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Abstract

We present Brahms, an algorithm for sampling random nodeslamge dynamic system
prone to Byzantine failures. Brahms stores small membergigws at each node, and yet
overcomes Byzantine failures of a linear portion of the exyst Brahms is composed of two
components. The first one is a Byzantine-resistant gosspe membership protocol. The
second one uses a novel memory-efficient approach for umigampling from a possibly bi-
ased stream of ids that traverse the node. We evaluate Brasingsrigorous analysis, backed
by extensive simulations, which show that our theoreticatieh captures the protocol’s essen-
tials. We show that, with high probability, an attacker catnereate a partition between correct
nodes. We further prove that each node’s sample convergesaridorm one over time. To our
knowledge, no such properties were proven for gossip-bamadbership in the past.
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1 Introduction

We consider the problem of sampling a random node (or peer)darge dynamic system subject to Byzan-
tine (arbitrary) failures. Random node sampling is imparfar many scalable dynamic applications, in-
cluding neighbor selection in constructing and maintajninverlay networks13, 19, 22, 24], selection of
communication partners in gossip-based protocgl8,[11], data sampling, and choosing locations for data
caching, e.g., in unstructured peer-to-peer netwdzik [

Typically, in such applications, each node maintains a seamdom node ids that is asymptotically
smaller than the system size. This set is callédcal view In a dynamic system, where the set of active
nodes changes over time (this is callgturn), the local views must continuously evolve to reflect these
changes, adding new active nodes and removing ones thab ésager active. By using small local views,
the maintenance overhead is kept small. In the absence anye failures, small local views can be
effectively maintained with gossip-based membershipgoals [1, 11, 12, 16, 28], which were proven to
have a low probability for partitions, including under chit].

Nevertheless, Byzantine failures present a major chadldagsmall local views. Previous Byzantine-
tolerant gossip protocols either considered static gttimhere the full membership is known to & PO,

26], or maintained (almost) full local views] 17], where faulty nodes cannot push correct ones out of the
view. In contrast, small local views are susceptible to @uoiisg with entries (node ids) originating from
faulty nodes; this is because the system is dynamic, anéftrernodes inherently must accept new ids
and store them in place of old ones in their local views. Ivisnemore challenging to providedependent
uniform sample@ such a setting. Even without Byzantine failures, go$giped membership only ensures
that eventually theveragerepresentation of nodes in local views is uniforin12, 16], and not thaevery
nodeobtains an independent uniform random sample. Faulty nodgsattempt to skew the system-wide
distribution, as well as the individual local view of a giveade.

In this paper, we address these challenges. We present Bi@leation 3, a gossip-based membership
service that stores a sub-linear number of ids (ee4.y/N) in a system of sizeV) at each node, and
provideseach nodewith membership samples that converge to uniform ones d@wver. t The main ideas
behind Brahms are (1) to use gossip-based membership wite sgtra defenses to make it viable (in the
sense that local views are not solely composed of faultyiids) Byzantine setting; (2) to recognize that
such a solution is bound to produce biased views due to at{aek precisely quantify the extent of this bias
mathematically); and (3) to correct this bias at each node.

To achieve the latter, we introdu@ampler a component that obtains uniform samples out of a data
stream in which elements recur with an unknown bias, usingwise independent permutatiory.[ We
prove Section 4 that Sampler obtains independent uniform samples fronbikged stream of gossiped
node ids. By using suchistory sampleof the gossiped ids to update part of the local view, Brahms
achievesself-healingfrom partitions that may occur with gossip-based membprshi particular, nodes
that have been active for sufficiently long (we quantify h@md) cannot be isolated from the rest of the
system. The use of history samples is an exampbgglification whereby even a small healthy sample of
the past can boost the resilience of a constantly evolvieg.WVe note that only a small portion of the view
is updated with history samples, e.t0%. Therefore, the protocol can still deal effectively withuch.

One of the important contributions of this paper is our mathgcal analysis§ection 9, which provides
insights to the extent of damage that Byzantine nodes caseand the effectiveness of various mechanisms
for dealing with them. Extensive simulations of Brahms wihto4000 nodes validate the few simplifying
assumptions made in the analysis. We consider two possifalis fpr an attacker. First, we study attacks
that attempt to maximize the representation of faulty idegal views at any given time. We show that as



long as faulty nodes comprise less tl”@nf the system, even without using history samples, the mouf
faulty ids in local views is bounded by a constant smallentbae. (Recall that the over-representation of
faulty ids is later fixed by Sampler; the upper bound on faigsyin local views ensures Sampler has good
ids to work with). If the adversary gains control of additdbmodes after uniform samples have already
been obtained, then Brahms can rearsgratio of faulty nodes.

Second, we consider an attacker that aims to partition theonk. The easiest way to do so is by
attempting to isolate one node from the rest. Clearly, onged® has obtained uniform samples of correct
nodes, it can no longer be isolated. We therefore study ackathunched on a new node that joins the
system when its samples are still empty, and when it doesat@ppear in views or samples of other nodes.
We further assume that suchiaagetedattack on the new node occurs in tandem with an attack on tire en
system, as described above. The key to proving that Brahevepts, w.h.p., an attacked node’s isolation
is in comparing how long it takes for two competing procegsesomplete: on the one hand, we provide
a lower bound on the expected time to poison the entire viethefttacked node, assuming there are no
history samples at all. On the other hand, we provide an upppend on how fast history samples are
expected to converge, under the same attack. Whenever rinerf@xceeds the latter, the attacked node
is expected to become immune to isolation before it is isdlatVe prove that with appropriate parameter
settings, this is indeed the case.

Finally, we simulate the complete syste®egttion §, and measure Brahms'’s resilience to the combi-
nation of both attacks. Our results show that, indeed, Beapravents the isolation of attacked nodes, its
views never partition, and the membership samples convergerfectly random ones over time.

Related Work. We are not familiar with prior work dealing with random nodeagpling in a Byzantine
setting. Previous Byzantine-tolerant membership sesvinaintained full local views1[7, 3] rather than
partial samples. Previous work on gossip-based partialsvigl, 11, 12, 16, 28], and on near-uniform node
sampling using random walksl3, 19, 23, 4] or DHT overlays [L8] was limited to benign settings.

One application of Brahms is Byzantine-tolerant overlagstnuction. Brahms'’s sampling allows each
node to connect with some random correct nodes, thus catisguan overlay in which the sub-graph
of correct nodes is connected. Several recent works, €0./] 2], have focused explicitly on securing
overlays, mostly structured ones, attempting to ensureathaorrect nodes may communicate with each
other using the overlay, i.e., to prevent tbeipse attacl{27], where routing tables of correct nodes are
gradually poisoned with links to adversarial nodes. Thesksvhave a different focus than ours, since their
goal is to construct (structured) overlay networks, whemsa present a general sampling technique, one
application of which is building Byzantine-resilient unsttured overlays.

2 Model and Required Properties

2.1 System Model

We consider a dynamic set of nodes, each of which can be eitti®e or passiveat any given time. Each
node is identified by a unique id, chosen when the node becaoi®e for the first time. The set of active
nodes at time is denotedA(t). Active nodes can communicate through a fully connected/orst with
reliable links. For simplicity of the analysis, we assumegiaciironous model with a discrete global clock,
Zero processing times, and message latencies of a singleutiin

Some of the active nodes arerrect and the rest ariaulty. Faulty modes can exhibit arbitrary behavior
(Byzantine faults). The subset of correct nodesdift) is denotedC(¢). Nodes can determine the source
of every message and cannot intercept messages addresgbdrtaodes (the standard "unauthenticated”
Byzantine model).In static systems (without churn), itasenon to require that faulty nodes comprise less



than some fractiorf < 1 of the nodes. In a dynamic setting, we require that the nurobfaulty nodes at
all times is limited by a constant fractiofiof the minimal number of active nodes, i..J,(A(t) \ C(t))| <
f-ming|.A(t)|. While this assumption rules out massive Sybil attadid (by bounding the number of faulty
node ids), it is weaker than assuming a certification authfti7], e.g., nodes can use historic information
for choosing new active ids.

