other. If steps 2

or 3 fail (messages dropped or are not valid), both

counters remain unchanged. Thus, if PB ¼ PA þ 1, the

next change of counters will still maintain the property

PB � PA 2 0; 1f g.
The only way to break this invariant is if the attacker

makes just one party advance its counter. This means

that the adversary has to fabricate a message so that one

party will think it is valid. Thus, the attacker needs to

guess both the port number and the authentication

information attached to each message. The probability

that the attacker succeeds in doing so is a polynomially

negligible factor. tu
Theorem 1. When using the ack-based protocol, the probability

that a data message that A sends to port p arrives when p is

open is 1 up to a polynomially negligible factor.

Proof. According to Invariant 1, when A sends a data

message to B, either PA ¼ PB or PB ¼ PA þ 1, with

probability 1 up to a polynomially negligible factor.

For the first case, let M be a message A sends to B

when PA ¼ PB. Since B always opens two ports for data,

we need to show that PB does not increase by more than

one until M actually reaches B. Since the link maintains

the FIFO semantics, messages sent after M was sent

cannot change the value of PB before M reaches B. The

only messages that can change PB are messages that

preceded M but reached B only after M was sent.

According to the protocol, PB increases by one if and

only if B receives a data message from A that was sent

using the counter PA ¼ PB. Furthermore, all messages

preceding M were sent using a counter that is less than

or equal to PA. It follows that PB can only increase by one

from the time M leaves A until it reaches B.

Consider now the second case whereM was sent when
PB ¼ PA þ 1. Since B only opens two ports for data, we
need to show that PB does not change at all. Again, since
the link has FIFO semantics, PB can only change by
messages preceding M that reach B after M was sent but
before it reaches B. However, such messages have
counters that are less than or equal to PA and, thus,
strictly less than PB. According to the protocol, messages
sent with such counters do not affect the value of PB. tu

APPENDIX C

ACK-BASED PROTOCOL WITH REINITIALIZATIONS—
PROOF OF CORRECTNESS

Theorem 2. When using the ack-based protocol with proactive

reinitializations, the probability that a data message that A

sends to port p arrives when p is open is 1 up to a polynomially

negligible factor.

Proof. From Theorem 1, we get that if A and B both use the

ack-based protocol initialized with seed, then messages

sent by A arrive to open ports at B. To complete the

proof, we need to show the following:

1. When A reinitializes the protocol with a new
seed, B has already started running an ack-based
protocol instance using the same seed.

2. B does not terminate a protocol instance while it
may still receive messages corresponding to that
instance.

For the first property, let us look at some real time
tAn when A reinitializes the protocol, where tAðtAn Þ ¼ n�,
n 2 IN. From the bounded drift assumption, we get the
bound tAn � n� � �. The seed corresponding to the
initialization at tAn is

tAðtAn Þ
� ¼ n. Now, let us look at the

real time tBn in which B starts a new ack-based
protocol instance with the seed n. This happens when
tBðtBn Þ þ 2� ¼ n�, that is, when tBðtBn Þ ¼ n� � 2�. Using
the bounded drift assumption, we get the bound
tBn � n� � 2�þ � ¼ n� � � � tAn .

For the second property, let us look at seed n again. A
terminates the instance with seed n at real time tAnþ1. The
last packet sent using the ack-based protocol initialized
with seed n inevitably reaches B before real time
tAnþ1 þ�. B terminates the ack-based protocol instance
in either one of the following two cases:

1. at time tBðtBnþ1Þ þ 4�þ� and
2. � time units after receiving the first message for a

newer ack-based protocol instance.

For the first case, we get tBnþ1 � ðnþ 1Þ� � 2�� �þ 4�þ
� ¼ ðnþ 1Þ� þ �þ� � tAnþ1 þ�. For the second case,

we observe that if a message for a newer instance of the

ack-based protocol has arrived, then A is no longer

sending messages with instances initialized with older

seeds. However, the varying message propagation delay

means that messages from older protocol instances can

take up to � time units to arrive, whereas the new

message might have taken negligible time to arrive. tu
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