
LiMoSense – Live Monitoring in Dynamic
Sensor Networks

Ittay Eyal, Idit Keidar, and Raphael Rom

Department of Electrical Engineering,
Technion — Israel Institute of Technology
{ittay@tx, idish@ee, rom@ee}.technion.ac.il

Abstract. We present LiMoSense, a fault-tolerant live monitoring algo-
rithm for dynamic sensor networks. This is the first asynchronous robust
average aggregation algorithm that performs live monitoring, i.e., it con-
stantly obtains a timely and accurate picture of dynamically changing
data. LiMoSense uses gossip to dynamically track and aggregate a large
collection of ever-changing sensor reads. It overcomes message loss, node
failures and recoveries, and dynamic network topology changes. We for-
mally prove the correctness of LiMoSense; we use simulations to illustrate
its ability to quickly react to changes of both the network topology and
the sensor reads, and to provide accurate information.

1 Introduction

To perform monitoring of large environments, we can expect to see in years to
come sensor networks with thousands of light-weight nodes monitoring condi-
tions like seismic activity, humidity or temperature [2, 14]. Each of these nodes is
comprised of a sensor, a wireless communication module to connect with close-by
nodes, a processing unit and some storage. The nature of these widely spread
networks prohibits a centralized solution in which the raw monitored data is
accumulated at a single location. Specifically, all sensors cannot directly com-
municate with a central unit. Fortunately, often the raw data is not necessary.
Rather, an aggregate that can be computed inside the network, such as the sum
or average of sensor reads, is of interest. For example, when measuring rainfall,
one is interested only in the total amount of rain, and not in the individual reads
at each of the sensors. Similarly, one may be interested in the average humidity
or temperature rather than minor local irregularities.

In dynamic settings, it is particularly important to perform live monitoring,
i.e., to constantly obtain a timely and accurate picture of the ever-changing
data. However, most previous solutions have focused on a static (single-shot)
version of the problem, where the average of a single input-set is calculated [10,
4, 12, 11]. Though it is in principle possible to perform live monitoring using
multiple iterations of such algorithms, this approach is not adequate, due to the
inherent tradeoff it induces between accuracy and speed of detection. For further
details on previous work, see Section 2. In this paper we tackle the problem of live

2

monitoring in a dynamic sensor network. This problem is particularly challenging
due to the dynamic nature of sensor networks, where nodes may fail and may be
added on the fly (churn), and the network topology may change due to battery
decay or weather change. The formal model and problem definition appear in
Section 3.

In Section 4 we present our new Live Monitoring for Sensor networks al-
gorithm, LiMoSense. Our algorithm computes the average over a dynamically
changing collection of sensor reads. The algorithm has each node calculate an
estimate of the average, which continuously converges to the current average.
The space complexity at each node is linear in the number of its neighbors, and
message complexity is that of the sensed values plus a constant. At its core,
LiMoSense employs gossip-based aggregation [10, 12], with a new approach to
accommodate data changes while the aggregation is on-going. This is tricky,
because when a sensor read changes, its old value should be removed from the
system after it has propagated to other nodes. LiMoSense further employs a new
technique to accommodate message loss, failures, and dynamic network behav-
ior in asynchronous settings. This is again difficult, since a node cannot know
whether a previous message it had sent over a faulty link has arrived or not.

In Section 5, we review the correctness proof of the algorithm, showing that
once the network stabilizes, in the sense that no more value or topology changes
occur, LiMoSense eventually converges to the correct average, despite message
loss. The complete analysis can be found in the technical report [5].

We evaluate the algorithm’s behavior in general (unstable) settings in Sec-
tion 6. As convergence time is inherently unbounded in asynchronous systems,
we analyze convergence time in a synchronous uniform run, where all nodes take
steps at the same average frequency. We show that in such runs, once the system
stabilizes, the estimates nodes have of the desired value converge exponentially
fast (i.e., in logarithmic time). Furthermore, to demonstrate the effectiveness of
LiMoSense in various dynamic scenarios, we present results of extensive sim-
ulations, showing its quick reaction to dynamic data read changes and fault
tolerance. In order to preserve energy, communication rates may be decreased,
and nodes may switch to sleep mode for limited periods. These issues are outside
the scope of this work.

In summary, this paper makes the following contributions: (1) It presents
LiMoSense, a live monitoring algorithm for highly dynamic and error-prone envi-
ronments. (2) It proves correctness of the algorithm, namely robustness and even-
tual convergence. (3) It shows, through analysis and simulation, that LiMoSense
converges exponentially fast and demonstrates its efficiency and fault-tolerance
in dynamic scenarios.