We assume a mechanism that makes it costly for nodes to seighdted messages, which we call
limited messages, thereby limiting their sending rate. This meashacan be implemented in different
ways, e.g., computational challenges like Merkle's puz 8], virtual currency, etc. We assume that the
system-wide fraction of limited messages that all faultgescan jointly send in a single time unit is at most
p, for somep < 1. We also assume that the faulty nodes choose the destisatiail limited messages in
advance (i.e., they do not adapt their transmissions terirdiion learned during the run).

2.2 Membership Sampling Specification

At all times ¢, Brahms provides two tuples at every active correct neda neighbor list\,(¢) used for
communication, and sample listS, (¢). These lists may contain duplicates, and some entri€g i) may
be non-defined (denoted). We denote th&'th element in the neighbor list and the sample list at tinogy
Ni(t) andS:(t), respectively. Every correct node has a limited local gteyasymptotically smaller than
the maximal size of the active node set (i.e., hbdfi(t) andS, (t) are asymptotically smaller tha#(t)).
First, we require the overlay induced by to remain connected w.h.fzormally, we define a dynamic
directedoverlay graph which captures the knowledge of correct nodes about e&ehn at each time:

Nt £{c®), | {wo)lveNit)ncH}).

u€eC(t)

Requirement 1 With high probability, \/(¢) remains weakly connected at all

Next, we requireS to converge to a uniform sample of the connected overtégwever, when the set
of active nodes is constantly changing, the notion of a umifdistribution over it is meaningless. Hence,
like previous specificationsl| 12, 16], we consider the system’s properties after a p@jnthen the churn
of correct nodes ceases (i.&C(t) = C(Tp) for all t > T). We are interested ieventual independent
uniformsampling fromC (7). Note that we cannot require the same from the set of faultiesosince their
behavior is arbitrary. However, we require that (1) the piility of a sample being faulty does not exceed
the maximal fraction of faulty ids ivA(¢) after 7y, and (2) the probability of a sample being each specific
correct id is eventually betweqfn(ltT andm. Formally,

Requirement 2 If N/(t) is weakly connected for all > T} > Ty, then for allu, v € C(T}), all samples,
and alle > 0, there existd . > T3 such that for allt > T

1 . 1
— e < PrSi(t) =v] < te.
ez, JACT)] e e ]
In other words,
L= PrSi() =] < = e
—e < Pr[S,(t) =v] < .
IC(Tp)| IC(Th)|



1: function Sampler.init() Id stream
2. h <« randomPRF();q < L
3: function Sampler.next(elem) ! ,,neXt() 1 v 1y Iy

4. if g= 1 Vv h(elem < h(q) then ‘ Sampler ‘ ‘ Sampler ‘ ‘ Sampler ‘ ‘ Sampler ‘
q < elem

sample()

A 4 A 4 A 4 A 4

Validator ‘ Validator ‘ Validator ‘ Validator ‘

5:
6: function Sampler.sample()
7. return g

Figure 1: Uniform sampling from an id stream in Brahms. (a) Sampler's pseudo-code. (b) Sampling and
validation of /5 ids.

3 Brahms

Brahms has two components. The losamplingcomponent maintainssample listS — a tuple of uniform
samples from the set of ids that traverse the nddlec(jon 3.1 The gossipcomponent is a distributed
protocol that spreads locally known ids across the netwSdci{ion 3.2, and maintains a dynamigew ).
Each node has some initi&l (e.g., received from some bootstrap server or peer node.cdhcatenation
of V andS (denotedV o S) is the node’seighbor list\.

3.1 Sampling

Sampler is a building block for uniform sampling of uniqueraknts from a data stream. The input stream
may be biased, that is, some values may appear in it more thanso Sampler accepts one element at a
time as input, produces one output, and stores a single atexhany time. The output is a uniform random
choice of one of the unique inputs witnessed thus far.

Sampler usesiin-wise independepermutations]. A family of permutations over arangél ... |U]]
is min-wise independent if for any sé&t C [1...|U|] and anyz € X, if h is chosen at random frorH,,
thenPr(min{h(X)} = h(x)) = ITl\ That is, all the elements of any fixed s€thave an equal chance to
have the minimum image undér Pseudo-random (hash) functions (e.@4]] are considered an excellent
practical approximation of min-wise independent perniota, provided thafl/| is large, e.g.2'%.

Sampler Figure 1a)) selects a random min-wise independent functioipon initialization, and applies
it to all input values fiext () function). The input with the smallest image value endeted thus far
becomes the output returned by thenpl e() function. The property of uniform sampling from the set of
unique observed ids follows directly from the definition ahan-wise independent permutation family.

Brahms maintains a tuple é§ sampled elements in a vector &f Sampler blocksKigure Xb)), which
select hashes independently. The same id stream is inplit Samplers. Sampled ids are periodically
probed (e.g., using pings), and a Sampler that holds anveaubde is invalidated (re-initialized).

3.2 Gossip

Brahms’s view is maintained by a gossip protodeiglre 2. By slight abuse of notation, we denote
both the vector of samplers and their outputs (the samp)ebysS. Brahms executes in (unsynchronized)
rounds. It uses two means for propagation: {d$h— sending the node’s id to some other node, ang(#)

— retrieving the view from another node. These operationsed®/o different purposes: pushes are required
to reinforce knowledge about nodes that are under-repiesgsém other nodes’ views (e.g., newborn nodes),
whereas pulls are needed to spread existing knowledgerviitbinetwork 1]. A combination of pulls and



1: V :tuplef(,] of Ia 20: {Gossig

2: S :tuple[l] of Sampler 21: while true do

3: N =3 VoS 22: Vpush — Vpull — 0

4: Initialization (Vo): 23: forall 1 <i< af;do

5. VeV 24: {Limited push

6. forall 1<i</>do 25: send_lim (“push_request*) to rand(V, 1)

7: Sli].init() 26: forall 1 <i< ¢ do

8: updateSample (Vo) 27: send (“pull_request*) to rand(V, 1)

9: {Stale sample invalidatign 28:  wait(1)

10: periodically do 29: forall received (“push_request*) from id do
11: forall 1 <4< /{>do 30: Vpush — Vpush © {id}
12: if probe(S[i].sample()) fails then 31: forall received (“pull_request“) from id do
13: Sli].init() 32: send (“pull_reply“,V) toid
14: {Auxiliary functiong 33:  forall received (“pull_reply“, V') from id do
15: function updateSample (V) 34: if 1 sent the request, and this is the first refilgn
16: forall ide V,1<i< ¢y do 35 Voult <= Vpur 0 V'
17: SJi].next (id) 36:  if ([Vpush| < als A Voush Z0 A Vpurr # 0) then
18: function rand(V, n) 37 V — rand(Vpush, al1) o rand(Vpuu, $1) o rand(S, v41)
19:  return n random choices frorw 38:  updateSample(Vpush © Vpuil)

Figure 2:The pseudo-code of Brahms.

Pushed ids

Pulled ids

History samples

A 4 v
View [ ol [ Bl [yk] [ I, | sample

Figure 3:View re-computation in Brahms.

pushes is required because the representation of ids @imohgolely by pulls decays over time, whereas
the representation of push-propagated ids increases.

Brahms uses parametets> 0, 5 > 0 and~ > 0 that satisfya + 8 + v = 1. In a single round, a
correct node issues/; push requests ane¥, pull requests to destinations randomly selected from @/ vi
(possibly with repetitions). At the end of each roudandS are updated with fresh ids. While all received
ids are streamed t8 (Figure 1 Line 38), re-computing’ requires extra care, to protect against poisoning
of the views with faulty ids. Brahms offers a set of techngjgto mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an adversary with an uteldhrcapacity could swamp
the system with push requests. Then, correct ids would bpagaied mainly through pulls, and their
representation would decay exponentially. [Brahms employs limited push messages, hence the fraction
of faulty pushes does not exceed

Attack detection and blocking. While using limited pushes prevents a simultaneous attackllaorrect
nodes, it provides no solace against an adversary that flebegecific node. Brahms protects against this
targeted attaclby blocking the update of. Namely, if more than the expected; pushes are received, it
does not updat®. Although this policy slows down progress, its expecteddotpn the absence of attacks
is bounded (nodes recompufan most rounds). Thanks to limited pushes, some nodes makggss even
under an attack (Line 36).

