
Early-Delivery Dynamic Atomic Broadcast

Ziv Bar-Joseph Idit Keidar

Nancy Lynch

MIT Laboratory for Computer Science

zivbj@mit.edu, idish@theory.lcs.mit.edu, lynch@theory.lcs.mit.edu

May 20, 2002

Abstract

We consider a problem of atomic broadcast in a dynamic setting where processes may join,
leave voluntarily, or fail (by stopping) during the course of computation. We provide a formal
definition of the Dynamic Atomic Broadcast problem and present and analyze a new algorithm
for its solution in a synchronous system, where processes have approximately synchronized
clocks.

Our algorithm exhibits constant message delivery latency in the absence of failures, even
during periods when participants join or leave. To the best of our knowledge, this is the first
algorithm for totally ordered multicast in a dynamic setting to achieve constant latency bounds
in the presence of joins and leaves. When failures occur, the latency bound is linear in the
number of actual failures.

Our algorithm uses a solution to a variation on the standard distributed consensus problem,
in which participants do not know a priori who the other participants are. We define the
new problem, which we call Consensus with Unknown Participants, and give an early-deciding
algorithm to solve it.

1 Introduction

We consider a problem of atomic broadcast in a dynamic setting where an unbounded number of
participants may join, leave voluntarily, or fail (by stopping) during the course of computation.
We formally define the Dynamic Atomic Broadcast (DAB) problem, which is an extension of the
Atomic Broadcast problem [17] to a setting with infinitely many processes, any finite subset of
which can participate at a given time. Just as Atomic Broadcast is a basic building block for state
machine replication in a static setting [20, 27], DAB can serve as a building block for state machine
replication among a dynamic set of processes.

We present and analyze a new algorithm, which we call Atom, for solving the DAB problem in
a synchronous crash failure model. Specifically, we assume that the processes solving DAB have
access to approximately-synchronized local clocks and to a lower-level dynamic network that guar-
antees timely message delivery between currently active processes. The challenge is to guarantee
consistency among the sequences of messages delivered to different participants, while still achieving
timely delivery, even in the presence of joins and leaves.

Atom exhibits constant message delivery latency in the absence of failures, even during periods
when participants join or leave; this is in contrast to previous algorithms solving similar problems
in the context of view-oriented group communication, e.g., [1, 9]. When failures occur, Atom’s
latency bound is linear in the number of failures that actually occur; it does not depend on the
number of potential failures, nor on the number of joins and leaves that occur.

A key difficulty for an algorithm solving DAB is that when a process fails, the network does
not guarantee that the surviving processes all receive the same messages from the failed process.
But the strong consistency requirements of DAB dictate that processes agree on which messages
they deliver to their clients. The processes carry out a protocol to coordinate message delivery,
which works roughly as follows: Each Atom process divides time into slots, using its local clock,
and assigns each message sent by its client to a slot. Each process delivers messages to its client
in order of slots, and within each slot, in order of sender identifiers. Each process determines the
membership of each slot, and delivers messages only from senders that it considers to be members
of the slot. To ensure consistency, the processes must agree on the membership of each slot.

Processes joining (or voluntarily leaving) the service coordinate their own join (or leave) by
selecting a join-slot (or leave-slot) and informing the other processes of this choice, without delaying
the normal delivery of messages. When a process fails, Atom uses a novel distributed consensus
service to agree upon the slot in which it fails. The consensus service required by Atom differs from
the standard stopping-failure consensus services studied in the distributed algorithms literature
(see, e.g., [21]) in that the processes implementing the consensus service do not know a priori who
the other participants are. Atom tracks process joins and leaves, and uses this information to
approximate the active set of processes that should participate in consensus. However, different
processes running Atom may have somewhat different perceptions of the active set, e.g., when a
participant joins or leaves Atom at roughly the time consensus is initiated.

In order to address such uncertainties, we define a new consensus service, consensus with un-
known participants (CUP). When a process i initiates CUP, it submits to CUP a finite set Wi

estimating the current world, in addition to i’s proposed initial consensus value vi. The worlds
suggested by different participants do not have to be identical, but some restrictions are imposed
on their consistency. Consider, e.g., the case that process k joins Atom at roughly the time CUP
is initiated. One initiator, i, may think that k has joined in time to participate and include k in
Wi, while another, j, may exclude k from Wj . Process k cannot participate in the CUP algorithm
in the usual way, because j would not take its value into account. On the other hand, if k does not

1

participate at all, i could block, waiting forever for a message from k. We address such situations
by allowing k to explicitly abstain from an instance of CUP, i.e., to participate without providing
an input. A service that uses CUP must ensure that for every i, (1) Wi includes all the processes
that ever initiate this instance of CUP (unless they fail or leave prior to i’s initiation); and (2) if
j ∈ Wi, (and neither i nor j fail or leave), then j participates in CUP either by initiating or by
abstaining. Thus, Wi sets can differ only in the inclusion of processes that abstain, leave, or fail.

Note that once an instance of CUP has been started, no new processes (that are not included
in Wi) can join the running instance. Nevertheless, CUP provides a good abstraction for solving
DAB, because Atom can invoke multiple instances of CUP with different sets of participants.

We give an early-deciding algorithm to solve CUP in a fail-stop model [26], that is, in a time-
free crash failure model where processes are equipped with perfect failure detectors [5]. The failure
detector is external to CUP; it is implemented by Atom. CUP uses a strategy similar to previous
early-deciding algorithms for consensus with a predetermined set of participants [13], but it also
tolerates uncertainty about the set of participants, and moreover, it allows processes to leave
voluntarily without incurring additional delays. The time required to reach consensus is linear in
the number of failures that actually occur during an execution, and does not depend on an upper
bound on the number of potential failures, nor on the number of processes that leave.

We also analyze the message-delivery latency of Atom under different failure assumptions. We
show a constant latency bound for periods when no failures occur, even if joins and leaves occur.
When failures occur, the latency is proportional to the number of actual failures. This is inevitable:
atomic broadcast requires a number or rounds that is linear in the number of failures (see [2]).

We envision a service using Atom, or a variation of it, deployed in a large LAN, where latency
is predictable and message loss is bounded. In such settings, a network with the properties we
assume can be implemented using forward error correction (see [3]), or retransmissions (see [28]).
The algorithm can be extended for use in environments with looser time guarantees, e.g., networks
with differentiated services; we outline ideas for such an extension in Section 7.7.

In summary, this paper makes the following main contributions: (1) the definitions of two new
problems for dynamic networks, expressed by the DAB and CUP services; (2) an early-delivery DAB
algorithm, Atom, which exhibits constant latency in the absence failures; (3) a new early-deciding
algorithm for solving CUP in a fail-stop model; and (4) the analysis of Atom’s message-delivery
latency under various failure assumptions.

The rest of this paper is organized as follows: Section 2 discusses related work. In Section 3,
we specify the DAB service. In Section 4 we specify CUP and in Section 5, we present the CUP
algorithm and its analysis. We then turn to the presentation of Atom: Section 6 specifies the
environment and model assumptions for Atom, and Section 7 contains a detailed presentation of
the Atom algorithm and its analysis. Section 8 concludes the paper. The Appendix contains
rigorous correctness proofs for both CUP and Atom.

2 Related Work

A dynamic universe, where processes join and leave, was first considered in the context of view-
oriented group communication work [7], pioneered by the Isis [4] system. The first analysis of
time bounds of message delivery in synchronous group communication systems was performed by
Cristian [9]. Our service resembles the services provided by group communication systems; although
we do not export membership to the application, it is computed, and would be easy to export.

View-oriented group communication systems, including systems designed for synchronous sys-
tems and real-time applications (e.g., Cristian’s [9], xAMp [25], and RTCAST [1]), generally run

2

a group membership protocol every time a process joins or leaves, and therefore delay message
delivery to all processes when joins or leaves occur. Cristian’s system uses an atomic broadcast
primitive to agree upon group membership. Since, unlike CUP, the atomic broadcast service works
with a static universe, a process join has to be agreed upon before any new membership change
is handled (voluntary leaves are not considered). Therefore, Cristian’s service exhibits constant
latency only in periods in which no joins or failures occur. Latency during periods with multiple
joins is not analyzed. xAMp is a group communication system supporting a variety of communica-
tion primitives for real-time applications. The presentation of xAMp in [25] focuses on the various
communication primitives and assumes that a membership service is given. The delays due to fail-
ures and joins are incurred in the membership part, which is not described or analyzed. RTCAST
is a real-time group communication system, for which a detailed analysis of membership latency
was conducted [1]. The latency bound achieved by RTCAST is linear in the number of processes,
even when no process fails, due to the use of a logical ring. Moreover, RTCAST makes stronger
assumptions about its underlying network than we do – it uses an underlying reliable broadcast
service that guarantees that correct processes deliver the same messages from faulty ones; the cost
of this primitive is not considered in the analysis.

Some group membership services avoid running the full-scale membership for join and leaves
by using light-weight group membership [15] services; they use an atomic broadcast service to
disseminate join and leave messages in a consistent manner, without running the full-scale group
membership algorithm. However, unlike our CUP service, the atomic broadcast service such systems
use do not tolerate uncertainty about the set of participants. Therefore, a race condition between
a join and a concurrent failure can cause such light-weight group services (e.g., [23, 12, 15]) to
violate the semantics of the underlying heavy-weight membership services. Those light-weight
group services that do preserve the underlying heavy-weight membership semantics (e.g. [24]), do
incur extra delivery latencies whenever joins and leaves occur.

Other work on group membership in synchronous and real-time systems, e.g., [19, 18] has focused
on membership maintenance in a static, fairly small, group of processes, where processes are subject
to failures but no new processes can join the system. Likewise, work analyzing time bounds of
synchronous atomic broadcast, e.g. [16, 10, 8], considered a static universe, where processes could
fail but not join. Thus, this work did not consider the DAB problem.

In a previous paper [3], we considered a simpler problem of dynamic totally ordered broadcast
without all or nothing semantics. For this problem, the linear lower bound does not apply, and we
exhibited an algorithm that solves the problem in constant time even in the presence of failures.

Recent work [22, 6] considers different services, including (one shot) consensus, for infinitely
many processes in asynchronous shared memory models. Chockler and Malkhi [6] present a con-
sensus algorithm for infinitely many processes using a static set of active disks, a minority of which
can fail. This differs from the model considered here, as in our model all system components may
be ephemeral. Merritt and Taubenfeld [22] study consensus under different concurrency models; in
their terminology, our model assumes unbounded congruency and [1,∞]-participation, which means
that at least one process must participate and there is no bound on the number of participants.
They show that with these assumptions, in an asynchronous shared memory model, infinitely many
bits are required in order to solve consensus. The algorithms they give are not fault tolerant (they
tolerate only initial failures). To the best of our knowledge, atomic broadcast has not been con-
sidered in a similar context. Moreover, these problems were not considered in message-passing
models, and it is not clear that a canonical transformation from the shared memory model the
message-passing model applies to a setting with infinitely many processes.

3

3 Dynamic Atomic Broadcast Service Specification

We now present the DAB service specification. Our universe consists of an infinite ordered set of
endpoints, I. The specification of DAB is parameterized by a message alphabet, M . The signature
of the DAB(M) service is presented in Figure 1.

Input:

joini, leavei, faili, i∈I
mcasti(m), m∈M, i∈I

Output:

join OKi, leave OKi, i∈I
rcvi(m), m∈M, i∈I

Figure 1: The signature of the DAB(M) service.

We do not consider recoveries from failure or rejoining after leaving. In other words, there
cannot be multiple “incarnations” at a single endpoint. Instead of new incarnations, consider the
same client joining at new endpoints.

Assumptions about the application: DAB(M) assumes that its application satisfies the fol-
lowing safety conditions:

• For each i ∈ I:

– At most one joini and at most one leavei occur.

– If leavei occurs, then it is preceded by join OKi.

– Any mcasti(m) has a preceding join OKi but no preceding leavei or faili.

• At most one mcast(m) occurs for each particular m.

DAB guarantees: Given an application that satisfies the above constraints, DAB(M) satisfies
the properties we now specify.

We first specify some basic integrity properties, both safety and liveness. We later specify the
properties related to the ordering and reliability of messages.

Basic safety properties:

• Join/leave integrity: For each i:

– At most one join OKi and at most one leave OKi occur.

– If join OKi occurs then it is preceded by joini.

– If leave OKi occurs then it is preceded by leavei.

• Message integrity:

– No two rcvj(m) actions occur for the same m and j.

– If rcvj(m) occurs for some j then it is preceded by mcasti(m) for some i.

4

Basic liveness properties:

• Eventual join: If joini occurs then either faili or join OKi occurs.

• Eventual leave: If leavei occurs then either faili or leave OKi occurs.

To specify the ordering and reliability guarantees of DAB, we require that there be a total
ordering S on all the messages received by any of the endpoints, such that for all i ∈ I, the
following properties are satisfied.
Safety properties:

• Multicast order: If mcasti(m) occurs before mcasti(m’), then m precedes m′ in S.

• Receive order: If rcvi(m) occurs before rcvi(m’) then m precedes m′ in S.

• Multicast gap-freedom: If mcasti(m), mcasti(m’), and mcasti(m’’) occur, in that order, and
S contains m and m′′, then S also contains m′.

• Receive gap-freedom: If S contains m, m′, and m′′, in that order, and rcvi(m) and rcvi(m’’)

occur, then rcvi(m’) also occurs.

Liveness property:

• Multicast liveness: If mcasti(m) occurs and no faili occurs, then S contains m.

• Receive liveness: If S contains m, m is sent by i and i does not leave or fail, then rcvi(m)

occurs, and for every m′ that follows m in S, rcvi(m’) also occurs.

4 Consensus with Unknown Participants – Specification

In this section we define the problem of Consensus with Unknown Participants (CUP). CUP is
an adaptation of the problem of fail-stop uniform consensus to a dynamic setting in which the
set of participants is not known ahead of time, and in which participants can leave the algorithm
voluntarily after initiating it. Moreover, participants are not assumed to initiate at the same time.
CUP uses an underlying reliable network, and a perfect failure detector.
We begin with a description of CUP’s external signature (interface). We then specify the

assumptions that CUP makes about its environment, including the application, the underlying
network, and the external failure detector. We separate these into safety and liveness assumptions.
Finally, we specify CUP’s safety and liveness guarantees. CUP’s safety guarantees depend on only
the safety assumptions, that is, they are not allowed to be violated even if the liveness assumptions
do not hold. On the other hand, CUP’s liveness guarantees depend on both the safety and liveness
assumptions.

4.1 External Signature

The CUP specification uses the following data types:

• I, an infinite ordered set of endpoints. Each endpoint in I corresponds to a potential partic-
ipant in CUP.

• V , a totally ordered set of values. Initial values and decision values are elements of V .

5

Input:

initi(v,W), v ∈ V, W ⊆ I, W finite, i ∈ I // i initiates with value v,world W

abstaini, i ∈ I // i abstains

net rcvi(m), m ∈ MCUP, i ∈ I // i receives message m

leavei, i ∈ I // i leaves

leave detecti(j), j, i ∈ I // i detects that j has left

faili, i ∈ I // i fails

fail detecti(j), j, i ∈ I // i detects that j has failed

Output:

decidei(v), v ∈ V, i ∈ I // i decides on value v

net mcasti(m), m ∈ MCUP, i ∈ I // i multicasts m

Figure 2: The signature of CUP.