3

2 Related Work

To gather information in a sensor network, one typically relies on in-network
aggregation of sensor reads. The vast majority of the literature on aggregation
has focused on obtaining a single summary of sensed data, assuming these reads
do not change while the aggregation protocol is running [11, 10, 4, 12]. The only
exception we are aware of is work on aggregation with dynamic inputs by Birk
et al. [3]; however, this solution is limited to unrealistic settings, namely a static
topology with reliable communication links, failure freedom, and synchronous
operation.

For obtaining a single aggregate, two main approaches were employed. The
first is hierarchical gathering to a single base station [11]. The hierarchical
method incurs considerable resource waste for tree maintenance, and results
in aggregation errors in dynamic environments, as shown in [7].

The second approach is gossip-based aggregation at all nodes. To avoid count-
ing the same data multiple times, Nath et al. [13] employ order and duplicate
insensitive (ODI) functions to aggregate inputs in the face of message loss and
a dynamic topology. However, these functions do not support dynamic inputs
or node failures. Moreover, due to the nature of the ODI functions used, the
algorithms’ accuracy is inherently limited – they do not converge to an accurate
value [6].

An alternative approach to gossip-based aggregation is presented by Kempe
et al. [10]. They introduce Push-Sum, an average aggregation algorithm, and
show that it converges exponentially fast in fully connected networks where
nodes operate in lock-step. Shah et al. analyze this algorithm in an arbitrary
topology [4]. Jelasity et al. periodically restart the push-sum algorithm to han-
dle dynamic settings, trading off accuracy and bandwidth. Although these algo-
rithms do not deal with dynamic inputs and topology as we do, we borrow some
techniques from them. In particular, our algorithm is inspired by the Push-Sum
construct, and operates in a similar manner in static settings. We analyze its
convergence speed when the nodes operate independently. Jesus et al. [9, 1] also
solve aggregation in dynamic settings, overcoming message loss, dynamic topol-
ogy and churn. However, they consider synchronous settings, and they do not
prove correctness nor analyze the behaviour of their algorithm with dynamic
inputs.

Note that aggregation in sensor networks is distinct from other aggregation
problems, such as stream aggregation, where the data in a sliding window is
summarized. In the latter, a single system component has the entire data, and
the distributed aspects do not exist.

4

3 Model and Problem Definition

3.1 Model

The system is comprised of a dynamic set of nodes (sensors), partially connected
by dynamic undirected communication links. Two nodes connected by a link are
called neighbors, and they can send messages to each other. These messages
either arrive at some later time, or are lost. Messages that are not lost on each
link arrive in FIFO order. Links do not generate or duplicate messages.

The system is asynchronous and progresses in steps, where in each step an
event happens and the appropriate node is notified, or a node acts spontaneously.
In a step, a node may change its internal state and send messages to its neighbors.

Nodes can be dynamically added to the system, and may fail or be removed
from the system. The set of nodes at time t is denoted Nt. The system state
at time t consists of the internal states of all nodes in Nt, and the links among
them. When a node is added (init event), it is notified, and its internal state
becomes a part of the system state. When it is removed (remove event), it is not
allowed to perform any action, and its internal state is removed from the system
state.

Each sensor has a time varying data read in R. A node’s initial data read is
provided as a parameter when it is notified of its init event. This value may
later change (change event) and the node is notified with the newly read value.
For a node i in Ni, we denote1 by rti , the latest data read provided by an init

or change event at that node before time t.
Communication links may be added or removed from the system. A node

is notified of link addition (addNeighbor event) and removal (removeNeighbor
event), given the identity of the link that was added/removed. We call these
topology events. For convenience of presentation, we assume that initially, nodes
have no links, and they are notified of their neighbors by a series of addNeighbor
events. We say that a link (i, j) is up at step t if by step t, both nodes i and j had
received an appropriate addNeighbor notification and no later removeNeighbor
notification. Note that a link (i, j) may be “half up” in the sense that the node
i was notified of its addition but node j was not, or if node j had failed.

A node may send messages on a link only if the last message it had received
regarding the state of the link is addNeighbor. If this is the case, the node may
also receive a message on the link (receive event).

Global Stabilization Time In every run, there exists a time called global sta-
bilization time, GST, from which onward the following properties hold: (1)
The system is static, i.e., there are no change, init, remove, addNeighbor or
removeNeighbor events. (2) If the latest topology event a node i ∈ NGST has
received for another node j is addNeighbor, then node j is alive, and the latest
topology event j has received for i is also addNeighbor (i.e. there are no “half

1 For any variable, the node it belongs to is written in subscript and, when relevant,
the time is written in superscript.

5

up” links). (3) The network is connected. (4) If a link is up after GST, and
infinitely many messages are sent on it, then infinitely many of them arrive.