Controlling the contribution of pushes vs pulls. As most correct nodes do not suffer from targeted attacks
(due to limited pushes), their views are threatened by frdla neighbors more than by adversarial pushes.
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This is because whereas all pushes from correct nodes aeet;a@ pull from a random correct node may
contribute some faulty ids. Hence, the contribution of mssand pulls td’ must be balanced: pushes must
be constrained to protect the targeted nodes, while pulkst fmel constrained to protect the rest. Brahms
updates) with randomly chosem/; pushed ids an@/; pulled ids (Line 37).

History samples. The attack detection and blocking technique can slowdowargeted attack, but not
prevent it completely. Note that if the adversary succeedadrease its representation in a victim’s view
through targeted pushes, it subsequently causes thisnviotipull more data from faulty nodes. As the
attacked node’s view deteriorates, it sends fewer pushesrtect nodes, causing its system-wide represen-
tation to decrease. It then receives fewer correct pusipesiing the door for more faulty pushe8rahms
overcomes such attacks using a self-healing mechanisnmebsha portion {) of V reflects thenistory, i.e.,
previously observed ids (Line 37). A direct use of historgsloot help since the latter may also be biased.
Therefore, we use a feedback frafnto obtain unbiased history samples. Once some correct iohhbes
the attacked node’s permanent sample (or the node’s id lEcampermanent sample of some other correct
node), the threat of isolation is eliminatdgigure 3illustrates the entire view re-computation procedure.
Brahms’s parameters entail a tradeoff between performameebenign setting and resilience against
Byzantine attacks. For example must not be too large since the algorithm needs to deal witinngton
the other hand, it must not be too small to make the feedbdekt®e. We show$ection § thaty = 0.1 is
enough for protecting’ from partitions. The choice af; and/; is crucial for guaranteeing that a targeted
attack can be contained until the attacked node’s sampbdizés. For examplel;, ¢y = O({/|C(Tv)|)
suffice to protect even nodes that are attacked immediapely joining the systemSection 5.2

4 Analysis - Sampling

In this section we analyze the propertiesSyfof a correct node:. Recall that each Samplét employs a
min-wise independent permutatidi i, chosen independently at random. L&) be the output of? at
time t. We define theperfectid corresponding td?, Vr € A(T)), to be the id with the minimal value of
R.h in A(Ty) (we neglect collisions for the sake of the definition). Ndtati’; can be either a correct or

a faulty id. InSection 4.1we show that the subset of correct idsSp eventually converges to a uniform
random sample frord(7y). In Section 4.2ve analyze how fast a node obtains at least one correct perfec
sample, as needed for self-healir®pction 4.3discusses scalability, namely, how to choose view sizds tha
ensure a constant convergence time, independent of system s

4.1 Eventual Convergence to Uniform Sample

Consider SampleR. Given thatVy is correct,R samples correct ids uniformly at random.V is faulty,

it may refrain from answering pings and become invalidatesteiad of remaining in the sample. However,
since faulty nodes do not adapt to the correct nodes’ randmices, we assume that such an invalidation is
not timed in order to capture any particular correct id iRtoWe therefore assume that each correct id has
an equal probability for taking the place of an invalidatadlfy node. The following theorem shows tiit
satisfies Requirement 2 of the membership sampling spdamiicgeeSection 2.2

1This avalanche process can be started, e.g., by oppoitafiistsending the target a slightly higher number of pusthes
expected. Since correct pushes are random, a round in whiftbiently few correct pushes arrive, such that Brahms duss
detect an attack, happens soon w.h.p.



Theorem 4.1 If N/'(t) remains weakly connected for eack T, for somel; > Ty, then, for allv € C(T),
ande > 0, there existd, > T such that for allt > T,

|(1:(;0-’;| e < Pr(R(H) = v) < —

Proof idea (seeAppendix A.1). The key to the theorem is to show that whened&it) remains weakly
connected, the id of each correct node eventually reactesy ether correct node w.h.p. This is because
the id has a non-zero probability to traverse a path to evamgct node in the system. Thus, each Sampler
will eventually settle on its perfect id, provided that iesrfect id is correct. Therefor®r(R(t) = Vr|Vr €
C(Ty)) —i—oo 1. Since the probability fol’z to be faulty is at mosy, Pr(R(t) = Vr) approaches the
range[l — f, 1]. The theorem follows sincév € C(Ty), Pr(R(t) = v|Vg € C(Tp)) = Wilfo)\ and since we
assume that wheWi, is faulty,0 < Pr(R(t) = v|Vr ¢ C(Tp)) < Wilfo)\

The next lemma discusses the convergence rate of samples.

Lemma 4.2 If no invalidations happen, for each correct nodethe expected fraction of Samplers that
output their perfect id grows linearly with the fraction afique ids fromA(T;) observed by..

Proof : Let D(t) C A(Tp) be the set of ids observed lyuntil time ¢. Then, for each samplek, Pr(Vg €

D(t)) = %. Since for eactR such thatl’y € D(t), R(t') = Vg for t’ > ¢, the lemma follows. O

4.2 Convergence to First Perfect Sample

Here we analyze how many ids have to be observed by a corrdetman order to guarantee, w.h.p., that
its S,, containsat least ongoerfect id of an active correct node. This provides an uppand on the time it
takesS,, ensure self-healing and prevaris isolation. We assume thatjoins the system at tim&;, with
an empty sample. Lek(t) be the number of correct ids observed dyrom time 7, to ¢. Our analysis
depends on the number of unique ids observed mather than directly oi. Obviously, one can expect
the observed stream to include many repetitions, as it isalistic to expect our gossip protocol to produce
independent uniform random samples (df6]). Indeed, achieving this property is the goal of Sampler. |
order to capture the bias ik, we define astream deficiency factpf) < p < 1, so that a stream of length
A(t) produced by our gossip mechanism is roughly equivalenth@purposes of Sampler, to a stream of
length pA(¢) in which correct ids are independent and distributed unifgrat random. This is akin to the
clustering coefficient of gossip-based overlay6][ We empirically measured to be about.4 with our
gossip protocol (seSection 5.2

We define theperfect sample probability?SP,(t) as the probability thas, (¢) contains at least one
correct perfect id. The convergence rateRff P is captured by the following:

pA(t)

Lemma 4.3 Letu be a random correct node. Then, for- Ty, PSP, (t) > 1 — ((1 — f)e €T + f)f2,

Proof idea (seeAppendix A.2). A Sampler outputs a correct perfect id if (1) its perfect iddsrect, and
(2) this id is observed by the Sampler in the stredhy.P is the probability that at least one 6f Samplers
outputs a correct perfect id.

Figure 4.2illustrates the dependence BfS P on the stream siz&(¢) and on/y. When the sample size
is 40 = 4/]|A(Tp)|, and the portion of unique ids in the streanpis= 0.4, a perfect sample is obtained,
w.h.p., after300 ids traverse the node.
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Figure 4:Growth of the probability to observe at least one correct pefect sample (Perfect Sample Probability
- PSP) with the stream size, forl000 nodes,f = 0.2, and p = 0.4.

4.3 Scalability

From Lemma 4.3we see thatPSP depends om\ and/,. To get a higherPSP, we can increase either
one. While increasing\ is achieved by increasing, and consequently the network traffic, increasing
has only a memory cost. We now study the asymptotic beha¥iét <P, (¢) as the number of the nodes,

N, increases. When a node h@sSamplersf2(¢;) of them have correctz w.h.p. Therefore, w.h.p.,
PA(t) _ PA(t)Eo

PSP,(t) > Q1 — (e~ )2)=Q(1 —e” ~ ). Foraconstant, A(t) = Q(¢?) since there ar€(¢;)

2
pulls, obtaining2(¢;) ids each. ThusPSP,(t) > Q(1 — e‘%). For scalability, it is important that for a
givent, PSP,(t) will be bounded by a constant independent of the system $izis.condition is satisfied
when(2-ly = Q(N), e.g., wherly = ¢ = Q(v/N), ort; = Q(v/N) andly = Q(v/N). To reduce network
traffic at the cost of a higher memory consumption, one catyset(2(log N) and/y = Q(

5 Evaluation — Overlay Connectivity

L)
log? N/*

We prove that Brahms, with appropriate parameter settingtains overlay connectivity despite adversary
attacks. Our main methodology is mathematical analysischwhike previous studiesl], makes some
simplifying assumptions. The theoretical results arededéd through extensive simulations.