CUP

init

abstain
net_m

cast

net_rcv
decide

leave

leave_detect

fail

fail_detect

Figure 3: Interface diagram for CUP.

• MCUP , a message alphabet.

The external signature of CUP is presented in Figure 2, and depicted in Figure 3.

The interface describes four kinds of interaction: “normal” interaction with clients of the CUP
service, interaction with a multicast network, communication involving leaves and leave detection,
and communication involving failures and failure detection.

Normal interaction with clients: A process may participate in the CUP service in two ways:
it may provide an initial value, in which case we say that the process initiates CUP, or it may
decline to provide an initial value, in which case we say that it abstains. Participant i ∈ I initiates
CUP using the initi(v,W) action. Here, v is i’s initial value, and W is its initial world, that is,
the set of processes that i expects to participate in CUP. Participant i abstains using the abstaini

action. Informally speaking, a participant abstains when it does not need to participate in CUP, but
because of uncertainty about CUP participants, some other participant may expect it to participate.

6

An environment assumption ensures that, if any process expects i to participate in CUP, i will in
fact participate, unless it leaves or fails. CUP reports the consensus decision value to process i
using the decidei(v) action.

Multicast network: The network interface consists of the net mcast and net rcv actions.

Leaves: A participant can leave the CUP service voluntarily using the leavei action. We assume
that the environment provides a leave detector: the leave detecti(j) action is used to notify i
that j has left the algorithm voluntarily.

Failures: The faili action represents the failure of endpoint i. We assume that the environment
provides a failure detector, which uses the fail detecti(j) action to notify i that j has failed.

4.2 Environment Assumptions

Here we list and explain the assumptions that CUP makes about its environment. We classify these
as safety and liveness assumptions. Formally, each of the properties given here is a trace property
([21, Ch. 8]).

4.2.1 Safety assumptions

The first assumption expresses simple well-formedness conditions saying that each participant be-
gins participating (by initiating or abstaining) at most once, leaves at most once, and fails at most
once.

• Well-formedness: For any i ∈ I,

1. At most one initi or abstaini event
1 occurs.

2. At most one leavei event occurs.

3. At most one faili event occurs.

4. No leavei or faili precedes an initi.

The next assumption says that, while the worlds W suggested by different participants in their init
events do not have to be identical, CUP’s environment must guarantee that they have a certain
kind of consistency. Namely, each W set submitted by an initiating participant i must include all
participants that ever initiate CUP and that do not leave or fail prior to the initi event. This
implies that every participant must be included in its own estimated world.

• World consistency: If initi(*, W) and initj(*,*) events occur, then either j ∈ W , or a
leavej or failj event occurs before the initi(*, W) event.

The next property describes the correctness of the message deliveries: every message that is received
was previously sent, and no message is received at the same location more than once. Moreover,
the order of message receipt between particular senders and receivers is fifo.

1An “event” is an occurrence of an action in a sequence.

7

• Message integrity: There is a mapping from net rcv events to preceding net mcast events,
such that the same message in MCUP appears in both events, and such that no two net rcvi

events for the same i map to the same net mcast event. Moreover, two net rcvi events that
map to net mcast events of the same sender occur in the same order as the net mcast events.

The next two properties describe assumptions about leaves and leave detection. The first says that
leave detection is “accurate”, in the sense that the occurrence of a leave detecti(j) implies that
j has really left; it also includes a simple well-formedness condition. The second property says that
leaves are handled gracefully, in the sense that the occurrence of a leave detecti(j) implies that
i has already received any network messages sent by j prior to leaving. Thus, a leave detecti(j)

is an indication that i has not lost any messages from j.

• Accurate leave detector: For any i, j ∈ I, at most one leave detecti(j) event occurs, and if
leave detecti(j) occurs, then it is preceded by a leavej .

• Lossless leave: Assume net mcastj(m) occurs and is followed by a leavej . Then if a
leave detecti(j) occurs, it is preceded by net rcvi(m).

The final safety assumption says that failure detection is accurate.

• Accurate failure detector: For any i, j ∈ I, at most one fail detecti(j) event occurs, and if
fail detecti(j) occurs, then it is preceded by a failj .

Note that we do not have a failure assumption analogous to the lossless leave property; thus, failures
are different from leaves in that we allow the possibility that some messages from failed processes
may be lost.

4.2.2 Liveness assumptions

The first liveness assumption says that, if any process i expects another process j to participate,
then j will actually do so, unless either i or j leaves or fails.

• Init occurrence: If an initi(*,W) event occurs and j ∈ W, then an initj , abstainj , leavei,
faili, leavej , or failj occurs.

The next assumption describes reliability of message delivery. It says that any message that
is multicast by a non-failing participant that belongs to any of the W sets submitted to CUP, is
received by all the non-leaving, non-failing members of all those W sets.

• Reliable delivery: Define U = ∪k∈I{ W | initk(*, W) occurs}. If i, j ∈ U and net mcasti(m)

occurs after an initi or abstaini event, then a net rcvj(m), leavej , faili, or failj occurs.

The final liveness assumption says that the leaving or failure of any process that belongs to an
initiator’s W set is detected by that initiator, unless it finishes by deciding, leaving, or failing.

• Complete leave and failure detector: If initi(*,W) occurs, j ∈ W , and leavej or failj

occurs, then fail detecti(j), leave detecti(j), decidei, leavei, or faili occurs.

8

4.3 CUP Service Guarantees

Now we list CUP’s service guarantees. Again, we classify these as safety and liveness properties. As
we noted earlier, CUP’s safety guarantees depend only on its safety assumptions, whereas CUP’s
liveness guarantees depend on both its safety and liveness assumptions.

Formally, each individual property is a trace property. The complete specification consists of
two general trace properties whose respective sets of traces are defined by the following predicates:

1. The conjunction of all the CUP safety assumptions implies all the CUP safety guarantees.

2. The conjunction of all the CUP safety and liveness assumptions implies all the CUP liveness
guarantees.

4.3.1 Safety guarantees

The first guarantee expresses well-formedness conditions saying that only participants that have
initiated can decide, and each participant decides at most once.

• Well-formedness: For any i ∈ I,

1. If decidei occurs then it is preceded by an initi.

2. At most one decidei occurs.

The next two guarantees are the main agreement and validity guarantees for consensus. The
uniform agreement property says that everyone who decides agrees. The validity property has two
parts: it says that any decision value is some participant’s initial value, and moreover, that any
participant’s decision is no greater than its initial value. The latter is not a “standard” property
for consensus but is needed for our use in Atom.

• Uniform Agreement: For any i, j ∈ I, if decidei(v) and decidej(v’) both occur then v = v′.

• Validity: For any i ∈ I, if decidei(v) occurs then

1. For some j, initj(v, *) occurs.

2. If initi(v’,*) occurs then v ≤ v′.

4.3.2 Liveness guarantees

CUP provides one liveness guarantee, which says that any participant that initiates and neither
leaves nor fails must eventually decide. We do not make such a guarantee for a participant that
abstains, that is, participants that abstain need not be informed of the decision value.

• Termination: If an initi event occurs then a decidei, leavei, or faili occurs.

5 The CUP Algorithm

In this section, we present our implementation of CUP.

9

5.1 Modeling Assumptions and Conventions

We use the I/O automaton model of Lynch and Tuttle (see, e.g., [21, Ch. 8]), using standard
precondition/effect (guarded command) pseudo-code, augmented with one new construct: effects
may include statements of the form trigger(a), where a is an output action. Formally, we assume
the automaton’s state contains a special fifo buffer trigger-buffer. The trigger(a) statement
adds a to the end of trigger-buffer. The action at the head of trigger-buffer is always
enabled, and gets removed from trigger-buffer when it is performed. No other state changes are
associated with action a.
The faili action described in the CUP interface represents the failure of endpoint i. In terms

of the algorithm, we interpret this to mean that once faili occurs, i performs no more locally
controlled actions, and input actions have no effect on the state. We treat this as a general
convention, and do not include event handlers for faili actions in our pseudo-code.

5.2 The Algorithm

Figures 4 and 5 contain the CUP implementation for a particular endpoint i ∈ I. The algorithm
includes no internal actions. Therefore, the signature consists of the actions indexed by this partic-
ular i in the external signature of CUP (see Section 4). The message alphabet MCUP is specialized
to the set of messages of the following forms:

• (i,r,v,W), where i ∈ I, r ∈ N, v ∈ V, and W is a finite subset of I.

• (i,OUT,r), where i ∈ I and r ∈ N,

The algorithm proceeds in asynchronous rounds numbered 1, 2, In each round, a process
sends its current estimates of the value and the world (the set of active processes) to the other
processes. Each process maintains two-dimensional arrays, value and world, in which it collects
the value and world information it receives from all processes in all rounds. It records, in a
variable out[r], the other processes that it knows will not participate in round r because they
have previously left, abstained, or decided. It also records, in a variable failed, the processes that
it knows have failed.

mode ∈ { ⊥, running, done}, initially ⊥
round ∈ N, initially 0

for each r ∈ N
+, j ∈ I:

value[r,j] ∈ V ∪ { ⊥ }, initially ⊥
world[r,j], a finite subset of I or ⊥, initially ⊥

for each r ∈ N
+

out[r], a finite subset of I, initially { }
failed[r], a finite subset of I, initially { }

Derived variables:

for each r ∈ N
+

out-by[r], a finite subset of I, defined as ∪
r ′ ≤ r

out[r ′]

failed-by[r], a finite subset of I, defined as ∪
r ′ ≤ r

failed[r ′]

Figure 4: CUPi state.

10

initi(v,W)

Eff: if mode = ⊥ then

mode ← running

round ← 1

trigger(net mcasti(i,1,v,W))

net mcasti(i,r,v,W) where r ≥ 2

Pre: mode = running

r = round + 1

W = world[round,i] \ out[round] \ failed[round]

// All messages for the previous round have been received.

∀ j ∈ W: value[round,j] 6= ⊥
W 6= { } ∧ v = min{value[round,j] | j ∈ W}

// No decision can be made.

¬ ∀ j ∈ world[round,i] \ out[round]:

value[round,j] = value[round,i] ∧ world[round,j] ⊆ world[round,i]

Eff: round ← r

net rcvi(j,r,v,W)

Eff: if mode 6= done ∧ j /∈ failed-by[r] then

value[r,j] ← v

world[r,j] ← W

abstaini
Eff: if mode = ⊥ then

mode ← done

trigger(net mcasti(i,OUT))

decidei(v)

Pre: mode = running

value[round,i] 6= ⊥
∀ j ∈ world[round,i] \ out[round]:

value[round,j] = v ∧ world[round,j] ⊆ world[round,i]

Eff: mode ← done

trigger(net mcasti(i,OUT))

net rcvi(j,OUT)

Eff: if mode 6= done then

let r = min {r ′ ∈ N
+ | value[r ′,j] = ⊥}

out[r] ← out[r] ∪ {j}

leavei
Eff: mode ← done

leave detecti(j)

Eff: if mode 6= done then

let r = min {r ′ ∈ N
+ | value[r ′,j] = ⊥}

out[r] ← out[r] ∪ {j}

fail detecti(j)

Eff: if mode 6= done then

let r = min {r ′ ∈ N
+ | value[r ′,j] = ⊥}

failed[r] ← failed[r] ∪ {j}

Figure 5: CUPi transitions.

11

The code works as follows. When an initi(v,W) input occurs, process i triggers a net mcast(i,1,v,W)

to send its initial value v and estimated world W to all processes, including itself.

For each round r ≥ 2, process i performs an explicit net mcasti(i,r,v,W) to multicast its
round r value v and world W. The world W is determined to be the set of processes that i thinks are
still active, that is, the processes in i’s previous world that i does not know to be out or to have
failed in round r. Process i may perform this multicast only if its round is r-1, it has received
round r-1 messages from all the processes in W, and it is not currently able to decide. The value v
that is sent is the minimum value that i has recorded for round r-1 from a process in W.

When a net rcvi(j,r,v,W) occurs, process i puts v and W into the appropriate places in the
value and world arrays.

When an abstaini input occurs, process i sends an OUT message, so that other processes will
know not to wait for further messages from it, and stops participating in the algorithm.

Process i can decide at a round r when it has received messages from all processes in its
world[r,i] except those that are out at round r, such that all of these messages contain the
same value and contain worlds that are subsets of world[r,i]. The subset requirement ensures
that processes in world[r,i] will not consider values from processes outside of world[r,i] in
determining their values for future rounds. When process i decides, it multicasts an OUT message
and stops participating in the algorithm.

When a net rcvi(j,OUT) occurs, process i records that j is out of the algorithm starting from
the first round for which i has not yet received a regular message from j.

When leavei occurs, process i just stops participating in the algorithm. When leave detecti(j)

occurs, process i records that j is out; when this occurs, the lossless leave assumption ensures that
i has already received all the messages j sent. The round that is recorded for the leave is the first
round after the round of the last message received from j.

Process i knows that another process has failed if it learns about the failure via a fail detect

event.

In the next section, we prove the algorithm’s correctness. In Section 5.3, we show that the
algorithm is early-deciding in the sense that the number of rounds it executes is proportional to
the number of actual failures that occur, and does not depend on the number of participants or on
the number of processes that leave.

5.3 The Early-Deciding Property

We now show that the algorithm is early-deciding in the sense that the number of rounds it executes
is proportional to the number of actual failures that occur, and does not depend on the number of
participants or on the number of processes that leave.

We start with some more lemmas.

Lemma 5.1 If initi(*,W) occurs prior to initj, then j ∈ W.

Proof: The environment well-formedness assumption implies that j does not leave or fail before
it initiates, and hence does not leave or fail before i initiates. Therefore, by world consistency, j ∈
W.

Invariant 5.1 If (i,1,*,W) and (j,2,*,*) are in the Net then j ∈ W.

Proof: By strong induction. For the inductive step, assume that, in the final state of the exe-
cution, (i,1,*,W) and (j,2,*,*) are in the Net. Then both initi and initj events appear in

12

the execution. If initi precedes initj , then Lemma 5.1 implies the result, so assume that initj

precedes initi.

Since a round 2 message from j is in the Net, a round 1 message (j,1,*,W’) is also. Then
Lemma 5.1 implies that i ∈ W’.

We claim that j does not leave or fail before the initi. Suppose for the sake of contradiction
that it does. Then the net mcast(j,2,*,*) event precedes the initi. Then environment well-
formedness implies that i does not fail or leave prior to the net mcast(j,2,*,*) event, because it
initiates after this event. Also, i does not abstain, because it initiates. And i does not decide prior
to the net mcast(j,2,*,*) event, because that precedes the initi. Therefore, i /∈ failed[1]j∪
out[1]j in the pre-state of the net mcast(j,2,*,*) event, so i ∈ world[1,j]j \ failed[1]j∪
out[1]j in that state. The precondition of net mcast implies that value[1,i]j 6= ⊥ in the pre-
state, that is, j has received a round 1 message from i before the net mcast(j,2,*,*). But this
cannot happen, because initi happens after the net mcast(j,2,*,*). This contradiction implies
that j does not leave or fail before the initi. Then world consistency implies that j ∈ W, as needed.