3.2 The Live Average Monitoring Problem

We define the read average of the system at time t as Rt
∆
= 1
|Nt|

∑
i∈Nt

rti . Note

that the read average does not change after GST. Our goal is to have all nodes
estimate the read average after GST. More formally, an algorithm solving the
Live Average Monitoring Problem gets time-varying data reads as its inputs, and
has nodes continuously output their estimates of the average, such that at every
node in NGST, the output estimate converges to the read average after GST.

Metrics We evaluate live average monitoring algorithms using the following met-
rics: (1) Mean square error, MSE, which is the mean of the squares of the dis-
tances between the node estimates and the read average; and (2) ε-inaccuracy,
which is the percentage of nodes whose estimate is off by more than ε.

4 The LiMoSense Algorithm

In Section 4.1 we describe a simplified version of the algorithm for dynamic
inputs but static topology and no failures. Then, in Section 4.2, we describe the
complete robust algorithm.

4.1 Failure-Free Algorithm

We begin by describing a version of the algorithm that handles dynamically
changing inputs, but assumes no message loss, and no link or node failures. This
algorithm is shown in Algorithm 1.

The base of the algorithm operates like Push-Sum[10, 4]: Each node main-
tains a weighted estimate of the read average (a pair containing the estimate
and a weight), which is updated as a result of the node’s communication with
its neighbors. As the algorithm progresses, the estimate converges to the read
average.

A node whose read value changes must notify the other nodes. It needs not
only to introduce the new value, but also to undo the effect of its previous read
value, which by now has partially propagated through the network.

The algorithm often requires nodes to merge two weighted values into one.
They do so using the weighted value sum operation, which we define below
and concisely denote by ⊕. Subtraction operations will be used later, they are
denoted by 	 and are defined below.

〈va, wa〉 ⊕ 〈vb, wb〉
∆
= 〈vawa + vbwb

wa + wb
, wa + wb〉 . (1)

〈va, wa〉 	 〈vb, wb〉
∆
= 〈va, wa〉 ⊕ 〈vb,−wb〉 . (2)

6

Algorithm 1: Failure Free

1 state
2 〈esti, wi〉 ∈ R2

3 prevReadi ∈ R

4 on initi(initVal)
5 〈esti, wi〉 ← 〈initVal, 1〉
6 prevReadi ← initVal

7 on receivei(〈vin, win〉) from j
8 〈esti, wi〉 ← 〈esti, wi〉 ⊕ 〈vin, win〉

9 periodically sendi()
10 Choose a neighbor j uniformly at random.
11 wi ← wi/2
12 send (〈esti, wi〉) to j

13 on changei(newRead)
14 esti ← esti + 1

wi
· (newRead− prevReadi)

15 prevReadi ← newRead

The state of a node (lines 2–3) consists of a weighted value, 〈esti, wi〉, where
esti is an output variable holding the node’s estimate of the read average, and
the value prevReadi of the latest data read. We assume at this stage that each
node knows its static set of neighbors. We shall remove this assumption later, in
the robust LiMoSense algorithm.

Node i initializes its state on its init event. The data read is initialized to
the given value initVal, and the estimate is 〈initVal, 1〉 (lines 5–6).

The algorithm is implemented with the functions receive and change, which
are called in response to events, and the function send, which is called periodi-
cally.

Periodically, a node i shares its estimate with a neighbor j chosen uniformly
at random (line 10). It transfers half of its estimate to node j by halving the
weight wi of its locally stored estimate and sending the same weighted value to
that neighbor (lines 11-12). When the neighbor receives the message, it merges
the accepted weighted value with its own (line 8).

Correctness of the algorithm in static settings follows from two key obser-
vations. First, safety of the algorithm is preserved, because the system-wide
weighted average over all weighted-value estimate pairs at all nodes and all com-
munication links is always the correct read average; this invariant is preserved
by send and receive operations. Thus, no information is “lost”. Second, the algo-
rithm’s convergence follows from the fact that when a nodes merges its estimate
with that received from a neighbor, the result is closer to the read average.

We proceed to discuss the dynamic operation of the algorithm. When a node’s
data read changes, the read average changes, and so the estimate should change
as well. Let us denote the previous read of node i by rt−1i and the new read at
step t by rti . In essence, the new read, rti , should be added to the system-wide
estimate with weight 1, while the old read, rt−1i , ought to be deducted from it,
also with weight 1. But since the old value has been distributed to an unknown
set of nodes, we cannot simply “recall” it. Instead, we make the appropriate
adjustment locally, allowing the natural flow of the algorithm to propagate it.

We now explain how we compute the local adjustment. The system-wide
estimate should move by the difference between the read values, factored by the
relative influence of a single sensor, i.e., 1/n. To achieve this, we could shift

7

a weight of 1 by rti − rt−1i . Alternatively, we can shift a weight of w by this
difference factored by 1/w. Therefore, in response to a change event at time t, if
the node’s estimate before the change was estt−1i and its weight was wt−1i , then
the estimate is updated to (lines 14-15)

estti = estt−1i + (rti − rt−1i)/wt−1i .