Definitions. We study time-varying random variables, listedrable 1 A local variable at a specific correct
nodew is subscripted by,. When used without subscript, a variable corresponds todora correct node.
Correct (resp., faulty) ids propagated through pushes alid are denoted (green) (resp.r (red)). We
defineV(t), a subgraph afV'(¢) induced byV of correct nodes: (edges induced &ywre omitted):

V() £{ct). |J {(wv)lv e Vi) nCt)}}.

ueC(t)

For a nodeu, the number of instances afin views of correct nodes is called its-degree and the number
of correct ids inV, is called itsout-degree Thedegreeof « is the sum of its in-degree and out-degree.

Assumptions. Brahms's resilience depends on the distribution of in-degrand out-degrees W(t). We
assume a necessary condition for initial connectivity, elgirthat the view of every joining correct node
contains some correct ids (the ratio of faulty ids in the viswmot necessarily bounded k). We further
assume that before the attack starts, the in-degrees aittégrees of all correct nodes are (roughly) equal.
This property is a close approximation of reality, since migpe gossip process preserveslit [
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Correct node u Random correct node Semantics

T, () /T (1) x(t)/z(t) number/fraction of faulty ids in the view
Yu(t)/7u(t) number/fraction of instances among the views of correcesod
G (8) /GRS (1) gPush(¢) /gPush (¢) number/fraction of correct ids pushed to the node
pUSh( )/FRIE () ppush(y) Jppush(p) number/fraction of faulty ids pushed to the node
&My g @y gPle) /gt number/fraction of correct ids pulled by the node
PRy /R () ppull(g) fppull () number/fraction of faulty ids pulled by the node

Table 1:Definition of common random variables.

Adversarial behavior. The adversary’s way to partition the overlay is throughéasing its representation
in the views of correct nodes. We assume the worst-case loelmvfaulty nodes. In particular, they push
faulty ids to correct nodes and always return faulty ids tibsspu

We first bound the damage that can be caused witkingleround (a similar approach was taken, e.g.,
in [20]). In Appendix B we proveLemma B.1 which asserts that in any single roundhyaancedattack,
which spreads faulty pushes evenly among correct nodesmizas the expected system-wide fraction of
faulty ids,z(t), among all strategies. I8ection 5.1we prove that if this attack persists, the ratio of faulty
ids in the system eventually stabilizes at a fixed point. Wdysthe convergence process, and show that for
certain parameter choices, this fixed point is strictly $enahan 1.

Alternatively, an adversary can try to partition the netw(mather than increase its representation) by
targeting a subset of nodes with more pushes than in a balatt@ek. Without prior information about the
overlay’s topology, attacking a single node can be most dgi@mgasince the sets of edges adjacent to single
nodes are likely to be the sparsest cuts in the oveff&gtion 5.2hows that had Brahms not used history
samples, correct nodes could have been isolated in thisenahtowever, Brahms sustains suetngeted
attacks, even if they start immediately upon a node’s joimemvit is not represented in other views and has
no history. The key property is that Brahms’s gossip prev@ulation long enough for history samples to
become effective.

Simulation setup. We validate our assumptions using simulations with N=10&fas or more. Each data
point is averaged over 100 runs. The maximal possible numildfaulty nodes,f N, remain always active.

For simplicity,p = f. A different subset of faulty nodes push their ids to a giverect node in each round,
using a round-robin schedule. Faulty nodes always resppprbbe requests, to avoid invalidation.

5.1 Balanced Attack

In the analysis of a balanced attack we ignore blocking sitscenly effect is to slow the convergence
rate. Simulations show that this assumption has littlecetba the results. Since a balanced attack does not
distinguish between correct nodes, we assume that it pessére in-degrees and out-degrees of all correct
nodes equal over time:

Assumption 5.1 For all u € C(Tp) and allt > Ty: z,(t) = x(t), andy, (t) = €1 — z,(t).

We show the existence of a parameter-dependent fixed poit{t pand the system’s convergence to it.
Since the focus is on asymptotic behavior, we assumely.

Lemma5.1 Fort > Ty, if p £ 0 or (t) # 1, the expected system-wide fraction of faulty ids evolves as

Bt +1)) = 0o p]j(l —yy AEW) + (L= FO)H0) + .




Local view node 1

Local view node i Local view node 1 Local view node i
i

push from pull from faulty* " "pull from i faulty with probability x(t)

l l faulty node I

Time t+1: 1 I Time

Correct id I Faulty id Correct id I Faulty id

lost push

(a) Impact of push (b) Impact of pull

Figure 5:Fixed point analysis illustration.

Proof : Consider the re-computation dfat a correct node at timet. The weights of pushes, pulls, and
history samples in the recomputed view areS and~, respectively. Since the random selection process
preserves the distribution of faulty ids in each data squbeeprobability of a push- (resp., pull)-originated
entry being faulty is equal to the probability of receivinfpalty push (resp., pulling a faulty id).

Figure Ha) illustrates the analysis @P""(¢). Each correct node wastes an expected fractiohof its
pushes because they are sent to faulty nodes. The rest argittean equal probability over each outgoing
edge inV(t). Since out-degrees and in-degrees are equal among alttowdes, each correct node
receives the same expected number of correct pudt@8™" (t)) = (1 — #(t))aly. The variableyh™" (¢)
is binomially distributed, with the number of trials equalhe total number of pushes among all nodes with
an outgoing edge ta. Since this number is large, the number of received corresigs is approximately
equal among all correct nodes, i.g:"" () ~ (1 — &(t))aly, for all u.

The total number of correct pushesiié; |C(7})|, which is1 —p out of all pushes, hence the total number
of faulty pushes i%]C(TO)\. Thereforeu receives exactlyE“Sh(t) = %ael faulty pushes, i.e., their
fraction among all received pushes is:

_p_
Fpush (t) _ l—pagl p

v T el + (T—a®)alh p+ (1 —p)(1—a(t)

Hence, the expected ratio of push-originated faulty idg,jris am.

Figure §b) depicts the evolution of pull-originated faulty ids. nEe ail correct nodes have an equal
out-degree, a correct node is pulled with probability z(¢), while a faulty node is pulled with probability
Z(t). A pulled id is faulty with probabilityz(¢) if it comes from a correct node, and otherwise, it is always
faulty. Hence, the expected fraction of pull-originatedif@ids is5(z(¢) + (1 — Z(t))z(t)).

Finally, sincet > Ty, the history sample is perfect (the ratio of faulty ids irsif). Hence, its expected
contribution isy f, and the claim follows. O

We now show that the system converges to a stable state. & wakicalled afixed pointof () if
E(z(t+ 1)) = z(t) = . Substituting this requirement into the equation froemma 5.1 we get:

Lemma 5.2 For o, 3,7, p, f € [0, 1], every real root) < & < 1 of the following cubic equation is a fixed
point of z(t), except for the root: = 1 for p = 0:

B(l—p)a®+(28p =38 —p+1)F + (vfp—vf + 28— 1)Z + (ap +7f) =0.
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(a) Fixed pointz as a function op, fory = 0andy > 0 (b) Convergence té: N = 1000, p = 0.2, a = 3 = 0.5 andy = 0.

Figure 6: System-wide fraction of faulty ids in local views, under a b&nced attack: (a) Fixed points (b)
Convergence process.

If v = 0 (no history samples); = 1 is always a root. We call it &ivial fixed point. This is easily
explainable, since if the views of all the correct nodes atalliy poisoned, then neither pulls nor pushes
help. Appendix Bshows that ify = 0, there can exist at most one nontrivial fixed pdinK z < 1. For

example, ifv = 3 = L andy = 0, theni: = 25V 207 V(ff;f’ﬂ, for0 < p < 1. In contrast, if the fraction of faulty
pushes exceec% the only fixed point is 1, causing isolation of all correcties.
If v > 0, there exists a single nontrivial fixed point for @ll This highlights the importance of history

samplesFigure §a) depicts the analysis results, perfectly matched by Isitions.
We conclude the analysis by proving convergence to a naeitfixed point.