In the rest of this section, we consider a situation where no failures happen from some point
onward in an execution, and where the rounds of all processes are at most r at the point where
failures cease. The following lemma says that all round r+2 messages that are ever sent have the
same world component.

Lemma 5.2 Suppose that r > 0. Suppose that there is a point t in an execution such that every
process has round ≤ r at point t, and no fail events happen from t onward.
If net mcast(i,r+2,v,W) and net mcast(j,r+2,v’,W’) both occur in the execution, then W =
W’.

Proof: We show that W ⊆ W’. The other direction is analogous.

The two sets are determined in the precondition of net mcast, as follows:
W = world[r+1,i]i \ out[r+1]i \ failed[r+1]i, where the values of the last two terms are
taken from the pre-state of net mcast(i,r+2,v,W), and
W’ = world[r+1,j]j \ out[r+1]j \ failed[r+1]j , where the values of the last two terms are
taken from the pre-state of net mcast(j,r+2,v’,W’). Invariant A.7 implies that W = world[1,i]i

\ out-by[r+1]i \ failed-by[r+1]i, where the values of the last two terms are taken from the
pre-state of net mcast(i,r+2,v,W), and
W’ = world[1,j]j \ out-by[r+1]j \ failed-by[r+1]j , where the values of the last two terms
are taken from the pre-state of net mcast(j,r+2,v’,W’).

Consider some k ∈ W. The precondition of net mcast(i,r+2,v,W) implies that in the pre-
state, value[r+1,k]i 6= ⊥, that is, i has received a round r+1 message from k. This means
that k has previously sent a round r+1 message. Since (by assumption) r > 0, it follows that r
+1 ≥ 2, which means that k has sent a round 2 message. Invariant 5.1, applied to any state after
both net mcast(j,1,*,*) and net mcast(k,2,*,*) have occurred, implies that k is in the world
component of j’s round 1 message, and so k is put into world[1,j]j when that is defined. To
prove that k ∈ W’, it suffices to show that k is never placed into either of the sets out-by[r+1]j or
failed-by[r+1]j .

First, we show that k is never placed into out-by[r+1]j . Suppose for the sake of contradiction
that k is put into out-by[r+1]j at some point in the execution. Then consider some state that
occurs after this has happened, and that is not before the pre-state of net mcast(i,r+2,v,W). In

13

this state, we have both value[r+1,k]i 6= ⊥ and k ∈ out-by[r+1]j . This contradicts Invariant A.4.
Therefore, k is never placed into out-by[r+1]j .
Second, we show that k is never placed into failed-by[r+1]j . Suppose for the sake of con-

tradiction that k is put into failed-by[r+1]j at some point in the execution. Then k fails in the
execution, which implies that it fails before point t. But we have already noted that k sends a
round r +1 message during the execution. It does not send this before point t, because that would
mean that it would reach round r +1 before point t, contradiction our assumptions. So k sends the
round r +1 message after point t, and so it cannot fail before point t, a contradiction. Therefore,
k is never placed into failed-by[r+1]j .

The next lemma says that, under the same assumptions as for the previous lemma, all the round
r+2 messages have the same value component.

Lemma 5.3 Suppose that r > 0. Suppose that there is a point t in an execution such that every
process has round ≤ r at point t, and no fail events happen from t onward.
If net mcast(i,r+2,v,W) and net mcast(j,r+2,v’,W’) both occur in the execution, then v =
v’.

Proof: Process i determines v as the minimum of all values value[r+1,k]i for all k ∈ W, and
process i determines v′ as the minimum of all values value[r+1,k]j for all k ∈ W’. Lemma 5.2
implies that W = W’. Since values are consistent (by Invariant A.2), the sets of values over which
the two minima are taken are identical. Therefore, v = v’.

Finally, we prove the main early-deciding theorem. It says that, if no failures happen from
some point onward and the rounds of all processes are at most r when failures cease, then no CUP
participant ever advances beyond round r +2. Since we have already proved termination, this
implies that all active CUP participants decide by round r +2.

Theorem 5.4 Suppose that r > 0. Suppose that there is a point t in the execution such that every
process has round ≤ r at point t, and no fail events happen from t onward.
Then every process always has round ≤ r +2.

Proof: Lemmas 5.2 and 5.3 yield a common value and world for round r+2 messages. Fix v’ and
W’ to be the common value and world, respectively.
We show that the precondition of net mcast(i,r+3,*,*) can never be true, which implies

that such an event can never happen. This implies that every process always has round ≤ r +2.
Suppose for the sake of contradiction that the precondition of net mcast(i,r+3,v,W) is true in
some reachable state s, for some fixed i.
Since the precondition holds in s, world[r+2,i]i 6= ⊥ in s, and so Invariant A.1 implies

that some (i,r+2,v’’,W’’) message is in the Net in s, where v’’ = value[r+2,i]i and W’’ =

world[r+2,i]i. Since v’ and W’ are the common value and world for round r+2 messages, this
implies that value[r+2,i]i = v’ and world[r+2,i]i = W’.
We show that for all j ∈ world[r+2,i]i \ out[r+2]i, value[r+2,j]i = value[r+2,i]i and

world[r+2]i ⊆ world[r+2,i]i. This suffices to show that the final precondition fails, which yields
a contradiction.
Fix j ∈ world[r+2,i]i \ out[r+2]i. Since failed[r+2]i = { }, if follows that j ∈ world[r+2,i]i

\ out[r+2]i \ failed[r+2]i. The precondition of the net mcast then implies that value[r+2,j]i 6=
⊥ in state s. Invariant A.1 then implies that some (i,r+2,v’’’,W’’’) message is in the Net in s,

14

where v’’’ = value[r+2,j]i and W’’’ = world[r+2,i]i. Since v’ and W’ are the only value and
world for round 2 messages, this implies that value[r+2,j]i = v’ and world[r+2,j]i = W’ in
state s. Thus, value[r+2,j]i = value[r+2,i]i and world[r+2]i ⊆ world[r+2,i]i, as needed.

Note that this proof does not work for the case where r=0, because of potential differences in
the initial worlds of correct processes. Consider, for example, an execution in which no process
ever fails, and some process, k, leaves after sending a round 1 message. Process k may be included
in the initial world of process i but not in the initial world of another process j, if j initiates CUP
after k leaves. In this case, i takes k’s round 1 message into account when choosing its round 2
message, while j does not (because k is not in j’s initial world). This scenario can only occur in
round 1, because no process can send a round 2 message before j initiates.
For the case where r = 0, the best we can state is:

Corollary 5.5 Suppose there is a point t in the execution such that every process has round = 0
at point t, and no fail events happen from t onward.
Then every process always has round ≤ 3.

Proof: This is immediate from Theorem 5.4, using r = 1.

5.4 Timing Assumptions

For the sake of analyzing the performance of the CUP algorithm, we use timed I/O automata [21,
Ch. 23]. We can regard an ordinary I/O automaton as a special case of the timed model, in which
arbitrary amounts of time can pass between events. All the safety results carry over to this model.
For this analysis, we add an extra assumption: we assume that any action that is enabled either

gets performed or gets disabled by another action, before any time passes.

5.5 Latency Analysis

We now analyze the algorithm’s latency in executions in which there are time bounds on certain
environment actions. We assume the following bounds:

1. δ1 is an upper bound on message latency. That is, if a net rcv(m) event occurs, the time
since the corresponding net mcast(m) is at most δ1.

2. δ2 is an upper bound on failure and leave detection time. Moreover, if a message is lost due to
failure, then the failure is detected at most δ2 after the lost message was sent. More precisely,

(a) Assume initi(*,W) occurs with j ∈ W and failj or leavej occurs at time t. Then
fail detecti(j), leave detecti(j), decidei, leavei, or faili occurs by time t+ δ2.

(b) Define U = ∪k∈I{W | initk(∗,W) occurs}. Assume i, j ∈ U and net mcastj(m) oc-
curs at time t but no net rcvi(m) occurs. Then fail detecti(j), leave detecti(j),
decidei, leavei, or faili occurs by time t+ δ2.

3. δ3 is an upper bound on the time difference between the initiation time of different processes.
More precisely:
Assume some process initiates at time t and does not fail by time t+ δ1. Assume further that
initi(*, W) occurs. Then, every process j ∈ W initiates, abstains, leaves, or fails by time
t+ δ3.

15

In practice, the failure detection time would be at least as large as the message latency. We
therefore assume that δ2 ≥ δ1.

We now use the above bounds on the environment to establish bounds on CUP’s running times.
The next lemma bounds the time it takes from when some process initiates CUP until all processes
terminate round 1.

Lemma 5.6 Assume that some process initiates CUP at time t and does not fail by time t + δ1.
Then by time t+ δ2+ δ3, every process that initiates either terminates round 1, or leaves, or fails.

Proof: Let i be a process that initiates and does not leave or fail by time t + δ2 + δ3. We now
show that i terminates round 1 by time t + δ2 + δ3. If i decides by time t + δ2 + δ3, then we are
done. We therefore assume that i does not decide by this time.

In order to terminate round 1, i has to have a round 1 message from every process j ∈
world[1,i]i \ out[1]i \ failed[1]i. That is, for every process j ∈ world[1,i]i, i has to re-
ceive a round 1 message or an OUT message from j, or a fail detecti(j) or a leave detecti(j)

event.

Fix a process j ∈world[1,i]i, i.e., j is in i’s initial world. Since some process initiates at time
t, by our assumption on initiation times, j initiates, abstains, leaves, or fails by time t+ δ3.

If j fails or leaves by time t+ δ3, then by our assumption on failure and leave detection times,
fail detecti(j) or leave detecti(j) occurs by time t+ δ2+ δ3 (since we assume that i does not
decide, leave, or fail by this time), and we are done.

Assume now that j does not fail or leave by time t+ δ3. Since j is in i’s initial world, j either
initiates or abstains by this time, at which point j sends a round 1 message or an OUT message
(resp.). If i receives this message, i receives it by time t+δ3+δ1. If i does not receive this message,
fail detect(j)i or leave detect(j)i occurs by time t+ δ3 + δ2.

Since δ2 ≥ δ1, we get that for every j ∈world[1,i]i, by time t + δ3 + δ2, i either receives a
round 1 message or an OUT message from j or a fail detect(j)i or leave detect(j)i event
occurs.

The following lemma bounds the duration of subsequent rounds.

Lemma 5.7 Assume that by time t, every process that initiates CUP either terminates round r

> 0, or decides, or leaves, or fails. Then, by time t + δ2, every process that initiates CUP either
terminates round r+1, or decides, or leaves, or fails.

Proof: Consider a process i that initiates CUP and does not leave or fail or decide by time t+δ2.
We now show that i terminates round r+1 by time t+ δ2.

In order to terminate round r+1, i has to have a round r+1 message from every process j ∈
world[r+1,i]i \ out[r+1]i \ failed[r+1]i. That is, for every process j ∈ world[r+1,i]i, i
has to either receive a round r+1 message or an OUT message from j, or a fail detecti(j) or a
leave detecti(j) event has to occur.

Fix a process j ∈world[r+1,i]i. Process j must have initiated. By time t, j terminates
round r+1, or decides, or leaves, or fails. If j leaves or fails by time t, then fail detect(j)i or
leave detect(j)i occurs by time t + δ2. Otherwise, j sends a round r+1 message or an OUT
message (in case it decides) by time t. If i receives this message, i receives it by time t + δ1.
Otherwise, fail detect(j)i or leave detect(j)i occurs by time t+δ2. Since δ2 ≥ δ1, we get that
i terminates round r+1 by time t+ δ2.

16

Using the two lemmas above, we get the following bound on the running time of an execution
of CUP with r rounds.

Lemma 5.8 Assume that some process initiates CUP at time t and does not fail by time t + δ1.
If i decides at round r > 0, it does so by time t+ δ3 + rδ2.

Proof: By Lemma 5.6, by time t + δ3 + δ2, every process that initiates CUP either terminates
round 1, or leaves, or fails. By iterative application of Lemma 5.7, we get that by time t+ δ3+ δ2+
(r− 1)δ2 = t+ δ3 + rδ2, every process that initiates CUP either terminates round r, or decides, or
leaves, or fails.

As a consequence of the above lemmas and the early-deciding theorem of the previous section
we get the following theorem:

Theorem 5.9 Suppose that there is a point t in the execution such that no fail events happen
from t onward. Suppose also that some process initiates CUP by time t. Then every process that
decides, decides by time t+ δ3 + 3δ2.

Proof: Let r be the highest value of round of any process at time t. Since some process initiated
CUP by time t, r > 0. By Theorem 5.4, every process that decides, decides at the end of round
r+2 at the latest.
We consider two cases. First, if r > 1, then by Invariant A.12, every process that initiated

CUP has either terminated round r-1 or left or failed by time t. By applying Lemma 5.7 three
times, we get that every process that initiates CUP either terminates round r+2 or leaves or fails
by time t+ 3δ2. Therefore, in this case, every process that decides, decides by time t+ 3δ2.
Next, assume that r = 1. Since some process initiates CUP by time t and does not fail, by

Lemma 5.6, by time t + δ3 + δ2, every process that initiates CUP either terminates round 1, or
leaves, or fails. By applying Lemma 5.7 twice, we get that every process that initiates CUP either
terminates round r+2 or leaves or fails by time t+ δ3 + 3δ2. Therefore, in this case, every process
that decides, decides by time t+ δ3 + 3δ2.

6 Environment and Model Assumptions for Atom

6.1 Timing Assumptions

We model time using a continuous global variable now, which holds the real time. This is a real
variable, initially 0. We assume that it increases with derivative 1. Each endpoint i is equipped
with a local clock, clocki, modeled by a continuous, bijective, monotonically increasing function
from the nonnegative R to the nonnegative R.
We assume a bound of Γ on clock skew, where Γ is a positive real number. Specifically, for

each endpoint i, we assume that in any state of the system that is reachable |clock i − now | ≤ Γ/2.
That is, the difference between each local clock and the real time is at most Γ/2. It follows that
the clock skew between any pair of processes is Γ, formally: in any reachable state, and for any two
endpoints i and j, |clock i − clock j | ≤ Γ.
We assume that local processing time is 0 and that actions are scheduled immediately when

they are enabled. Formally, when any locally controlled action of any process that is part of our
local algorithm is enabled, then before any time passes, the action is either performed or becomes
disabled.

17

6.2 Reliable Network Assumptions

We assume that we are given a low-level reliable network service Net. Like DAB, Net is parame-
terized by a message alphabet, M .
The Net(M) signature is defined in Figure 6. The actions are the same as those of DAB, except

that they are prefixed with net .

Input:

net joini, net leavei, faili, i∈I,
net mcasti(m), m∈M, i∈I

Output:

net join OKi, net leave OKi, i∈I,
net rcvi(m), m∈M, i∈I

Figure 6: The signature of the Net service.