Lemma 5.3 If there exists a fixed poirit < 1 of z(¢), andz(7p) < 1, thenz(¢) converges ta:.

Proof idea (seeAppendix B). We show that for alt, the sequence af(t) is trapped betweef and another
sequenceyp(t), that converges td. Hillam’s theorem 15] is then used to prove sequence convergence.

Since the balanced attack does not distinguish betweeaatarodes, the same result holds fqi(t),
for each correct node. Figure gb) depicts the convergence to the nontrivial fixed pointrfrzarious initial
values ofz(t). The analytical and simulation results are similar. Theefa& convergence is slightly slower
because the analysis ignores blocking.

5.2 Targeted Attack

We study a targeted attack on a single correct nadehich starts upom’s join at 7. We prove that: is
not isolated from the overlay by showing a lower bound on t#tpeeted time to isolation, which exceeds an
upper bound on the time to a perfect correct sample (a suific@ndition for non-isolationSection 4.

Lower bound on expected isolation time. As we seek a lower bound, we make a number of worst-case
assumptions (formally stated Appendix Q. First, we analyze a simplified protocol that does not emplo
history samples (i.e;y = 0), so thatS does not correct’s bias. Next, we assume an unrealistic adaptive
adversary that observes the exact number of correct puertQSgEUSh(t), and complements them with
aly — gi""(t) faulty pushes — the most that can be accepted without blgckihe adversary maximizes

its global representation through a balanced attack oroakct nodes # w, thus minimizing the fraction
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of correct ids that, pulls from correct nodes. Finally, we assume thas not represented in the system
initially, and it derives its initial view from a random seft@rrect nodes, where the ratio of faulty ids is at
the fixed point Section 5.

Clearly, the time to isolation iV(¢) is a lower bound on that iV (¢). We study the dynamics of the
number of correct ids im’s out-degree iV(¢), {1 — x,(t), andu’s in-degreey, (t). We show that for any
two specific values aof,,(¢) andy, (t), the expected out-degree and in-degree values-at are

<€1 — E(z,(t + 1))) B ( B(1 — k) o > " <€1 - wu(t)>

E(yu(t + 1)) oty B(1— ) () )
Note that the coefficient matrix does not dependegf¥) andy,,(¢), and the sum of entries in each row is
smaller than 1. This implies that once the in-degree and tivelegree are close, they both decay exponen-
tially. (Initially, this does not hold becauseis not represented, i.ey, (1) = 0.) Therefore, the expected
time to isolation is logarithmic witld; . Note that this process does not depend on the number of reides
blocking bounds the potential attacks @independently of the system-wide budget of faulty pushesd H
blocking not been employed, the top right coefficient woldsidnbeert) instead ofv, because the adversary
would have completely hijacked the push-originated esiné’,. The decay factor would have been much
larger, leading to almost immediate isolation.

Figure {a) depicts the dynamics afs expected degree (i.e., the sumus in- and out-degrees) until it

becomes smaller than 1. Simulation results closely followamalysis. The temporary growthqis degree
att = 1 occurs because becomes represented in the system after the first round xeor@e, the average
time to isolation for/; = 2+/N is 10 rounds.Figure 7b) depicts the same results in log-scale, emphasizing
the exponential decay afs degree and the logarithmic dependency betwigend time to isolation.

307 —— 10° : :
O Simulation: | =20 - - -Theory: ;=20
25 - - -Theory: 1,=20 ... Theory: ;=40
# Simulation: | =40 —Theory: 1,=80
S (e N Theory:  1,=40 > 0l — Isolation Threshold
£ m Simulation: |, =60 5 - )
=S E u= -
5 15-*: —Theory: 1,260 § N
] * —Isolation Threshold > .
g 8 ,
8 10¢ =10
Q- 3
5,
0 : —3 s 10" : :
0 5 10 15 20 0 5 10 15
Time Time
(a) Normal scale (theory and simulatiofyj,= 1000 (b) Logarithmic scale (theory only), independentof

Figure 7:Targeted attack without history samples: node degree dynains. N = 1000, p = 0.2, « = 3 = 0.5,

~ = 0. Without history samples a targeted attack isolates: in logarithmic time in ¢;.

Upper bound on expected time to perfect correct sampleLemma 4.3oundsP S P, (t) for given values
of the non-unique stream si2€t), and the deficiency factgr (Section 4. The expected number of correct
ids observed by, till the end of roundZ" is A(t) = S-12E" 1 (E(g2"" (1)) + B(g2""(t))); the expected
values ofg}™" (£) andgE™ (¢) are by-products of the analysisAppendix G for v = 0. Figure 8(a)depicts
the deficiency factop measured by our simulations, which behaves similarly fovalles of/y: p > 0.4
for all t. Figure 8(b) depicts the progress of the upper bounideaima 4.3with time, with A(¢) computed
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Figure 8: Dynamics within a targeted node (V = 1000, p = 0.2, « = 8 = 0.5 and v = 0): (a) Fraction of
unique ids in the stream of correct ids,p. (b) Growth of Perfect Sample Probability (PSP) with time,p = 0.4.
PSP becomes high quickly enough to prevent isolation.

as explained above and= 0.4. The corresponding simulation results show, for each tijrike fraction

of runs in which at least one correct id &, is perfect. For, > 40, the PSP becomes close to 1 in a few
rounds, much faster than isolation happdrigire {b)). For¢; = 20, it stabilizes ad.5. The growth stops
because we run the protocol without history samples, thbscomes isolated, and the id stream ceases.
A higher PSP can be achieved by independently increaking.g., if /5 is 40, then the PSP grows t@8
(Figure 4.2. Note that perfect samples only provide an upper bound t+healing time, asS,, contains
imperfect correct ids, and also becomes sampled by other correct nodes, w.h.p. Thasesfaoupled with
history samplesy > 0) completely prevent’s isolation, as shown iGection 6

6 Putting it All Together

In previous sections we analyzed each of Brahms’s mechansgparately. We now simulate the entire
system.Figure 9depicts the degree of nodein A/ (¢) under a targeted attack. Nodaemains connected
to the overlay, thanks to history samples=€ 0.1). Note that the actual degree @fin A/ (¢) is higher than
the lower bound shown iBection 5.2 due to the pessimistic assumptions made in the analysikigtary
samples, no imperfect correct ids, etc.).

4 100t
2
£ 80 o EEER *okx
‘S *
z ¥
2 60 E -©-Simulation: |, =20
< o % Simulation: | =40
g 40 k-*.*** = Simulation: |, =60
: 000 00®
g 20R e o o©°
S Jee-e©
o ‘ ‘ ‘ ‘
0 20 40 60 80
Time

Figure 9:Degree dynamics of an attacked node iV'(¢), N = 1000,p = 0.2, = 3 = 0.45and v = 0.1.
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Figure 10: Fraction of (a) perfect samples and (b) faulty nodes inS, under a balanced attack (f = 0.2), for

1000, 2000, 3000 and 4000 nodes,ls = 2v/N.
We now demonstrate the convergenceSdh the correct nodes. We simulate systems with up/te=

4000 nodesy; and/, are set t@+/N. To measure the quality of sam@eunder a balanced attack, we depict
the fraction of ids inS that are indeed the perfect sample over tiffigre 10(a). Note that this criterion is
conservative, since missing a perfect sample does not atitwatty lead to a biased choice. More thaV

of perfect samples are achieved within less than 15 rounds; = ¢; = 3v/N, the convergence is twice as
fast. Figure 10(b)depicts the evolution of the fraction of faulty idséh Initially, this fraction equalg, and

at first increases, up to approximately the fixed point’s @allhis is to be expected, since the first observed
samples are distributed like the original (biased) datastr. Subsequently, as the node encounters more
unique ids, the quality of improves, and the fraction of faulty ids drops fastftoThe protocol exhibits
almost perfect scalability, as the convergence rate isaheedorN' > 2000.

7 Conclusions

We presented Brahms, a Byzantine-resilient membershiplgagralgorithm. Brahms stores small views,
and yet resists the failure of a linear portion of the nodesnsures that every node’s sample converges to
a uniform one, which was not achieved before by gossip-basmuibership even in benign settings. We
presented extensive analysis and simulations explaimi@gnipact of various attacks on the membership,
as well as the effectiveness of the different mechanismirBsaeemploys.
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A Analysis - sampling

A.1 Eventual convergence

Proposition A.1 If N (t) remains weakly connected for eath> T for someT; > T, then, for each
u,v € C(Tp), there is a positive probability af € V,(¢;) for infinitely many timeg, > T7.

Proof : Fort > T3, we define thgt)-reachable sebf «, denotedl’,(¢), as a set of correct ids that have
nonzero probability to appear W, (t*), for someT; < t* < t. Clearly,I',(T1) = V,(T1)(C(Tp), and
ry(t) C Tyt + 1), forallt > 7. We show that as long ds,(t) C C(Tp), the setl’,(t) grows by at
least one correct id each three rounds. For simplicity wesicken a slightly transformed protocol that does
not employ blocking. The only effect of this is a faster, byoastant factor, growth rate @f,. Note that
v € I'y(t) impliesPr(v € V,(t')) > 0 for all ' > ¢, asv can remain in/, indefinitely, e.g., by repeatedly
exchanging with: push messages, orifis sampled by into S,, and then returned by the history sampling
mechanism td/,,.

A new entry inV,(t) can appear following (1) a push from some other nod@) pulling a view from
some other node, and (3) applying a history sample froffy(¢). Let us define the effects of these three
operations as followingt’,(t) = I',(t — 1) | A(t) N C(Tp), where

A(t) _ APUSh(t) U Apull(t) U Ahistory(t)
is the set of nodes that can potentially redglit). We now describe each of its components.

AP () = {olu e Vot = 1)} [ {ollult =2)NVu(t = 2) # 0} | {vllu(t = 3) N S,(t - 3) # 0}

is a set of to all the node ids that can potentially reachrough push. Note that only the first term refers
to the direct pushes to. The second term refers to pushes to some intermediate model’, (¢ — 2),
that can then be pulled hy. The second term refers to the nodes that first sample sosren@dliate node
w € T',(t — 3) from their history sample, then pushg and only then their ids can be pulled byrom w.

APy = ] Wt —1)

vET Y (1)

is a set of to all the nodes thatcan potentially pull from.
Ahistory(t) — Su(t . 1)

is a set of to all the nodes thatcan potentially sample from its history sample.

Recall that\/(¢) is a directed graph spanned by, (¢) |J S, (t)) (\C(t) of all correct nodes. Since
N (t) is connected, for any subset ©f7}), in particularl’,(¢), there exist at least one edge between that
subset and the complementing subset. Consider amedé(7y) \ I',(¢), connected to some € I',,(t) by
an edge inV (¢). It is easy to see thatwill appear in eitherA(t + 1), A(t + 2), or A(t + 3), depending
onw and the origins of the edge (e.g., on whether u, whether the edge originated frowy or Sy, etc.).
Therefore, for at least each third roundA(¢) (T, (t) # 0, andT',(¢) is a proper superset &f,(t — 1),
which guarantees that y= 71 + 3|C(1y)|, I'.(¢) will contain all the nodes i€ (1p).

We have shown that by the tim@ + 3|C(Ty)|, all ids inC(Ty) have a positive probability to appear in
V. between timéel; andT + 3|C(7p)|. Obviously, we can start over and see that after the nexbger
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3|C(Tv)| rounds all ids irC(7y) had a chance to appearlif, and so on. We conclude that aftér, each id
in C(Tpy) can appear iV, infinitely many times. O

The following proposition shows that each correct perfdcts can eventually be observed @, so
that there exist time, such thatR(t) = V.

Proposition A.2 If N (t) remains weakly connected for eath> T for someT; > T, then, for each
VR c C(To)
lim PI‘(R(t) = Vg|Vr € C(Tp)) = 1.

t—o00

Proof : Let nodeu be the owner ofR. It follows from Proposition A.1that the probability o’z appear in
V., and consequently im's stream approachds The proposition follows immediately. O
W assume that each correct id has equal probability to tal@emf an invalidated faulty id in a Sampler.

Assumption A.1 In each SampleR, such thatl’r ¢ C(Tp), for eachv € C(1}) and for eacht > Tj,

1
The assumption is justified since the if faulty nodg responds to all invalidation probeBr(R(t) =
v) = 0, and if it never responds to the®y(R(t) = v) = WlToﬂ Otherwise, if it sometimes does and

sometimes does not, since faulty nodes do not adapt to thedboices of correct nodes, no correct id will
be overrepresented compared to the other correct nodes.

Theorem 4.1(restated) If N (¢) remains weakly connected for each> 77, for somel; > Ty, then, for
all v € C(Tp), ande > 0, there existd. > T} such that for allt > 7.

’é(;ojg‘ e < Pr(R(t) = v) < —

Proof : We can writePr(R(t) = v) as following:

Pr(R(t) =v) = Pr(R(t) =v|Vr € C(Ty)) - Pr(Vg € C(Ty))
+ Pr(R(t) = o[V ¢ C(Th) - Pr(Va & C(Ty).

From Proposition A.2ve know thatlim;_. ., Pr(R(t) = Vz|Vr € C(Tp)) = 1, so that

lim Pr(R(t) = v|Vi € C(Tp)) = Pr(Vi = v|Vi € C(Tp)) = \C(tlro)\‘

From here, for each > 0, there existd, > T; such that for alt > T,

1 1
——— — ¢ < Pr(R(t) =v|Vg € C(Tp)) < —— +¢.
)] (R(t) = vlVe € CT0)) < foryy
Using AssumptiorA.1, and sinc&r(Vy € C(1Ty)) > 1— f andPr(Vi € C(Ty)) < f, we boundPr(R(t) =
v) as following. For alk > 0, there existd. > 77 such that for alt > 7.
1—f 1

ey~ < PrED =) < Eay

+e.
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A.2 Convergence rate

In the following lemma we study the dependency between thbgtility of a sampler to output a correct
perfect id and the numbé¥(¢) of correct ids observed by the Sampler, and the stream deficfactorp.
Proposition A.3 For |C(1p)| > 1 and for eacht > T3, for somel; > T,

pA(t)

Pr(R(t) = Va|Vg € C(Tp)) = 1 — e TT0)T,

Proof : Sampler outputs its perfect idr only after that id passed in the Sampler’s input stream. 8o th
probability of R(t) # Vg is the probability thafl’z did not appear in the stream of during the rounds
Ty < t' < t. Denote element (considering only the correct ids) in the input streanidfy G(;j), and note
that for eachy € C(Tp), Pr(G(j) = v) = W%O)\ Then,

PA(t)
Pr(R(t) # V|Vr € C(Ty)) = Pr(Ve ¢ |J GU)IVa € C(Tv)) =
j=1

PA()
[1 Pr(GG) # ValVk € C(Ty)) =
=1

PA(2)
(1 = Pr(G(j) = Vr|Vg € C(Tp))) =

(1 o) -

()

Sincem < 1,wecanrelyon —x ~ e~ for z < 1 and approximate the above as following

<.
Z
~ =

p

<
Il

_ 1 \PA) _ pA®)
Pr(R(t) # Vr|Vr € C(Tp)) = (e \C(To)\) = ¢ €T,

From now on, we assu% is small enough, so we use equality. It is now obvious that

pA(t)

Pr(R(t) = Vg|Vr € C(Tp)) =1 — e €Tl

Lemma 4.3(restated) Letu € C(1y) be a random correct node. Then, for- T,
NG &
PSP,(t)>1— ((1 — f)e Tl + f) .

Proof : Sincelsy of u's Samplers are independent, the probability of each onawe h correct perfect id is

Pr(Vig € C(Ty)) = 'A(ZB (%f%)' S
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Similarly,

Pr(Vi ¢ C(Ty)) = W

Based orProposition A.3the probability ofR(¢) not being a correct perfect id is

</

PI‘(R(t) 75 VR V VR §7§ C(T())) = PI‘(R(t) 75 VR’VR S C(T())) PI‘(VR S C(To)) + PI‘(VR Qé C(TO))
<(1- f)e_% + f.