Net(M) assumes that its application satisfies the same basic safety conditions as those specified
above for DAB(M), except that action names are preceded with net . Assuming the application
satisfies these conditions, Net(M) satisfies a number of safety and liveness properties.
First, Net satisfies the basic properties specified above for DAB: join/leave integrity, message

integrity, eventual join, and eventual leave. All of these properties are the same as for DAB, except
that action names are prefixed with net .
In addition, Net guarantees fifo delivery of messages:

• fifo delivery: If net mcasti(m) occurs before net mcasti(m’), and net rcvj(m’) occurs,
then net rcvj(m) occurs before net rcvj(m’).

Net(M) also satisfies the following liveness property:

• Eventual delivery: Suppose net mcasti(m) occurs after net join OKj , and no faili occurs.
Then either net leavej or failj or net rcvj(m) occurs.

Additionally, the network latency is bounded by a constant nonnegative real number ∆. For-
mally, Net(M) guarantees:

• Message latency: If net rcvj(m) occurs, then the real time elapsed since the corresponding
net mcasti(m) is at most ∆.

The maximum message latency of ∆ guaranteed by Net is intended to include any pre-send
delay at the network module of the sending process.
Since an implementation of Net cannot predict the future, it must deliver messages within time

∆ as long as no failures occur. In particular, if a message is sent more than ∆ time before its sender
fails, it must be delivered.

7 The Atom Algorithm

The Atom algorithm consists of a collection of processes corresponding to the different endpoints
in I. It uses Net and CUP services as building blocks. It uses multiple instances of CUP.

18

7.1 Data Types

Atom defines the constant Θ, a positive real number. This will represent a time slot. We assume
that Θ > ∆.
Recall thatM represents the message alphabet of DAB. We will useM ′ to represent the message

alphabet of Net. We define the message alphabet of Net in term of the alphabet of Atom:

• M1, the set of finite sequences of elements of M . These are the bulk messages processes send.

• M2 =M1 ∪ {JOIN,LEAV E} ∪ {CUP − INIT} × I}

• M ′ = I ×M2 × N.

M ′ is the complete message alphabet of Net. Each message contains either a bulk message (sequence
of client messages) for a particular slot, a request to join or leave a particular slot, or a report that
process has initiated consensus on behalf of a particular endpoint. Each message is tagged with
the sender and the slot.

7.2 Using the Net and CUP

The Net service alphabet is instantiated with M ′. That is, Atom uses a service Net(M ′) to im-
plement the service DAB(M). Atom uses multiple instances of CUP, at most one for each process
j.
As before, a faili action causes process i to stop. faili actions go to all the components, i.e.,

Net and all instances of CUP (including dormant ones), and cause all of them to stop taking any
locally controlled actions. Since faili actions cannot be intercepted, we do not include them in
the code.

leavei actions also go directly to all the local instances of CUP, including dormant ones.

7.3 Atom Algorithm Overview

The algorithm divides time, and respectively, messages, into slots. As time advances, each process
advances through slot. The duration of a slot is Θ.
Each process multicasts all of its messages for a given slot in one bulk message. This is a

useful abstraction that we make in order to simplify the presentation and analysis of the Atom
algorithm. In practice, the bulk message does not have to be sent as one message; a standard
packet assembly/disassembly layer can be used to provide all-or-nothing behavior.
Message delivery is also done in order of slots. Before delivering messages of a certain slot s,

each process has to determine the membership of this slot, that is, the set of processes from which
to deliver messages in this slot. To ensure total order, all the processes that deliver messages for a
certain slot have to agree upon the membership of each slot. For each slot, messages are delivered in
the order of process indices, and for each process, the messages are unpacked from its bulk message
and delivered in fifo order.

7.4 Signature

The signature of Atom at process i, Atomi, is presented in Figure 7. It includes all the interaction
with the client and all the interaction with the underlying network. The implementation of Atom
uses CUP as a building block. Hence Atomi has additional input and output actions for interacting
with CUP. Since Atom uses multiple instances of CUP, at most one for each process j, actions of

19

CUP automata are prefixed with CUP(j). For example, process i uses the action CUP(j).initi to
initiate the CUP automaton associated with process j. CUP.fail and CUP.leave are not output
actions of Atom, since they are routed directly from the environment to all instances of CUP.

The signature of Atomi also includes two internal actions, end slot, and members. These two
actions play a role in determining the membership for each slot. end slot(s)i occurs at a time by
which slot s messages from all processes should have reached process i. At this point, processes
from which messages are expected but do not arrive are suspected to have failed. For each suspected
process j, CUP(j) is run to have the surviving processes agree upon j’s failure slot. This is needed
because failed processes can be suspected at different slots by different surviving processes. After
CUP reaches decisions about all the suspected processes that could have failed at slot s, members(P,
s) can occur, with P being the agreed membership for slot s. When process i performs members(P,
s)i, all the messages included in bulk messages that i received for slot s from processes in P are
delivered (their delivery is triggered) in order of process indices.

Input:

joini, leavei
net join OKi, net leave OKi
mcasti(m), m∈M
net rcvi(m), m∈M ′

faili
CUP(j).decidei(v), v∈N

Output:

join OKi, leave OKi
net joini, net leavei
net mcasti(i, m, s), m∈M2, s∈N
rcvi(m), m∈M
CUP(j).initi(v, W), v∈N
CUP(j).abstaini
CUP(j).leave detecti(j), j∈I
CUP(j).fail detecti(j), j∈I

Internal:

end sloti(s), s∈N
membersi(P, s), P set of I, s∈N

Figure 7: Atomi: Signature.

7.5 Pseudo-code

The Atomi code is presented in Figures 8–10. The state components are presented in Figure 8.

Recall that we do not assume that processes execute the algorithm from the beginning of
time. Rather, the application issues an explicit join event, and waits for a join OK. The variable
join-slot holds the slot at which a process starts participating in the algorithm; this will be the
value of current-slot when join OK will be issued, and the first slot for which a bulk message
will be sent. If a process explicitly leaves the algorithm, its leave-slot holds the slot immediately
following the last slot in which the process sends a bulk message. Both join-slot and leave-slot
are initially ∞, so as to be larger than any actual slot number they are compared with.

20

clock∈R, initially∈[0, Γ/2]; dynamic type: continuous functions

join-slot ∈ N ∪ ∞, initially ∞
leave-slot ∈ N ∪ ∞, initially ∞
did-join-OK, boolean, initially false

did-leave, boolean, initially false

mcast-slots ⊆ N, initially { }
ended-slots ⊆ N, initially { }
reported-slots ⊆ N, initially { }

for every s ∈ N

out-buf[s] ∈ M2, initially empty sequence of M

joiners[s] ⊆ I, initially { }
leavers[s] ⊆ I, initially { }
suspects[s] ⊆ I, initially { }

for every s ∈ N, j ∈ I

in-buf[j,s], j ∈ I, s ∈ N, finite sequence of M or ⊥, initially ⊥

for every j ∈ I\{ i }

CUP-status[j] ∈ { idle, req, running, done }, initially idle

CUP-req-val[j] ∈ N ∪ { ⊥ }, initially ⊥
CUP-dec-val[j] ∈ N ∪ { ⊥ }, initially ⊥

derived variables:

current-slot ∈ N = b clock / Θ c

for every s ∈ N

alive[s] ⊆ I = { j | in-buf[s,j] 6= ⊥ }

Figure 8: Atomi: State.

The boolean flags did-join-OK and did-leave are used to ensure that join OK and net leave

actions will not be performed more than once. The set mcast-slots keeps track of the slots for
which the process already multicast a message (JOIN, LEAVE, or bulk). Likewise, ended-slots
and reported-slots keep track of the slots for which the process already performed the end slot

or members actions, resp.

out-buf[s] stores the message (bulk, JOIN, or LEAVE) that is multicast for slot s; it initially
holds an empty sequence, and in an active slot, all application messages are appended into it.
A JOIN message is inserted for the slot before the join-slot, and a LEAVE message for the
leave-slot. Either way, there is no overlap with a bulk message.

The variables joiners[s] and leavers[s] keep track of the processes j for which join-slotj

=s (resp. leave-slotj =s). suspects[s] is the set of processes suspected in slot s as determined
when end slot(s) occurs.

The variable in-buf[j,s] is a finite sequence of messages received in a slot s bulk message
from process j. The data type finite sequence supports assignment, extraction of the head of the
queue, and testing for emptiness.

There are three variables for tracking the status and values of the different instances of CUP.
CUP-status[j] is initially idle; when CUP(j) is initiated, it becomes running; if a CUP-INIT
message for j arrives, it becomes req; and when there is a decision for CUP(j), or if the process
abstains from CUP(j), it becomes done. CUP-req-val[j] holds the lowest slot value associated

21

with a CUP-INIT message for j (⊥ if no such message has arrived). Finally, CUP-dec-val[j] holds
the decision reached by CUP(j), and ⊥ if there is none.

alive[s] is a derived variable, storing the set of processes from which slot s bulk messages
were received.

joini
Eff: trigger(net joini)

net join OKi
Eff: join-slot ← current-slot + 2 + d Γ/Θ e

out-buf[join-slot - 1] ← JOIN

join OKi
Pre: did-join-OK = false

current-slot = join-slot

Eff: did-join-OK ← true

leavei
Eff: if (join-slot ∈ N) then

leave-slot ← max(current-slot, join-slot) + 1

out-buf[leave-slot] ← LEAVE

net leavei
Pre: did-leave = false

leave-slot ∈ mcast-slots

Eff: did-leave ← true

net leave OK
Eff: trigger(leave OKi)

mcasti(m)

Eff: if (join-slot ≤ current-slot < leave-slot) then

append m to out-buf[current-slot]

net mcasti(i, m, s)

Pre: join-slot ∈ N

join-slot - 1 ≤ s ≤ leave-slot

current-slot = s+1

s 6∈ mcast-slots

m = out-buf[s]

Eff: mcast-slots ← mcast-slots ∪ { s }

net rcvi(j, JOIN, s)

Eff: joiners[s+1] ← joiners[s+1] ∪ { j }

net rcvi(j, LEAVE, s)

Eff: leavers[s] ← leavers[s] ∪ { j }

foreach (k such that CUP-status[k] = running) do

trigger(CUP(k).leave detecti(j))

net rcvi(j, m, s), m sequence of M

Eff: in-buf[j,s] ← m

Figure 9: Atomi: Transitions related to multicast, join, and leave.

In Figure 9 we present the first part of Atom’s transitions, including transitions related to
joining, leaving, multicasting messages, and receiving messages from the network. Transitions
related to membership and totally ordered delivery are presented in Figure 10.

22

When the application issues a join, Atom triggers net join. Once the Net responds with a
net join OK, Atom calculates the join-slot to be 2 + dΓ/Θe slots in the future. This will allow
enough time for the join message to reach the other processes. A JOIN message is then inserted
into out-buf[join-slot-1]. Once the current-slot reaches join-slot, join OK is issued to the
application.

When the application issues a leave, the leave-slot is chosen to be the ensuing slot, and a
LEAVE message is inserted into out-buf[leave-slot]. A net leave is issued after the LEAVE
message has been multicast, and the net leave OK triggers a leave OK to the application.

Messages multicast by the application are appended to the bulk message for the current slot
in out-buf[current-slot]. Once a slot s ends, the message pertaining to this slot is multicast
to the other processes using net mcast. If s = join-slot - 1, a JOIN message is sent. If s =

leave-slot, a LEAVE message is sent, and if s is between join-slot and leave-slot - 1, a
bulk message is sent.

When a bulk message is received, it is stored in the appropriate in-buf. When a JOIN (LEAVE)
message is received, the sender is added to the joiners (resp. leavers) set for the appropriate slot.
Additionally, when a LEAVE message is received, CUP.leave detect is triggered for all running
instances of CUP.

Process i performs end sloti(s) once it should have received all the slot s messages sent by
other non-failed processes. Since slot s messages are sent immediately when slot s ends, messages
are delayed at most ∆ time in Net, and the clock difference is at most Γ, process i should have
all the non-failed processes’ slot s messages ∆ + Γ time after slot s+1 began. At this time, clock
> (s+ 1)Θ +∆+ Γ. Process i expects to receive slot s bulk messages from all the processes that
are in alive[s-1], except for those that are leaving in slot s. Any process from which a slot s
bulk message is expected but does not arrive becomes suspected at this point, and is included in
suspects[s].

For every suspected process, CUP is run in order to agree upon the slot at which the process
failed. The slot s in which the process is suspected is used as the initial value for CUP. The estimated
world for CUP is alive[s] ∪ joiners[s+1]. This way, if k joins in slot s+1, k is included in
the estimated world. This is needed in order to satisfy the world consistency assumption of CUP,
because k can detect the same failure at slot s+1, and therefore participate in CUP(j). When i
initiates CUP(j), it also multicasts a (CUP-INIT, j) message. If a process k does not detect the
failure and does not participate, the (CUP-INIT, j) message forces k to abstain.

Since Atom implements the failure detector for CUP, the effect of end sloti(s) also triggers
CUP(k).fail detect(j) actions for every suspected process j, and for every currently running
instance k of CUP.

Process i abstains from CUP(j) only if a (CUP-INIT,j) message has previously arrived, setting
CUP-status[j]i = req, and only if end sloti has already occurred for a slot value greater than
CUP-req-val[j]i. The latter condition ensures that i abstains only from instances of CUP that it
will not initiate. This is because the network guarantees that when a process fails, at most one slot
bulk message from this process is lost (since we assume that Delta ≤ Θ). This implies that the
detection of j’s failure by two non-failed processes can occur at most one slot apart. Therefore, if
end sloti has already occurred for a slot value greater than CUP-req-val[j]i, i will never suspect
j.

The members(P, s) action triggers the delivery of all slot s messages from processes in P. It can
only occur once agreement has been reached about the processes to be included in P. Since the slot
at which a process k is suspected by two processes i and j can differ by at most one, membersi(P,

s) can occur after i receives decision from all instances of CUP pertaining to processes suspected in

23

end sloti(s)

Pre: join-slot ≤ s

leave-slot = ∞
s 6∈ ended-slots

clock 〉 (s+1)Θ + ∆ + Γ
Eff: ended-slots ← ended-slots ∪ { s }

suspects[s] ← (alive[s-1] ∪ joiners[s] \ leavers[s]) \ alive[s]

foreach (j ∈ suspects[s]) do

trigger(CUP(j).initi(s, alive[s] ∪ joiners[s+1]))

net mcasti(i, (CUP-INIT, j), s)

CUP-status[j] ← running

foreach (k such that CUP-status[k] = running) do

trigger(CUP(k).fail detecti(j))

net rcvi(j, (CUP-INIT, k), s)

Eff: if (CUP-status[k] = idle ∨ CUP-req-val[k] 〉 s) then

CUP-status[k] ← req

CUP-req-val[k] ← s

CUP(j).abstaini
Pre: CUP-status[j] = req

∃s ∈ ended-slots : s > CUP-req-val[j]

Eff: CUP-status[j] ← done

CUP(j).decidei(s)

Eff: CUP-status[j] ← done

CUP-dec-val[j] ← s

membersi(P, s)

Pre: s = min{ ended-slots \ reported-slots }

s + 1 ∈ ended-slots

∀j ∈ (suspects[s] ∪ suspects[s+1]) : CUP-status[j] = done

P = { j ∈ alive[s] | CUP-dec-val[j] = ⊥ ∨ CUP-dec-val[j] > s }

Eff: reported-slots ← reported-slots ∪ { s }

foreach j ∈ P, in order of indices do

while in-buf[j,s] not empty do

trigger(rcvi(head(in-buf[i,s])))

Figure 10: Atomi: Transitions related to membership and message delivery.

slots up to s+1. Therefore, membersi(P, s) must occurs after end slot(s+1), when the suspicions
for slot s+1 are determined. The set P includes every process j that is alive in slot s and for which
there is either no CUP instance running (in which case j was not suspected), or the CUP decision
value is greater than s.