We now calculate the perfect sample probabift§ P, (¢), which equalsl minus the probability of each of
{5 Samplers not outputting a correct perfect id.

Lo

PSP,(t) = 1-]]Pr(R(t) # VaVVk ¢ C(Tp)) =
=1

1 — (Pr(R(t) # VR V Vg ¢ C(Tp)))"? >

At £2
1 ((1 — fye et +f> .

B Balanced Attack Analysis

B.1 Short-term Optimality

We now prove that in any single round, a balanced attack nmiagshe expected system-wide fraction of
faulty ids,z(t), among all strategies. Consider a sched@leC(7;) — N that assigns a number of faulty
pushes to each correct node at rodndd schedule isalancedif for every two correct nodes andw, it
holds that/R(u) — R(v)| < 1. Otherwise, the schedule ibalanced We prove that every unbalanced
schedule is suboptimal. All balanced schedules are eqoptlynal, for symmetry considerations.

Lemma B.1 If scheduleR is unbalanced, then there exists another schedule thatdegoa larger expected
ratio of faulty ids thanR in roundt + 1.

Proof : Since a schedule of faulty pushes in roundbes not affect the pulls in this round, it is enough to
prove the claim for the push-originated ids. Consider twdesyu andv, such thatR(u) > R(v) + 1.
Consider an alternative scheduké that differs fromR in moving a single push from to v. Consider the
change in the expected cumulative fraction of push-origithdaulty ids inV, (¢t + 1) andV, (¢t + 1) after
this shift (in the other nodes, the ratio of faulty ids doesai@mnge).

The probability of a push-originated view entry at nadeeing faulty, provided thak(«) faulty pushes
were received, is equal to the expected fractiof¢f) among all pushes received by Note thatR(u) is
set in advance, i.e., without knowing the number of rece@uect pushes2"" (¢) (Section 2.} Condi-
tioning on the latter, we get:

h h C(XT%)' h R(u)
E(F"™ rg™" = R(u)) = Prlgy™*(t) = G] -
& g R(u) +G
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We need to show that

E(FR e = R(w) = 1)+ B ™ = R(v)+1) > B r ™ = R(u))+EF P = R(v)),

i.e.,
|C(To)] |C(To)|
R(u) R(v)+1
Pr push — . P push e S AL
Gz::l L™ (1) = Gl gy —1+GJr Z tl = roriza
IC(To)] IC(To)|
R R(v)
> push PUSh -7
Z Prg =Gl Z Prlg =0 71 a

Since all correct nodes have the same in-degreg(in (Assumption 5.}, g5""(¢) andg5"" (¢) have iden-
tical (binomial) distributions. Hence, it is enough to shihat
R(u) —1 R(v) +1 - R(u) N R(v)
R(u)—=14G R(w)+1+G ~ R(u)+G R()+G’

forall G > 0 and allR(u) > R(v) + 1 > 0. We start simplifying:

e G
(R — )R =150 (R T RO 140G =

SinceR(u) — 1> R(v) +1 >0,

_G e
B +ORW-1+0 (R0 +G) RO +1+0)
N _G . G
R+ O RW —1+0)  (R) -2+ G)(R@) —1+C)
G 1 1 G 2

| = : > 0.

= R(u)—1+G'[R(u)—2+G_R(u)+G R(u)+ G (R(u)+G)(R(u) —2+G)

We conclude by showing that all balanced schedules arelgaqumimal for the adversary.

Proposition B.2 Every two balanced schedules induce the same expectedifraxftfaulty ids in round
t+1.

Proof : R can be transformed int® by a sequence of moves of a single push message fromwndale
nodewv, such thatR(u) = R(v) + 1 whereask’(v) = R'(u) + 1. For symmetry reasons, neither of these
moves alters the expected cumulative fraction of faultyrétived byu andv. Hence, each transformation
produces a schedule that implies the sarftet 1) as the previous one. O
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Figure 11:Nontrivial fixed points & (depicted by circles), fora = 3 = %, v =0.

B.2 Fixed Point Analysis

Fixed point values. Considery(z) £ (1 —p)#3+ (26p—38—p+1)Z%+(vfp—vf+28— 1) +ap++f.
By Lemma 5.2 the fixed pointz is a root ofg(z). Note thatg(0) = (a +v)p > 0, andg(1) = p(a + 5 +
vp — 1) < 0. Hence, ify > 0, then the function has a single feasible root (0, 1) (the others lie outside
[0, 1]). In other words, there is always a single nontrivial fixeéhpolf v = 0, thenz = 1 is always a root
(a trivial fixed point). Since there exists an infeasible atag root, this leaves room for at most one more
root0 < z < 1 (i.e., theremayexist at most one nontrivial fixed pointlrigure 11depicts the behavior of
g(x)fora=p= % (v = 0), and different values gi. The fixed points are depicted by circles.

Two more parameter combinations deserve special interest:

1. 5 =1,a =~ = 0 (pull only, no history samples). The only valid rootis= 0, for all p. That is, if
none of the views initially contain a faulty id, and the fguttodes cannot push their own ids, then the
latter will remain unrepresented.

2. a = 1,8 =~ = 0 (push only, no history samples). The only valid roottis= 1%}), forp < %

That is, a nonzero fraction of correct ids can be maintaiffede majority of pushes are correct. This
follows from the fact that a single correct push and a singldty push equally contribute to the view.

Convergence. We prove convergence to a nontrivial fixed point.
Lemma 5.3(restated) If there exists a fixed point < 1 of Z(¢), andz(7p) < 1, thenz(t) converges ta.

Proof : We definey(z) : [0,1] — [0,1] asy(Z) = W+ﬁ(m+(1 Z)Z)+~f. The sequence of
expected values af(t) is defined by the iteration schen&(t + 1) = (z(t))}, for t > Ty. We show that
for any z(Ty) < 1, this scheme converges 40 For this purpose, we define an auxiliary sequepgé)}
that converges t@, such that for each the value ofz(t) is trapped betweefi and¢(t), thus implying the
desired result.

A straightforward calculus shows two facts to be used thinoug the proof:

1. 4(Z) is monotonically increasing far € [0, 1], since bothm andz + (1 — )7 = 27 — 72
are monotonically increasing in this interval.
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2. The absolute value of the first derivativeydfr) for « € [0, 1] is bounded by a consta#f (except for
a combinatiorp = 0,z = 1 which we do not consider).

By the mean value theorem, for all, z5 € [0, 1] (Z1 < Z2), there existg’ € [Z1, 22| such that

Y(E) — Y(@) = ) - (72— ).

Hence, the function satisfies the Liphschitz condition withstantx’, namely, for each pait;, Z; € [0, 1],

it holds that|y(z1) — ¥(Z2)| < K|Z1 — Z2|. Therefore, by Hillam’s theoremlp], the iteration scheme
{op(t +1) = Ap(t) + (1 — NY(o(t))}, wherex = KLH converges to a fixed point af(x) for each
»(Ty) € [0, 1]. Itremains to show that the sequer{agt)} is confined betweef and{¢(¢) }, and therefore,
it also converges t@. Specifically, we argue that:

1. Assume that < z(Tp) = ¢(1p) < 1. Then, (a) the sequende(t)} converges ta:, and (b) for all
t > Ty, it holds thatt < z(t) < ¢(t).

2. Assume thab < z(Ty) = ¢(Tp) < . Then, (a) the sequende(t)} converges ta:, and (b) for all
t > Ty, it holds thaty(t) < #(t) < Z.

We prove the first part of the claim (the second part’'s proadyisimetrical). Recall that is a single
nontrivial fixed point. By the definitiong is the root of the function)(z) — z, which is negative for
x € (z,1) (i.e.,,¥(z) < z). For an arbitraryr € (z,1), it holds that\z + (1 — \)¢(z) < =z, i.e, the
sequence ¢(t)} is monotonically decreasing with Hence, this sequence cannot converge to the trivial
fixed point (if one exists), i.e., it convergesio

Next, we prove that < z(t) < ¢(t) by induction ort. The basis is immediate. Assume that z(t) <
#(t) for somet > T,. We denoteX £ #(t) and® = ¢(t). It holds thatp(t + 1) = AP + (1 — \)y(P) >
(). Sincey(z) is a monotonically increasing function fare [0, 1], ¢(®) > ¢(X) = z(t + 1), that is,
o(t+1) > z(t+ 1). Similarly, z(t + 1) = (X) > (&) = z, thus concluding the induction step. [J

C Targeted Attack Analysis

This section analyzes the dynamics of a targeted attack amgke orrect node, which aims isolating it
from the other correct nodes.

C.1 Assumptions

We use the following assumptions on the environment to bob@dime to isolation from below.

Assumption C.1 (no history samplesy = 0, which is equivalent to the worst-case assumption that the
expected ratio of faulty ids i at all times is equal to that in the id stream observed by theéeng.e.,
history samples are ineffective).

Assumption C.2 (unrealistically strong adversary) In each round> Tj, the adversary observes the exact

number of correct pushes received bygh"" (), and complements it with faulty pushesatéy (i.e., the

maximal number of faulty ids that can be accepted withoutkitm). Formally,r2""(¢) £ max(al; —
push
Ju (t)70)-
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Assumption C.3 (background attack on the rest of the system) The adversarynmzes its global rep-
resentation through a balanced attack on all correct nodeg u. At timeTj, the system-wide expected
fraction of faulty ids is at the fixed poitt (Note that this attack minimizes the fraction of corret fildatu
can pull from correct nodes).

Assumption C.4 (fresh attacked node) joins the system &fy. It is initially not represented in any correct
node’s view and.’s initial view is taken from a random correct node.

We assume that the effect afon the entire system’s dynamics is negligible. Hence, warassthat
the out-degrees and the in-degrees of all correct nodepexeee equal at all timesAssumption 5.}, and
these nodes do not blockéction 5.1showed that the system-wide effect of blocking is marginal)

C.2 Node Degree Dynamics

We study the dynamics of the degree of the attacked modg). Consider a set of triple§( X, Y, ¢)}, each
standing for a statéz,(t) = X A y,(t) =Y}, for X € {0,...,0,},Y € {0,...,|C(Tv)|¢1}. Eacht
defines a probability space, i.8., - Pr[(X,Y,?)] = 1. Sinceu is initially not represented, the only states
that have non-zero probability for= Tj are those for which” = 0. The probability distribution over these
states is identical to the distribution ©f,(7;). Sinceu borrows its initial view from a random collection of
correct nodesy,, (1y) ~ Bin({y, z).

We now develop probability spaces for edcty Tj. The notationPr[(X’,Y’,t + 1)|(X,Y,t)] stands
for the probability of transition from stateX,Y,¢) to state(X’, Y’ t). Thatis,Pr[(X', Y’ ,t + 1)] =
> oxy Pr(X Y/t + D|(X,Y,t)] - Pr[(X,Y,t)]. To analyzePr[(X',Y",t + 1)|(X,Y,)] we separately
consider four independent random variables: the numbeaunsifqand pull-originated entries ), (denoted
25" (t) and25™ (¢)), and the number of push- and pull-propagated instancesrothe views of correct
nodes (denoteg?™"(¢) and 45 (¢)). The first two affectX’ whereas the last two affedt’. We now
demonstrate how conditional probability distributions floese variables are computed. For convenience,
we omit the conditioning 00X, Y, t) from further notation.

yE“ll(t): Since the system is at the fixed point, the probability ofipglfrom some other correct node
is (1 — &). Hence £ (¢ + 1) is a binomially distributed variable, with the number ofitsi equal to the
total number of correct pullgl — #)3¢1|C(Tp)|, and the probability of success equal to the chance of an
entry in a random node’s view being namelym: YR (4 1) ~ Bin((1 — 2)80,(C(Ty)|, m).
Note thatE(y5™ (t + 1)) = 8(1 — 2)Y.

y2*"(t): By Lemma 5.1 the number of pushes that reach correct nodeﬁeiw(To)\%:p)“’.
Denote the number of pushes framto correct nodes in roundby z,(¢). This is a binomially distributed

variable witha/; trials and probability of success equalite- £: z,(t) ~ Bin(af;,1 — £). For a given
zu(t) = Z, since the total number of push-originated entries4gC(1)|, the number of push-propagated

instances of. is y5**"(t 4+ 1|Z) ~ Bin (al1|C(Tp)|, QZHC(TO)K(ZP%H%) ). Note thatl(y**" (t + 1|2)) =
-p
Zm. Hence, since is independent op andz,
ush l-p l-p
E(yi = (t+1)) = E(2) =a(lh — X)

p+(1-p(1-2) P+ A-p)(A-a)

xﬁ“ll(t): A pull from a faulty node (which happens with probabilig') produces a faulty id with
probability 1, otherwise the probability to receive a fgutt is . Hence, the probability of pulling a faulty
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id is é + (1 - —)ac That is, the number of pull-originated faulty ids irs view is mpull(t +1) ~
Bin(Bl1, 3 + (1 — 3£)2) (e, E(@i™ (t + 1)) = B(X + (41 — X)&)).

We also compute the expected number of correct ids (withichtpk) pulled by, which we need for
estimating the size of the id stream that traverses this (®detion 5.2 Sinceu performsg/¢; pulls, and
the expected number of correct ids pulled from a random nege-+ z)¢;,

E(gh"' (1) = <1——) Bl (1= &) = (1— @) (L — X).

25" (t): The number of push-originated ids5"*"(¢ + 1), depends on the number of correct pushes
received byu, ¢g5™"(t). The latter is a binomially distributed variable, with thennber of trials equal to
the total number of correct pushes(; |C(Tp)], and the probability of success equal to the chance of an
entry in a random node’s view being namelyé e L ghh (1) ~ Bin(ay|C(TD)], MC(T) ) (Note that

E(g5™"(t)) = Y. This value is of independent use for evaluating the siza@fd stream that traverses
(Section 5.2).

An expected representation of a correct node different froim the system i1 — 2)¢;. Sinceu is
under-represented’(< (1 — #)¢; w.h.p), the probability of receiving above/; correct pushes is low, and
hence, we ignore the casewbeing blocked by exceedingly many correct pushes. On trex bdmd, faulty
pushes cannot block either (AssumptiorC.2), and therefore, we assume thatbever blocks. I1G < «a/f;
correct pushes are received, the adversary complementmthber of pushes to the maximum allowed

(AssumptionC.2), i.e., the fraction of faulty pushes t0|s 1 — ==-. Hence, the number of push-originated
faulty ids inw’s view is 25" (¢ + 1|G) ~ Bin(a/y, 1 — atr “). In other words,
push
BB (t + 1)) = aly (1 — E(gq;ie(t))) =ali(1— %) ally =Y).
1 1

Putting it all together. Summing up, the expected values of in-degree and out-degrebe written as
<€1 — Bz, (t + 1))> <€1 (B2 (t + 1)) + E(e2™ (¢ + 1)))> B
E(yu(t +1)) E(y2™ " (¢ +1)) + E@h™ (¢ + 1)) -
B (@1 —(als =) + B(X + (b - X)fc))) -
\ alh = X) gt +800-2) )

- @% ﬁ(la— fc>> ' (gl ;ftg(t)>

Since we have shown thatdoes not block w.h.p., anBlection 5.1demonstrated that the effect of blocking
on the rest of correct nodes is negligible, we assume thaiealls are recomputed in each round. That is,

Prlo,(t+1) = X'|(X,V,0)] = > Prlad*(t) = X{|(X,V,1)] - Pr[aB () = X5/(X, Y, 1)],
X+ X=X
and
Priy,(t+1) =Y'|(X, Y, )] = Y PrpE**(t) = Y{|(X,Y,t)] - PrlyB*™ (t) = Y5 |(X, Y, 1)].
Y/ 4+Y=Y"’

Since the computations df’ andY”’ are independent, we conclude:
Pr{(X/, Y/, 0)[(X,Y,1)] = Prley(t +1) = X'|(X,Y,0)] - Prfya(t + 1) = Y'|(X,Y,1)].
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