7.6 Latency Analysis

In this section we analyze the latency guarantees of Atom. In Section 7.6.1 we show that in failure
free executions, Atom’s message latency is bounded by ∆ + 2Θ + 2Γ. We denote this bound by
∆Atom. In Section 7.6.2, we assign values to the constants that were used in the analysis of CUP
in Section 5.5 (δ1, δ2, and δ3). Then, in Section 7.6.3, we consider executions in which failures do
occur but there is a long time period with no failures. We analyze the time it takes Atom to clear
the backlog it has due to past failures, and reach a situation in which message latency is bounded

24

by the same bound as in failure free executions, namely ∆Atom, barring additional failures.
The fact that once failures stop for a bounded time all messages are delivered within constant

time implies that in periods with f failure, Atom’s latency is at most linear in the number of failing
processes.

7.6.1 Failure free executions

Lemma 7.1 The time from when process j starts slot s (i.e., current-slotj becomes s) until
process i performs end sloti(s+1) is at most ∆+ 2Θ+ 2Γ.

Proof: According to its preconditions, end sloti(s) occurs 2Θ + ∆ + Γ time after i starts slot
s. Since the difference between two processes’ clocks is at most Γ, i starts slot s at most Γ time
after j starts this slot.

Lemma 7.2 Consider an execution in which no process fails. If the application at process j per-
forms mcastj(m) when current-sloti = s and if process i delivers m, then i delivers m immedi-
ately after end sloti(s+1) occurs.

Proof: If i delivers m, rcvi(m) is triggered during the Membersi(P,s) action. Since no process
fails, suspects[s]i∪ suspects[s+1]i is an empty set, and thus the only precondition that needs
to be satisfied in order to perform Membersi(P,s) is s+1 ∈ ended-slotsi, which is true immediately
after end sloti(s+1) occurs.

As a direct result of these two lemmas, we get the following theorem:

Theorem 7.3 If the application at process j performs mcastj(m) at time t, and if process i delivers
m, then i delivers m by time t+∆Atom = t+∆+ 2Θ+ 2Γ.

7.6.2 CUP bounds

We now assign values to the constants used in the analysis of CUP in Section 5.5. Recall, δ1 is an
upper bound on message latency; δ2 is an upper bound on failure and leave detection time, and if
a message is lost due to failure, then the failure is detected at most δ2 after the lost message was
sent; and δ3 is an upper bound on the difference between different processes’ initiation times.

Lemma 7.4 δ1 = ∆

Proof: By definition, both ∆ and δ1 are defined to be upper bounds on the underlying network
latency.

Lemma 7.5 δ2 = ∆+ 3Θ+ 2Γ

Proof: Assume that CUP(k).initi(*,W) occurs with j ∈ W . Assume that one of the follow-
ing happens at time t: failj , leavej , or net mcastj(m) for a message m that is lost because j
subsequently fails. Let s be the value of current-slotj at time t. Assume also that by time
t+∆+ 3Θ+ 2Γ, i does not decide, leave, or fail, so CUP-status[k]i = running and i is active at
this time. We have to show that by this time, fail detecti(j) or leave detecti(j) occurs.
If j fails at time t, then j’s slot s message is never sent, and therefore i detects the failure and

invokes CUP(k).fail detecti(j) during end sloti(s) at the latest. By Lemma 7.1, this occurs

25

by time t + 2Θ + ∆ + 2Γ. Likewise, if j sends a message m while current-slotj = s, and m is
lost, then by the fifo nature of the network, j’s slot s message is also lost and i detects j’s failure
during end sloti(s) at the latest.

Assume next that j leaves when current-slotj = s, i.e., j’s leave-slot is s+1. If i receives
a LEAVE message from j, it receives it before end sloti(s+1) occurs, and immediately triggers
CUP(k).leave detecti(j). Otherwise, i receives no slot s+1 message from j and suspects j and
invokes CUP(k).fail detecti(j) during end sloti(s+1). This occurs by time t + 3Θ + ∆ + 2Γ.

Lemma 7.6 δ3 = Γ +Θ

Proof: Assume that some process process l initiates CUP(k) at time t and does not fail by time
t + ∆. Assume further that CUP(k).initi(*, W) occurs with j ∈ W . We have to show that j
initiates, abstains, leaves, or fails by time t+ Γ +Θ.

Process l triggers CUP(k).initl(s, *) during the end slotl(s) action, and k ∈suspectsl[s].
If j initiates CUP(k), there is a slot s’ such that j triggers CUP(k).initj during the end slotj(s’)

action, and k ∈suspectsj[s’]. By Invariant A.19, s’ ≤ s+1. Therefore, CUP(k).initj occurs
no later than time t+ Γ +Θ, and we are done.

Assume now that j does not initiate CUP(k), and does not leave or fail by time t+Γ+Θ. We
now show that j abstains from CUP(k) by time t+ Γ +Θ.

When CUP(k).initl(s, *) is triggered, l multicasts a (CUP-INIT, k) message. By Lemma A.8,
net join OKj occurs before l initiates CUP(k), that is, before l multicasts this message. Moreover,
by assumption, l does not fail by time t + ∆ and j does not leave or fail by time t + ∆ (because
∆ ≤ Θ). Therefore, j receives this message by time t+∆, which is before time t+ Γ+Θ. After j
receives this message, CUP-status[k]j is req and CUP-req-val[k]j is less than or equal to s. By
time t+Γ+Θ, end slotj(s+1) occurs and the condition for CUP(k).abstainj becomes true, and
remains true until CUP(k).abstainj occurs and changes CUP-status[k]j . Therefore, before any
time passes, CUP(k).abstainj occurs.

7.6.3 Failure free periods

We now consider executions in which failures do occur but there are long time periods with no
failures. We analyze the time it takes Atom to clear the backlog it has due to past failures, and
again reach a situation in which message latency is bounded by ∆Atom, barring additional failures.

Let t1 = δ3 + 4δ2, where δ3 and δ2 are bounds as given above for the difference between
process initiation times and failure detection time, resp. From Lemmas 7.6 and 7.5 we get that
t1 = Γ +Θ+ 4(∆ + 3Θ + 2Γ) = 4∆ + 9Γ + 13Θ.

Assume that from time t to time t′ = t+t1 there are no failures. We now show that if a message
m is sent after time t′, and there are no failures for a period of length ∆Atom after m is sent, then m
is delivered within ∆Atom time of when it is sent. Since the delivery order preserves the fifo order,
this also implies that any message m′ sent before time t′ is delivered by time t′ barring failures in
the ∆Atom time interval after m

′ is sent.

Theorem 7.7 Assume no process fails between time t and t′ = t + t1. If mcast(m)j occurs at a
time t′′ such that t+ t1 ≤ t′′, and no failures occur from time t′′ to time t′′+∆Atom, and if i delivers
m, then i delivers m by time t′′ +∆Atom.

26

Proof: By Lemma 7.5, by time t+ δ2 all the processes detect all the failures that occur by time t.
Therefore, no process initiates an instance of CUP after time t+δ2. Since no failures occur after time
t+δ2, by Theorem 5.9, all CUP instances that i initiates terminate by time t+δ2+δ3+3δ2 = t+t1.

Let s be the value of current-slotj at time t′′ (i.e., when mcast(m)j occurs). By Lemma 7.1,
process i performs end sloti(s+1) by time t

′′+∆+2Θ+2Γ = t′′+∆Atom. At this time, there are
no active CUP instances, because CUP instances pertaining to failures that occurred before time t
have all terminated and no new failures occur until time t′′ +∆Atom. Therefore, for every slot s’
≤ s, in order of slot numbers, Members(P, s’)i becomes enabled until it occurs. So Members(P,
s)i occurs before any time passes. If i delivers m, rcvi(m) is triggered during the Membersi(P, s)

action, so rcvi(m) also occurs before any time passes.

7.7 Extending Atom to Cope with Late Messages

In this paper, we assumed a synchronous model with deterministic network latency guarantees.
Since the network latency, ∆ is expected to be of a smaller order of magnitude than Θ, it would
not significantly hurt time bounds if conservative assumptions are made in the choice of ∆.

In ongoing research we are considering networks where latency bounds are more likely to be
violated. For example, some networks may support differentiated services with probabilistic latency
guarantees. Moreover, loss rates may exceed the bounds assumed in the implementation of the
reliable network. Such networks can be represented using the timed-asynchronous [11] failure
model.

Although our algorithm cannot guarantee atomic broadcast semantics while network latency
and reliability guarantees are violated, it is important for the algorithm to be able to recover
from such situations, and to once more provide correct semantics after network guarantees are re-
established. In addition, it would be desirable to inform the application when a violation of Atom
semantics occurs, and when the correct semantics are resumed (following the failure awareness
approach of [14]).

There are some strategies that can be used to make Atom recover from periods in which network
guarantees are violated. For example, a lost or late message can cause inaccurate failure suspicions.
With Atom, if a process k is falsely suspected, it will receive a (CUP-INIT, k) message for itself.
In order to recover from such a situation, we could have the process “commit suicide” in such a
situation, that is inform the application of the failure and have the application re-join as a new
process. The full modification of Atom for this setting is ongoing work.

8 Conclusions

We have defined two new problems, Dynamic Atomic Broadcast and Consensus with Unknown
Participants. We have presented new algorithms for both problems. The latency of both of our
algorithms depends linearly on the number of failures that occur during a particular execution, but
does not depend on an upper bound on the potential number of failures, nor on the numbers of
joins and leaves that happen during the execution.

Acknowledgments

We thank Alan Fekete and Rachid Guerraoui for comments that helped improve the presentation.

27

References

[1] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. RTCAST: Lightweight multicast for real-
time process groups. In IEEE Real-Time Technology and Applications Symposium (RTAS),
June 1996.

[2] Z. Bar-Joseph, I. Keidar, T. Anker, and N. Lynch. QoS preserving totally ordered multicast.
Technical Report MIT-LCS-TR-796, MIT Laboratory for Computer Science, January 2000.
Url: http://theory.lcs.mit.edu/∼idish/Abstracts/qos.html.

[3] Z. Bar-Joseph, I. Keidar, T. Anker, and N. Lynch. QoS preserving totally ordered multi-
cast. In F. Butelle, editor, 5th International Conference On Principles Of DIstributed Systems
(OPODIS), pages 143–162, December 2000. Special issue of Studia Informatica Universalis.

[4] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1994.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
J. ACM, 43(2):225–267, Mar. 1996.

[6] G. Chockler and D. Malkhi. Active Disk Paxos with infinitely many processes. In 21st ACM
Symposium on Principles of Distributed Computing (PODC), July 2002. To appear.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Com-
prehensive Study. ACM Comput. Surv., 33(4):1–43, December 2001. Previous version: MIT
Technical Report MIT-LCS-TR-790, September 1999.

[8] F. Cristian. Synchronous atomic broadcast for redundant broadcast channels. The Journal of
Real-Time Systems, 2:195–212, 1990.

[9] F. Cristian. Reaching agreement on processor group membership in synchronous distributed
systems. Distributed Computing, 4(4):175–187, April 1991.

[10] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusion to Byzantine agreement. Inform. Comput., 118:158–179, April 1995. Early version
in FICS15, June, 1985.

[11] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Trans-
actions on Parallel and Distributed Systems, pages 642–657, June 1999.

[12] D. Dolev and D. Malkhi. The Transis approach to high availability cluster communication.
Commun. ACM, 39(4):64–70, April 1996.

[13] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement. J. ACM,
37(4):720–741, October 1990.

[14] C. Fetzer and C. Cristian. Fail-awareness: An approach to construct fail-safe applications. In
27th Annual International Fault-Tolerant Computing Symposium, pages 282–291, 1997.

[15] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Lightweight process groups in the Isis
system. Distributed Systems Engineering, 1:29–36, 1993.

28

[16] A. Gopal, R. Strong, S. Toueg, and F. Cristian. Early-delivery atomic broadcast. In 9th ACM
Symposium on Principles of Distributed Computing (PODC), pages 297–309, 1990.

[17] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender,
editor, chapter in: Distributed Systems. ACM Press, 1993.

[18] S. Katz, P. Lincoln, and J. Rushby. Low-overhead time-triggered group membership. In 11th
International Workshop on Distributed Algorithms (WDAG), pages 155–169, 1997. LNCS
1320.

[19] H. Kopetz and G. Grunsteidl. Ttp - a protocol for fault-tolerant real-time systems. IEEE
Computer, pages 14–23, January 1994.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, July 78.

[21] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[22] M. Merritt and G. Taubenfeld. Computing with infinitely many processes under assumptions
on concurrency and participation. In 14th International Symposium on DIStributed Computing
(DISC), October 2000.

[23] D. Powell. Delta-4: A Generic Architecture for Dependable Distributed Computing. Springer
Verlag, 1991.

[24] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Verissimo, and K. Birman.
A dynamic light-weight group service. In 15th IEEE International Symposium on Reliable
Distributed Systems (SRDS), pages 23–25, Oct. 1996. also Cornell University Technical Report,
TR96-1611, August, 1996.

[25] L. Rodrigues and P. Verissimo. xAMp, A multi-primitive group communications service. In
11thIEEE International Symposium on Reliable Distributed Systems (SRDS), pages 112–121,
Oct. 1992.

[26] R. D. Schlichting and F. B. Schneider. Fail stop processors: an approach to designing fault-
tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222–238, Aug. 1983.

[27] F. B. Schneider. Implementing fault tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[28] P. Verissimo, J. Rufino, and L. Rodrigues. Enforcing real-time behaviour of lan-based protocols.
In 10th IFAC Workshop on Distributed Computer Control Systems, September 1991.

29

A Correctness Proofs

A.1 Correctness of the CUP Algorithm

We consider the system consisting of a composition of automata CUPi, one for each i ∈ I. We
consider a restricted set of executions of this composition—those in which the environment safety
assumptions are all satisfied. The invariants we state throughout this section should be interpreted
as saying that the stated property is true for all states that occur in such executions.

A.1.1 General invariants

We say that a message is in the Net if a net mcast event for that message has occurred or is in a
trigger-buffer.
The first invariant lists an assortment of basic constraints. They can be proved using induction.

Invariant A.1 1. value[r,i]j = ⊥ if and only if world[r,i]j = ⊥.

2. If value[r,i]j = v 6= ⊥ and world[r,i]j = W 6= ⊥ then an (i,r,v,W) message is in the
Net.

3. If (i,r,*,*) is in the Net then roundi ≥ r.

4. If modei = ⊥ then roundi = 0.

5. If modei = running then some (i,1,*,*) message is in the Net.

6. If i ∈ failed[r]j then faili has occurred.

7. If i ∈ failed[r]j and s ≥ r, then value[s,i]j = ⊥.

The next invariant expresses consistency of values and worlds of the same process at different places
in the system.

Invariant A.2 1. If messages (j,r,v,W) and (j,r,v’,W’) are in the Net then v = v’ and W
= W’.

2. If value[r,j]i 6= ⊥ and value[r,j]i′ 6= ⊥ then value[r,j]i = value[r,j]i′ .

3. If world[r,j]i 6= ⊥ and world[r,j]i′ 6= ⊥ then world[r,j]i = world[r,j]i′ .

4. If value[r,j]i 6= ⊥ and world[r,j]i 6= ⊥ and a message (j,r,v,W) is in the Net then
value[r,j]i = v and world[r,j]i = W.

The next two invariants describe some facts that follow from the existence of OUT messages and
from the detection of leaves.

Invariant A.3 1. If an (i,OUT) message is in the Net then modei = done.

2. If i ∈ out[r]j then modei = done.

Proof: By induction. Part 2 uses the accurate leave detector assumption.

Invariant A.4 If i ∈ out[r]k and s ≥ r, then no message of the form (i,s,*,*) is in the Net,
and for all j, value[s,i]j = ⊥.

30

Proof: By strong induction. First, we claim that a net mcasti event cannot convert the invariant
from true to false by falsifying the conclusion while leaving the hypothesis true. This is because,
if the hypothesis is true, then i ∈ out[r]k in the pre-state of the net mcasti, which implies, by
Invariant A.3, that modei = done. But the precondition of net mcasti requires that modei =
running, a contradiction.
The key steps are, therefore, those that make the hypothesis true. Index i can be added to

out[r]k by receipt of an OUT message by k or by a leave detectk(i). An OUT message may
result from a previous abstaini that occurs when modei = ⊥, or a previous decidei event.
For abstaini, by Invariant A.1, we know that in the pre-state of the abstaini, roundi = 0.

Then Invariant A.1 implies that in the pre-state, no message of the form (i,*,*,*) is in the Net,
and for all j and all s, value[s,i]j = ⊥. Once the abstaini happens, modei becomes done, which
means that no later messages are sent.
For decidei, the fifo assumption for message delivery implies that the decidei event must have

occurred when round = r −1. Invariant A.1 then implies that in the pre-state of the decidei, the
conclusion of the invariant holds. Since the decidei event sets modei to done, i sends no further
messages, so the conclusion continues to hold.
For leave detectk(i), we know by the lossless leave assumption that before the leave detectk(i)

occurs, k has already received every message that has ever been net mcast by i. Since k explicitly
checks that it has no values from i for round r, there are no such messages in the Net.

The following says that any value that appears anywhere in the system is some participant’s initial
value.

Invariant A.5 1. If (i,r,v,W) is in the Net then there exists j and W’ such that (j,1,v,W’)
is in the Net.

2. If value[r,k]i = v 6= ⊥ then there exists j and W’ such that (j,1,v,W’) is in the Net.

Proof: We show Parts 1 and 2 together by induction on the length of a finite execution.
Base: Trivial, because no messages are initially in the Net and no values are initially non-⊥.
Inductive step: We first show part 1. The interesting steps are those in which a message (i,r,v,W)
is put into the Net. If r = 1 then (i,r,v,W) is put into the Net by an initi(v,W) event, which
puts the net mcast into trigger-bufferi. But this immediately satisfies the conclusion. On the
other hand, if r ≥ 2, then (i,r,v,W) is put into the Net by an explicit net mcast(i,r,v,W) step.
In this case, v is obtained from a set of values already in i’s value array in the pre-state. The
induction hypothesis, part 2, then implies that some (j,1,v,W’) is already in the Net, as needed.
For part 2, the key step is a net rcvi(k,r,v,W) for some W. In the pre-state of such a step, mes-

sage (k,r,v,W) is in the Net. The inductive hypothesis, part 1, then implies that some (j,1,v,W’)
is already in the Net, as needed.

The following invariant asserts that processes are always in their own worlds.

Invariant A.6 1. If a message (i,r,v,W) is in the Net then i ∈ W.

2. If world[r,i]j 6= ⊥ then i ∈ world[r,i]j.

Proof: We prove part 1 by induction on the length of the execution, with a trivial base case.
Inductive step: The interesting steps are those in which a message (i,r,v,W) is put into the Net.
If r = 1, then this is done by an initi(v,W) step. In this case, the environment well-formedness

31

assumption implies that no leavei or faili event precedes the initi, and so the world consistency
assumption implies that i ∈ W, as needed. On the other hand, if r ≥ 2, then (i,r,v,W) is put into
the Net by an explicit net mcast(i,r,v,W) step. In this case, the precondition says that modei =
running and world[1,i]i 6= ⊥ in the pre-state. In this pre-state, i is not in any failed[r]i set,
because if it were, Invariant A.1 would imply that i has failed, and it would not be able to perform
the net mcast. Also, in this pre-state, i is not in any out[r]i set, by Invariant A.3. Therefore, i
is included in W, because of the way W is defined.
Part 2 follows follows from part 1 and Invariant A.1.

The following invariant describes consequences of the definition of a round r+1 world and value:

Invariant A.7 If (i,r+1,v,W) is in the Net, for r ≥ 1, then:

1. For every j ∈ W, world[r,j]i 6= ⊥.

2. W = world[r,i]i \ out[r]i \ failed[r]i.

3. v = min {value[r,j]i : j ∈ W}.

4. W = world[1,i]i \ out-by[r]i \ failed-by[r]i.

Proof: Part 1 is proved by an easy induction; the key step is net mcast(i,r+1,v,W), and the
conclusion follows immediately from the precondition.
Given part 1, we prove part 2 by induction. Now the interesting steps are net mcasti(i,r+1,v,W),

net rcvi(j,OUT), leave detecti(j), and fail detecti(j). The fact that net mcasti(i,r+1,v,W)

yields the property follows immediately from the precondition. A net rcvi(j,OUT) event could
only falsify the property if j ∈ W and the event puts j into out[r]i. However, part 1 implies
that world[r,j]i 6= ⊥ in the post-state, and hence value[r,j]i 6= ⊥ in the post-state. But
this would cause the post-state to violate Invariant A.4, a contradiction. A similar argument
shows that leave detecti(j) cannot falsify the property. Finally, fail detecti(j) could only
falsify the property if j ∈ W and the event puts j into failed[r]i. However, part 1 implies that
world[r,j]i 6= ⊥ in the post-state, and hence value[r,j]i 6= ⊥ in the post-state. But this would
cause the post-state to violate Invariant A.1, a contradiction.
We prove part 3 by induction, using part 1. This time, the interesting steps are net mcasti(i,r+1,v,W)

and net rcvi(j,r,*,*). Again, the net mcasti(i,r+1,v,W) step yields the property immedi-
ately. A net rcvi(j,r,v’,*) could only falsify the property if j ∈ W. But in this case we know
that value[r,j]i 6= ⊥ i the pre-state, and then Invariant A.2 implies that v’ = value[r,j]i in
the pre-state. It follows that this step does not change value[r,j]i, and so does not falsify the
property.
Part 4 is proved by induction on r (not induction on the length of the execution), using part

2. The base case, r = 1, follows immediately from part 2. For the inductive step, we sup-
pose that the claim is true for some r ≥ 1 and show it for r + 1. That is, we assume that
(i,r+2,v,W) is in the Net. Then by part 2, W = world[r+1,i]i \ out[r+1]i \ failed[r+1]i.
Now, since world[r+1,i]i 6= ⊥, Invariant A.1 implies that a message of the form (i,r+1,v’,W’)

is in the Net, where W’ = world[r+1,i]i. By inductive hypothesis, part 4, this implies that W’
= world[1,i]i \ out-by[r]i \ failed-by[r]i. Therefore, W = world[1,i]i \ out-by[r]i \
failed-by[r]i \ out[r+1]i \ failed[r+1]i. This is equal to world[1,i]i \ out-by[r+1]i \
failed-by[r+1]i, as needed.

Invariant A.8 Suppose that decidei(v) has happened at round r. Then:

32

1. For all j ∈ world[r,i]i \ out[r]i, value[r,j]i = value[r,i]i and world[r,j]i ⊆ world[r,i]i.

2. For all j ∈ world[r,i]i, if (j,r,v’,W) is in the Net then v’ = v and W ⊆ world[r,i]i.

Proof: Part 1 follows from an easy induction: out can only grow, and value and world do not
change once they are non-⊥. Therefore, the only interesting step is decidei(v), and the result
follows directly from the precondition.
For part 2, consider any state s after a decidei(v) has happened at round r. Suppose that

j ∈ world[r,i]i and (j,r,v’,W) is in the Net, in state s. Then Invariant A.4 implies that j /∈
out[r]i. Thus, j ∈ world[r,i]i\ out[r]i. Then part 1 and Invariant A.2 imply the conclusion.

The following invariants say that any process’ values and worlds decrease as rounds increase.

Invariant A.9 For any r ≥ 1, if a message (i,r+1,v,W) is in the Net then value[r,i]i 6= ⊥, v
≤ value[r,i]i, and W ⊆ world[r,i]i.

Proof: By induction. For the inductive step, the interesting case is when the last action of the
execution is net mcast(i,r+1,v,W). Invariant A.6 implies that i ∈ W. Therefore, the precondition
for net mcast(i,r+1,v,W) implies that, in the pre-state, value[r,i]i 6= ⊥. Therefore, this is also
true in the post-state, as needed.
Next, we show that v ≤ value[r,i]i. The value v is determined in the net mcast event to be

the minimum of the set of values of the form value[r,j]i, for j ∈ W. Since i ∈ W, this minimum
includes value[r,i]i. Therefore, v ≤ value[r,i]i.
Finally, we show that W ⊆ world[r,i]i. The value W is determined in the net mcast event to

be world[r,i]i \ out-by[r] \ failed-by[r], according to the values of the out and failed sets
in the pre-state. It follows immediately that W is a subset of world[r,i]i.

Invariant A.10 For any r ≥ 1,

1. If value[r+1,i]i 6= ⊥ then value[r,i]i 6= ⊥, value[r+1,i]i ≤ value[r,i]i, and world[r+1,i]i ⊆
world[r,i]i.

2. If value[r,i]i 6= ⊥ and 1 ≤ s ≤ r then value[s,i]i 6= ⊥, value[r,i]i ≤ value[s,i]i,
and world[r,i]i ⊆ world[s,i]i.

Proof: For part 1, assume that, in some reachable state, value[r+1,i]i 6= ⊥, and hence world[r+1,i]i

6= ⊥. Then Invariant A.1 implies that in the same state, a message (i,r+1,v,W) must be in the
Net, where v = value[r+1,i]i and W = world[r+1,i]i. Invariant A.9 then yields the conclu-
sions. Part 2 follows from part 1, using induction on r-s.

The following invariant says that, if all the messages for a particular round r are “consistent”, then
so are all the messages for all later rounds.

Invariant A.11 Let W be a nonempty finite set, v ∈ V, and r ≥ 1. Suppose that, for every i ∈ W,
if a message of the form (i,r,v’,W’) is in the Net, then W’ ⊆ W and v’ = v.
Then for every i, j ∈ W and for every s ≥ r,

1. If a message of the form (i,s,v’,W’) is in the Net, then W’ ⊆ W and v = v’.

2. value[s,i]j is either v or ⊥.

33

3. world[s,i]j is either a subset of W or ⊥.

Proof: We prove part 1 by induction on the length of an execution.
Base: The conclusion of the invariant is vacuously true in the start state.
Inductive step: The interesting steps are those that put some message (i,s,v’,W’) into the Net,
where i ∈ W and s ≥ r. We may restrict attention to the case where s > r, because if s = r and
the step falsifies part 1, it also falsifies the hypothesis of the invariant. Thus, the only interesting
steps are of the form net mcast(i,s,v’,W’) where i ∈ W and s > r. So consider such a step, and
fix i, s, v’, and W’. Assume that the hypothesis of the invariant is true after (and hence before)
the step.
We show that W’ ⊆ W. After the net mcast step, the message is in the Net. Invariant A.9

then implies that W’ ⊆ world[s-1,i]i. Invariant A.10 then implies that world[r,i]i 6= ⊥
and world[s-1,i]i ⊆ world[r,i]i. Therefore, W’ ⊆ world[r,i]i. Since world[r,i]i 6= ⊥,
an (i,r,*,W’’) message is in the Net, where W’’ = world[r,i]i. Then since the hypothesis of
the invariant is true, it follows that world[r,i]i ⊆ W. Putting all the pieces together yields that
W’ ⊆ W.
Next, we argue that v’ = v. The value v’ is determined by the precondition of the net mcast

action, as the minimum of a set of values value[s-1,j]i, taken over all indices j in W’. Because W’
⊆ W, every such index j is in W. Since value[s-1,j]i 6= ⊥, a (j,s-1,v’’,W’’) message is in the
Net in the pre-state of the new net mcast, where v’’ = value[s-1,j]i. Our assumption that the
conclusion of the invariant is true in the pre-state then implies that value[s-1,j]i = v. Thus, all
the values considered in the min are equal to v, which implies that v = v’.
This proves part 1. Parts 2 and 3 follow from part 1 and Invariant A.1.

Invariant A.12 If roundi = r > 1 and modej = running and j is not failed, then roundj ≥ r

- 1.

Proof: Since j is not failed, by Invariant A.1(6), j 6∈failed[s]i for any s, so j 6∈failed-by[r-1]i.
By Invariant A.3(2), j 6∈ out[s]i for any s, so j 6∈out-by[r-1]i. Since modej = running, j initi-
ated, and by the world consistency assumption, j ∈world[1,i]i. By Invariant A.7(4), j is in i’s
world for round r. Therefore, i must have received a round r-1 message from j before moving to
round r.

A.1.2 CUP safety guarantees

We now prove that the CUP implementation satisfies the CUP safety guarantees, assuming the
environment satisfies the safety assumptions.

Theorem A.1 The CUP algorithm satisfies well-formedness.

Proof: This is straightforward from the code and the well-formedness assumptions on the en-
vironment. For condition 1, assume that decidei occurs. Then in the preceding state, mode =

running. mode is initially ⊥, and the only way it becomes running is via initi. So there must be
a preceding initi.
For condition 2, assume for the sake of contradiction that two decidei events occur. Part 1

implies that an initi precedes the first decidei. The first decidei sets modei to done. After this
point, and before the second decidei event occurs, modei must become running. This can happen
only as a result of another initi event. This means that two initi events must occur, which
contradicts the environment well-formedness assumption. Therefore, no more than one decidei

event occurs.

34

Theorem A.2 The CUP algorithm satisfies uniform agreement.

Proof: If at most one decide event occurs, the result follows immediately. So assume that
there are at least two decide events. Consider the first decide event, decidei(v). By the pre-
condition, we know that in the pre-state, there exists r such that world[r,i]i 6= ⊥ and ∀j ∈
world[r,i]i \ out[r]i, value[r,j]i = v and world[r,j]i ⊆ world[r,i]i. Since i does not
leave, abstain, or decide before the decidei event, we know that i /∈ out[r]i in the pre-state; there-
fore, value[r,i]i = v. Also consider any particular later decide event, decidei′(v’). As above,
we know that in the pre-state of this event, there exists r’ such that world[r’,i’]i′ 6= ⊥ and
∀j ∈ world[r’,i’]i′ \ out[r’]i′ , value[r’,j]i′ = v’ and world[r’,j]i′ ⊆ world[r’,i’]i′ .
Moreover, value[r’,i’]i′ = v’.

We now show that i′ ∈ world[r,i]i. Since i
′ decides, it initiates and does not leave or fail before

it decides. Since i initiates before it decides, and thus before i′ decides, i′ does not leave or fail
before i initiates. Then the world consistency assumption implies that i′ gets put into world[1,i]i.
If r = 1 then we are done, so assume that r ≥ 2. Then the value of world[r,i]i is determined in a
net mcasti(i,r,*,*) step. To see that i

′ is included in world[r,i]i, note that that set is defined
in the net mcasti(i,r,*,*) step to include (at least) all processes in world[1,i]i that do not
leave, abstain, decide, or fail before the net mcasti(i,r,*,*) event. And i′ does not leave, abstain,
decide, or fail by then, because this net mcasti(i,r,*,*) event happens prior to the decidei.

We also know that i′ /∈ out[r]i in the pre-state of decidei. This is because i′ has not left,
abstained, or decided before the decidei.

Next, we show that r’ ≥ r, that is, the round at which i′ decides is at least as great as the
round at which i decides. Since i′ ∈ world[r,i]i and i′ /∈ out[r]i in the pre-state of decidei, the
precondition for decidei implies that value[r,i’]i 6= ⊥ in the pre-state of decidei. This means
that i′ must send an (i’,r,v,*) message. This implies that the round r’ at which i′ decides is at
least as great as r, that is, r’ ≥ r.

Finally, we argue that v’ = v. Invariant A.8, part 2, implies that in the pre-state of decidei′ ,
if j ∈ world[r,i]i and if (j,r,v’’,W’’) is in the Net, then v’’ = value[r,i]i and W’’ ⊆
world[r,i]i. Since r’ ≥ r and i′ ∈ world[r,i]i, Invariant A.11, part 2, implies that in the
pre-state of decidei′ , value[r’,i’]i′ is either v or ⊥. Since (as noted earlier) value[r’,i’]i′ =
v’, we have that v=v’.

Theorem A.3 The CUP algorithm satisfies validity.

Proof: Part 1 follows from Invariant A.5. Part 2 follows from Invariant A.10.

A.1.3 CUP liveness guarantees

We now show that CUP satisfies its liveness property—termination. Formally, the lemmas and
theorem we state in this section should be interpreted with respect to an execution α of the
composition of automata CUPi for i ∈ I such that:

1. All the environment safety and liveness assumptions are satisfied in α.

2. α is “weakly fair” to all actions of all CUPi automata, in the sense that if an action is enabled
from some point onward, it eventually is performed.

35

Lemma A.4 Let J be the set of processes that initiate and never decide, leave, or fail, and suppose
that i ∈ J. If initi(v, W) occurs and j ∈ W then either j ∈ J or else j abstains, leaves, decides, or
fails.

Proof: Follows from the init occurrence assumption.

Lemma A.5 If process i initiates and never decides, leaves, or fails, then roundi increases without
bound.

Proof: Let J be the set of all processes that initiate and never decide, leave, or fail. Assume for
the sake of contradiction that, for some process i ∈ J , roundi is bounded. Let r be the smallest
round number such that for some process i ∈ J, roundi is bounded by r, and fix such i ∈ J. Process
i cannot get stuck at round 0, because the initi action immediately increments the round to 1. So
we may assume that r > 0.
We argue that i cannot be stuck at round r, by showing that for some v, W, the net mcasti(i,r+1,v,W)

action is eventually enabled and stays enabled. Then weak fairness implies that net mcasti(i,r+1,v,W)

eventually occurs.
We claim that the last precondition of net mcasti(i,r+1,*,*) (the negation of the decide

precondition) is always true. For if not, then decidei(v) would be enabled for some v, and would
stay enabled forever. This implies, by weak fairness, that decidei occurs, a contradiction.
Next, we claim that for every j ∈ world[1,i], either i receives a round r message from j, or

else i puts j into its failed[r’] set or out[r’] set for some r’ ≤ r. Fix any such j. Lemma A.4
implies that either j ∈ J or j eventually abstains, leaves, decides, or fails. If j ∈ J then by choice
of r, j does not get stuck at any round less than r, and so j eventually sends a round r message,
which i eventually receives.
If j fails, then eventually a fail detecti(j) occurs, which makes i put j into one of its

failed[r’] sets. If r’ ≤ r then we are done; on the other hand, if r’ > r then i receives a
round r message from j.
If j abstains and does not fail, then eventually i puts j into its out[1] set (which suffices

because 1 ≤ r). If j leaves or decides at a round r’ ≤ r, then eventually i puts j into its out[r’]
set. Finally, if j leaves or decides at a round r’ > r, then eventually i receives a round r message
from j.
This claim implies that eventually the precondition of net mcasti(i,r+1,v,W) is satisfied for

some v, W. Because the values and worlds can only decrease, eventually the precondition is satisfied,
and remains satisfied, for the same v, W. Then weak fairness implies that the action eventually
occurs, which moves j to round r + 1. This is a contradiction.

Lemma A.6 Let J be the set of processes that initiate and never decide, leave, or fail, and suppose
that i ∈ J. Then for r sufficiently large, world[r,i]i = J.

Proof: The result follows from two claims: that for all r, J ⊆ world[r,i]i, and that for suffi-
ciently large r, world[r,i]i is a subset of J.
First, we show that for all r, J ⊆ world[r,i]i. World consistency implies that J ⊆ world[1,i]i.

Since no element of J ever abstains, leaves, fails, or decides, no element of J is ever put into any
failed[r]i or out[r]i. Then the definition of world[r,i]i (in net mcast(i,r,*,*)) implies that
for all r, J ⊆ world[r,i]i.
Second, we show that for sufficiently large r, world[r,i]i is a subset of J. Let j be any element

of world[r,i]i. Lemma A.4 implies that if j /∈ J, then j eventually abstains, leaves, decides, or

36

fails. But in any of these cases, j eventually gets put into some failed[r]i or out[r]i. This means
that j is excluded from world[r,i]i for sufficiently large r.

Theorem A.7 The CUP algorithm satisfies termination.

Proof: We prove that every process that initiates eventually decides, leaves, or fails. Assume for
the sake of contradiction that there is at least one initiator that does not decide, leave, or fail. Let
J be the set of processes that initiate and never decide, leave, or fail; then J is not empty. Then
Lemma A.5 implies that the rounds of all processes in J increase without bound, and Lemma A.6
implies that for sufficiently large r, world[r,i]i = J for all i ∈ J. Thus from some round onward,
every process in J bases its new value on values heard from exactly the members of J.

Thereafter, each i ∈ J eventually reaches some minimum value of value[r,i]i (by monotonicity
and the fact that only finitely many values can be used). Consider a round beyond which all the
minima have been attained. If these are all identical, then all processes can decide based on this
value and world J, and we are done. On the other hand, if they are not all identical, then let i be a
process whose minimum is larger than some other process’ minimum. Then i would see a smaller
value and reduce its value further, a contradiction.

A.2 Atom Correctness Proof: Safety Arguments

A.2.1 General Invariants

The following invariants follow immediately from the code:

Invariant A.13 If join-sloti 6=∞ then leave-sloti > join-sloti.

Invariant A.14 Suppose s ∈ ended-slotsi. Then:

1. If j ∈ joiners[s]i then join-slotj = s.

2. If j ∈ leavers[s]i then leave-slotj = s.

Proof: Process j can be inserted into joiners[s]i (leavers[s]i) only if i receives a (j, JOIN,

s-1) (resp. (j, LEAVE, s)) message, which can be sent only by j and only if join-slotj = s

(resp. leave-slotj = s).

The following invariant asserts that from the join slot onward, slot messages (bulk, join, or
leave) are multicast in order.

Invariant A.15 If join-sloti − 1 ≤ s’ ≤ s and s ∈ mcast-slotsi then s’ ∈ mcast-slotsi.

Proof: join-sloti had to have been set before current-sloti becomes s’+1 because it is always
chosen to be in the future. Therefore, net mcasti(i, *, s’) is enabled once current-sloti

becomes s’+1. This is earlier than the time at which net mcasti(i, *, s) can occur, so time
could not have passed beyond that point without net mcasti(i, *, s-1) occurring.

The following invariant is central to the rest of the proof. It asserts that by the time of
end sloti(s), i has all the right processes in alive[s-1], alive[s], joiners[s], and joiners[s+1].

37

Invariant A.16 If s ∈ ended-slotsi then

1. If join-slotj ≤ s and s ∈ mcast-slotsj then j ∈ alive[s-1]i∪ joiners[s]i.

2. If join-slotj ≤ s+1 and s+1 ∈ mcast-slotsj then j ∈ alive[s]i∪ joiners[s+1].

Proof: If j joined by slot s, it registered for the network before starting slot s-1. Moreover,
if s ∈ mcast-slotsj , then by Invariant A.15, s-1 ∈ mcast-slotsj , and therefore j multicasts
either a (j, JOIN, s-1) or a bulk message in slot s-1, and by the Net’s reliable delivery property,
this message is not lost due to j’s failure because j multicasts a message in the following slot,
which occurs Θ time later, and we assume that Θ > ∆, and messages sent more than ∆ time
before the failure are not lost. Likewise, if join-slotj ≤ s+1 and s+1 ∈ mcast-slotsj , then s

∈ mcast-slotsj (by Invariant A.15), and j multicasts a bulk or join message in slot s, which is
not lost due to j’s failure.

We will now show two things: first, that i joined early enough to get j’s slot s-1 bulk or join
message; and second, that end sloti(s) occurred late enough for i to have received j’s slot s bulk
or join message.

Since i does end slot for s, join-sloti ≤ s. Process i chooses its join-slot following the
net join OKi to be current-sloti + 2 + dΓ/Θe, so current-sloti becomes s-1 at least Γ time
after the net join OKi. Since the maximum clock difference between i and j is Γ, j sends its
message (join or bulk) for slot s-1 no earlier than the time of the net join OKi, so i joined early
enough to get j’s message for slot s.

It is left to show that i gets j’s slot s bulk or join message for slot s before end sloti(s). This
follows from the precondition for end sloti which asserts that clocki > (s+ 1)Θ +∆+ Γ. That
is, that at least ∆ + Γ time has elapsed since slot s+1 has begun at i. Since the clock difference
between i and j is at most Γ, we get that at least ∆ time has elapsed since slot s+1 has begun at
j. Since j sends its slot s message once slot s+1 begins at j, and the network latency is bounded
by ∆, the message reaches i before end sloti(s).

The following invariants are related to the suspects[s] sets.

Invariant A.17 If suspects[s]i is not empty, then join-sloti ≤ s.

Proof: suspects[s]i gets set only upon end sloti(s), for which this is a precondition. Once
join-sloti is set to a non-∞ value, it does not change, by the singularity of join and net join OK.

Invariant A.18 If j ∈ suspects[s]i then j has failed.

Proof: Since j gets inserted to suspects[s]i during end sloti(s), j is in (alive[s-1]i ∪
joiners[s]i \ leavers[s]i) \ alive[s]i). In particular, j is in alive[s-1]i∪ joiners[s]i,
and therefore join-slotj ≤ s. Moreover, j is not in alive[s]i, so by the contrapositive of In-
variant A.16(2), s+1 6∈ mcast-slotsj , which implies that j either fails or leaves before sending a
slot s+1 message. Since j is also not in leavers[s]i, j must have failed.

Invariant A.19 If j ∈ suspects[s]i and j ∈ suspects[s’]i′ then |s’ - s| ≤ 1.

38

Proof: Without loss of generality, assume s’ ≥ s. Since j ∈ suspects[s]i, then j ∈alive[s-1]i∪
joiners[s]i, and therefore join-slotj ≤ s. Moreover, j is not in alive[s]i when s ∈ ended-slotsi,
so by the contrapositive of Invariant A.16(2), s+1 6∈ mcast-slotsj . By Invariant A.15, for any
slot r > s, r 6∈ mcast-slotsj , and therefore j 6∈ alive[r]i′ for any r > s. Since i′ suspects j in
slot s’, j is in alive[s’-1]i′ , and therefore s’-1 ≤ s.

The following invariant states that a process does not abstain from CUP instances pertaining
to processes that it suspects.

Invariant A.20 If k ∈ suspects[s]i and CUP-status[k]i = done then CUP-dec-val[k]i 6= ⊥.

Proof: Assume by contradiction that the invariant is false. Since CUP-status[k]i = done while
CUP-dec-val[k]i = ⊥, then i must have performed CUP(k).abstaini. By the precondition for
CUP(k).abstaini, CUP-status[k]i was req when abstaini occurred, which implies that end slot(s)i

could not have already occurred, that is, all the slots in ended-slotsi were smaller than s

at the time of CUP(k).abstaini. By the precondition for CUP(k).abstaini, when it occurred,
CUP-req-val[k]i had some non-⊥ value, v, such that v < s-1. This, in turn, implies that a
(CUP-INIT, k) message with slot v had previously arrived. That means that such a message was
previously sent by some j, which implies that k is added to suspects[v]j , during end slotj(v),
and remains there henceforward. But k ∈ suspects[s]i and v < s-1, a contradiction to Invari-
ant A.19.

Invariant A.21 If k ∈ alive[s]i, k 6∈ alive[s]j, and s ∈ ended-slotsj then k ∈ suspects[s]j.
Moreover, if s+1 ∈ ended-slotsi then k ∈ suspects[s+1]i.

Proof: Since k ∈ alive[s]i, we know that join-slotk ≤ s < leave-slotk and that s ∈
mcast-slotsk. Therefore, by Invariant A.16(1), if s ∈ ended-slotsj then k ∈ alive[s-1]j∪
joiners[s]j . Additionally, k is neither in leavers[s]i nor in leavers[s]j , because it does
not leave at slot s. Therefore, since k 6∈ alive[s]j , in end slotj(s), k gets inserted into
suspects[s]j .
Since k 6∈ alive[s]j , by the contrapositive of Invariant A.16(2), we get that s+1 6∈ mcast-slotsk.

That is, k does not send a bulk or leave message for slot s+1. Therefore, k 6∈ alive[s+1]i∪
leavers[s+1]i when end sloti(s+1) occurs, and k gets inserted into suspects[s+1]i when s+1
is inserted to ended-slotsi.

Invariant A.22 If k ∈ alive[s]i and s+1 ∈ ended-slotsi and CUP-dec-val[k]j ≤ s then k ∈
suspects[s+1]i.

Proof: Since k ∈ alive[s]i, join-slotk ≤ s < leave-slotk. Since CUP-dec-val[k]j ≤,
then by the validity property of CUP, some process l must have initiated CUP(k) with an ini-
tial value s’ ≤ s. This implies that k ∈ suspects[s’]l, and therefore k 6∈ alive[s’]l and s’

∈ ended-slotsl. By contrapositive of Invariant A.16, s’+1 6∈ mcast-slotsk, and therefore also
s’+1 6∈ mcast-slotsk. So i does not hear a bulk or leave message from k for slot s+1, and k ∈
suspects[s+1]i.

Lemma A.8 Assume that for some processes j, k, l CUP(k).initl(v, W) occurs with j ∈W, and
that CUP(k).initi(v’, W’) also occurs. Then net join OKj has occurred before CUP(k).initi(v’,

W’).

39

Proof: By the precondition for CUP(k).init, k ∈ suspects[v’]i and k ∈ suspects[v]l, so by
Invariant A.19, v′ ≥ v − 1. When CUP(k).initl(v, W) occurs, W = alive[v]l∪ joiners[v+1]l.
Since j ∈W, this implies that join-slotj ≤ v+1 ≤ v’+2. Assume CUP(k).initi(v’, W’) occurs
at time t. So at time t, v’ ∈ ended-slotsi. By the precondition for end sloti(v’), at time t
clocki > (v′+1)Θ+∆+Γ. Since v’+1 ≥ join-slotj −1, at this time clocki > (join-slotj−
1)Θ+∆+Γ. Since the clock skew is bounded by Γ, at time t, clockj > (join-slotj − 1)Θ+∆.
So t is at least ∆ time after j begins slot join-slotj − 1. But join-slotj is chosen to be at
least 2 slots after the slot at which net join OKj occurs at j, so j begins join-slotj − 1 after the
net join OKj , i.e., before time t.

A.2.2 Safety environment conditions for CUP

Well-formedness CUP(k).initi only occurs when k becomes suspected at i. Once k is sus-
pected, it is never again alive. Therefore, it is never suspected again and CUP(k).initi occurs at
most once. By Invariant A.20, since k is suspected at i, i does not abstain. Thus, at most one
initi or abstaini event occurs.

The fact that at most one leavei event occurs and at most one faili event occurs is ensured
by the application, since leave and fail actions are routed directly from the application to all
instances of CUP.

The fact that no faili precedes an initi follows from the fact that failures affect all components
and processes do not take any steps after they fail.

One of the preconditions end sloti is that leave-sloti = ∞, that is, that leavei did not
occur. Therefore, no leavei precedes an initi.

World consistency Assume that CUP(k).initi(s, W) occurs at time t, j does not leave or fail
before time t, and CUP(k).initj(s’, *) also occurs. We need to show that j ∈W.

CUP(k).initi(s, W) is triggered during end sloti(s). We need to show that at this time j ∈
alive[s]i∪ joiners[s+1]i. This is true if i receives j’s slot s bulk or join message.

By the precondition for end sloti(s), clocki > (s+1)Θ+∆+Γ at time t. Since the difference
between a process clock and real time is at most Γ/2, the real time associated with point t is at
least (s+1)Θ+∆+ Γ/2. By assumption, j does not fail or leave until this time.

By Invariant A.19, s’ ≤ s+1. When CUP(k).initj(s’,*) occurs, k ∈suspects[s’]j . By
Invariant A.17, join-slotj ≤ s’. Together these two inequalities imply that join-slotj ≤ s+1.
Therefore, if j does not fail or leave before clockj becomes s+1Θ, j multicasts its slot s bulk or join
message when clockj = (s+1)Θ (a join message is multicast if join-slotj = s+1; otherwise j
multicasts a slot s bulk message). When clockj = (s+1)Θ, the real time is at most (s+1)Θ+Γ/2.
If j does not fail until the real time becomes (s+1)Θ+Γ/2+∆, then j’s message is not lost, and i
receives it by time (s+1)Θ+Γ/2 +∆. But we assume that j does not fail or leave until this time.

Accurate failure detector CUP(k).fail detecti(j) occurs only if for some slot s j ∈suspects[s]i.
Therefore, by Invariant A.18, j has previously failed. Moreover, since a process is never again alive
after it is suspected, it is never again suspected, and CUP(k).fail detecti(j) does not recur.

Accurate leave detector CUP(k).leave detecti(j) occurs only if a LEAVE message is re-
ceived from j; j sends at most one such a message and only if it actually leaves.

40

Lossless leave Assume a CUP process at j multicasts a message m, and subsequently, leavej

occurs. When leavej occurs, a LEAVE message is inserted to out-bufj to be sent in the ensuing
slot. This LEAVE message is multicast after m. leave detecti(j) occurs when this LEAVE
message is received. By the fifo property of Net, net rcvj(m) occurs beforehand.

A.2.3 Proving the total order property

We now prove that all the process deliver messages in a consistent total order. We define the total
order S as follows: Let Ps be the union of all sets P such that an action members(P, s)i occurs.
The set of messages Ss is defined to be those messages included in slot s bulk messages by processes
in Ps. The set of messages in S is defined to be the union of all sets Ss.

The ordering is based on slots, so that for s < s’, all messages in Ss precede all messages in
S′

s. For messages pertaining to the same set Ss, the ordering is by process indices. For the same
slot and process index, the ordering is the temporal order of sending (at the external boundary of
Atom).

We have to show that every process delivers a contiguous subsequence of S. We first prove
Lemma A.9, asserting that every two processes that perform a members(P, s) action for a slot
s do so with the same membership set P. As part of this action, processes deliver messages for
slot s. Next, we prove Lemma A.10, asserting that if a process i performs membersi(P, s) with
j ∈P, then i has received a bulk message for slot s from j, and therefore triggers the delivery of
all the messages included in it as an effect of the membersi(P, s) action. Thus, every process
that performs members(P, s), triggers the delivery of all the messages in Ss. These messages are
delivered in order of the sender’s process index, and for each process, in fifo order. Therefore,
these messages are delivered in the order defined on Ss.

Since every process performs members(P, s) for a contiguous subsequence of slots, every process
delivers a contiguous subsequence of the messages in S.

We now prove the lemmas:

Lemma A.9 If members(P,s)i and members(P’,s)j occur, then P= P’.

Proof: Let k be a process in P. At the time members(P,s)i occurs, k ∈ alive[s]i, s+1 ∈
ended-slotsi, and CUP-dec-val[k]i is either ⊥ or larger than s. Assume by way of contradiction
that k 6∈ P’, then either k 6∈ alive[s]j or CUP-dec-val[k]j ≤ s when members(P’,s)j occurs.

Assume first that k 6∈ alive[s]j . Note that s ∈ ended-slotsj when members(P’,s)j oc-
curs, so by Invariant A.21, k ∈ suspects[s]j at the time members(P’,s)j occurs. By the pre-
condition for members(P’,s)j , CUP-status[k]j = done when it occurs, and by Invariant A.20,
CUP-dec-val[k]j 6= ⊥, that is, CUP(k).decidej(v) occurred for some v and set CUP-dec-val[k]j

= v. By the well-formedness property of CUP, j initiated CUP(k). Since k ∈ suspects[s]j , k
cannot be included in suspects[s’]j for any s’ 6= s, and so j initiated CUP(k) with s. By the
validity condition of CUP, v ≤ s.

Since s+1 ∈ ended-slotsi when members(P,s)i occurs, by Invariant A.21, k ∈ suspects[s+1]i

at this time. Therefore, by the precondition for members(P,s)i, CUP-status[k]i = done. By A.20,
CUP-dec-val[k]i 6= ⊥, that is, CUP(k).decidei occurred, and by the uniform agreement property,
CUP-dec-val[k]i = CUP-dec-val[k]j ≤ s. A contradiction.

Now, assume that CUP-dec-val[k]j ≤ s when members(P’,s)j occurs. Since s+1 ∈ ended-slotsi

when members(P,s)i occurs, by Invariant A.22, k ∈ suspects[s+1]i at this time. Therefore, by
the precondition for members(P,s)i, CUP-status[k]i = done. By Invariant A.20, CUP-dec-val[k]i 6=

41

⊥, that is, CUP(k).decidei occurred, and by the uniform agreement property, CUP-dec-val[k]i =

CUP-dec-val[k]j ≤ s. A contradiction.

Lemma A.10 If membersi(P,s) occurs, then for every j ∈P, i received a bulk message for slot s
from j prior to the membersi(P,s) action.

Proof: Assume membersi(P,s) occurs. Since j ∈P, by the precondition for membersi(P,s), j ∈
alive[s]i. By definition of alive[s], in-buf[s,j] 6= ⊥ , that is, i received a bulk message from
j for slot s.

A.3 Atom Correctness Proof: Liveness Arguments

In the liveness proof, we can use the safety guarantees of CUP, since they depend only on the safety
assumptions about the environment.

A.3.1 General liveness lemmas

Lemma A.11 Time passes. current-sloti increases through all slot values from zero onward, as
long as i does not fail.

Lemma A.12 If i does not leave or fail, then end sloti(s) occurs for every slot s ≥ join-sloti.

Lemma A.13 If i leaves and does not fail, then eventually i multicasts a (i, LEAVE, s) message.

A.3.2 Liveness environment conditions for CUP

Init occurrence Assume that initi(s, W) event occurs and j ∈ W, and neither i nor j leaves or
fails.
Since j ∈W, j ∈alive[s] ∪ joiners[s+1] at the time initi(s, W) is triggered, which means

that net join OKj had already occurred prior to the initi(s, W) event. When initi(s, W) is
triggered, i multicasts an (CUP-INIT, k) message. Since neither i nor j leaves or fails, j receives
this message.
Consider the pre-state value of CUP-status[k] when the (CUP-INIT, k) message from i arrives

at j. If CUP-status[k] is running or done, then either CUP(k).initj or CUP(k).abstainj had
to have already occurred and we are done. Otherwise, after this step CUP-status[k] = req, and
CUP-req-val[k] =v. Since j does not leave or fail, by Lemma A.12, it eventually has slots larger
than v in ended-slotsj , so either CUP(k).initj(*) or abstain CUP(k).abstainj becomes enabled,
depending on whether k is suspected in some slot or in none.

Reliable delivery Assume that for some processes j, k, l CUP(k).initl(v, W) occurs with j ∈W,
and that either CUP(k).initi(v’, W’) or CUP(k).abstaini occurs. We will show that by the
time that either CUP(k).initi(v’, W’) or CUP(k).abstaini occurs, net join OKj had already
occurred. This will imply that for any net mcasti(m) that occurs after this event, a net rcvj(m)

will occur unless either i will fail, or j will fail or leave.
If CUP(k).initi(v’, W’) occurs, by Lemma A.8, net join OKj occurs first. Now, consider

the case that CUP(k).abstaini occurs. Process i can only abstain after it receives an (CUP-
INIT, k) message which could have only been sent if some other process i′ has already triggered
CUP(k).initi′ . By Lemma A.8, net join OKj must have occurred before the CUP(k).initi′ event.

42

Complete leave and failure detector If CUP(k).initi(v,W) occurs with j ∈W , then j ∈alive[v]i

∪ joiners[v+1]. Assume that i does not decide or leave or fail. Then CUP-status[k]i remains
running from the time of the CUP(k).initi(v,W) event onward. If leavej occurs, j sends a LEAVE
message which i receives. When i receives j’s LEAVE message, i triggers leave detecti(j) and
we are done. Otherwise, assume j does not leave and failj occurs, then eventually there is a
slot for which i does not receive j’s messages. Let s be the first such slot, so j 6∈alive[s]i

while j ∈alive[s-1]i ∪ joiners[s]i, so since j does not leave in s, j ∈suspects[s]. Since
j ∈alive[v]i ∪ joiners[v+1], s > v, and i triggers fail detecti(j) while performing end sloti(s).

A.3.3 Liveness of Atom

Eventual join Assume no faili occurs. When joini occurs, net joini is triggered, and by
fairness, eventually occurs. By the eventual join property of Net, net join OKi eventually occurs.
At that point, join-sloti is set to be bigger than current-sloti. join-sloti does not change from
that point onward, since by the join integrity property of Net, no more net join OKi events occur.
By Lemma A.11, current-sloti eventually becomes equal to join-sloti. When that happens,
join OKi becomes enabled, and remains enabled, as long as no time passes, until it occurs. By
our assumption on time passage, no time passes until join OKi occurs. Therefore, by fairness, it
eventually occurs.

Eventual leave Assume no faili occurs. When leavei occurs, leave-sloti is set to be bigger
than current-sloti. leave-sloti does not change from that point onward, since by our assump-
tion on the application, no more leavei events occur. By Lemma A.13, i eventually multicasts a (i,
LEAVE, leave-sloti) message, at which point leave-sloti is added to mcast-slotsi. When that
happens, net leavei becomes enabled and remains enabled until it occurs. Then, by the eventual
leave property of Net, net leave OKi eventually occurs and triggers leave OKi.

Message delivery The following lemma asserts that a process that participates in the algorithm
and does not leave or fail continues to perform members(P, s) forever.

Lemma A.14 If mcasti(m) occurs for some m when s = current-sloti, and no faili or leavei

occurs, then for every s’ ≥ s, membersi(P, s’) occurs.

Proof: Since mcasti(m) occurs, by our assumption about the application, it is preceded by a
join OKi. Therefore, m is appended to out-buf[s]i. By Lemma A.11, current-sloti becomes
s+1, and so i eventually sends its bulk message for slot s with m included in it. By liveness of Net,
net rcvi(i, m’, s) occurs, where m′ is i’s slot s bulk message.

By Lemma A.12, end sloti(s) occurs for every slot s ≥ join-sloti. The sets suspects[s]i

and suspects[s+1]i are set when end sloti(s) (resp. end sloti(s+1)) occurs, at which point
a CUP instance for each process in these sets is initiated, and the set do not change afterwards.
By the termination property of CUP, these instances of CUP eventually terminate, setting the
corresponding CUP-status to done. Therefore, members(P, s)i eventually becomes enabled for
some P, and by fairness, occurs.

We now prove that the message delivery liveness property holds.

Assume mcasti(m) occurs, and no faili or leavei occurs. We first show that S contains m and
rcvi(m) occurs. Let s = current-sloti when mcasti(m) occurs. By Lemma A.14, members(P,

43

s)i occurs. We now show that i ∈ P . This will imply that m ∈ S (by definition of S), and that
rcvi(m) occurs (since it is triggered by members(P, s)i).
To show that i ∈P, we have to show that j ∈ alive[s]i and CUP-dec-val[i]i = ⊥ at the

time members(P, s)i occurs. Since at this time s+1 ∈ ended-slotsi, by Invariant A.16, j ∈
alive[s]i. By Invariant A.18, since i does not fail it never becomes a suspect, and therefore, no
instance of CUP is run for i, and CUP-dec-val[i]i = ⊥.
It remains to show that for every m′ that follows m in S, rcvi(m’) also occurs. By definition

of S, m′ is included in a bulk message for some slot s’ ≥ s from some process i′, such that i′ ∈ P ′

and membersj(P’, s’) occurs for some j. By Lemma A.14, members(P’’, s’)i also occurs, and
by Lemma A.9, P’ = P’’. Therefore, rcvi(m’) is triggered by the members(P’’, s’)i action.

44