4.2 Adding Robustness

Overcoming failures is challenging in an asynchronous system, where a node
cannot determine whether a message it has sent was successfully received. In
order to overcome message loss and link and node failure, each node maintains
a summary of its conversations with its neighbors. Nodes interact by sending
and receiving these summaries, rather than the weighted values they have sent
in the failure-free algorithm. The data in each message subsumes all previous
value exchanges on the same link. Thus, if a message is lost, the lost data is
recovered once an ensuing message arrives. When a link fails, the nodes at both
of its ends use the summaries to retroactively cancel the effect of all the messages
transferred over it. A node failure is treated as the failure of all its links. There
is a rich literature dealing with the means of detecting failures, usually with
timeouts. This subject is outside the scope of this work.

Implementing the summary approach näıvely would cause summary sizes to
increase unboundedly as the algorithm progresses. To avoid that, we devised a
hybrid approach of push and pull gossip that negates this effect without resorting
to synchronization assumptions.

The full LiMoSense algorithm, shown as Algorithm 2, is based on the failure-
free algorithm. In addition to the state information of the failure-free algorithm,
is also maintains the list of its neighbors, and a summary of the data it has sent
to and received from each of them (lines 5-6). On initialization, a node has no
neighbors (lines 10–12).

The change function is identical to the one of the failure-free algorithm. The
functions receive and send, however, instead of transferring the weighted values
as in the failure-free case, transfer the summaries maintained for the links. In
addition, when a node i wishes to send a weighted value to a node j, it may do
so using either push or pull.

When pushing, node i adds the new weighted value to senti(j) and sends
senti(j) to j (lines 14–16). When receiving this summary, node j calculates the
received weighted value by subtracting the appropriate received variable from the
newly received summary (line 27). After acting on the received message (line 28),
node j replaces its received variable with the new weighted value (line 29). Thus,
if a message is lost, the next received message compensates for the loss and brings
the receiving neighbor to the same state it would have reached had it received
the lost messages as well. Whenever the last message on a link (i, j) is correctly
received and there are no messages in transit, the value of sentji is identical to
the value of receivedij .

8

Algorithm 2: LiMoSense

1 state
2 〈esti, wi〉 ∈ R2

3 prevReadi ∈ R
4 neighborsi ⊂ N
5 senti : n→ (R2 × R2) ∪ ⊥
6 receivedi : n→ (R2 × R2) ∪ ⊥

7 on initi(initVal)
8 〈esti, wi〉 ← 〈initVal, 1〉
9 prevReadi ← initVal

10 neighborsi ← ∅
11 ∀j : senti(j) = ⊥
12 ∀j : receivedi(j) = ⊥

13 function pushSendi(sendVal)
14 〈esti, wi〉 ← 〈esti, wi〉 	 sendVal
15 senti(j)← senti(j)⊕ sendVal
16 send (senti(j), push), to j

17 periodically sendi()
18 if wi < 2q then return (weight min.)
19 Choose a neighbor j uniformly at random.
20 type← choose at random from {push, pull}
21 if type = push then
22 pushSend(〈esti, wi/2〉)
23 else (type = pull)
24 send (〈esti, wi/2〉, pull) to j

25 on receivei(〈vin, win〉, type) from j
26 if type = push then
27 diff← 〈vin, win〉 	 receivedi(j)
28 〈esti, wi〉 ← 〈esti, wi〉 ⊕ diff
29 receivedi(j)← 〈vin, win〉
30 else (type = pull)
31 pushSend(〈vin,−win〉)

32 on changei(rnew)
33 esti ← esti + 1

wi
· (rnew − prevReadi)

34 prevReadi ← rnew

35 on addNeighbori(j)
36 neighborsi ← neighborsi ∪ {j}
37 senti(j)← 〈0, 0〉
38 receivedi(j)← 〈0, 0〉

39 on removeNeighbori(j)
40 〈esti, wi〉 ← 〈esti, wi〉 ⊕ senti(j)	 receivedi(j)
41 neighborsi ← neighborsi \ {j}
42 senti(j)← ⊥
43 receivedi(j)← ⊥

Since the weights are (usually) positive, push operations, if used by them-
selves, cause the sent and received variables to grow to infinity. In order to
overcome that, LiMoSense uses a hybrid push/pull approach, which keeps these
weights small without requiring bilateral coordination. A node uses pull opera-
tions to decrease the sent variables of its neighbors, and thereby its own received.
The pull message is a request from a neighbor to push an inverse weighted
value, and does not change any state variables; these are only changed when the
neighbor performs the requested push. The effect of a node pushing a value is
equivalent to that of a node pulling (requesting) the inverse value and its neigh-
bor pushing the inverse. Therefore, the use of pull messages does not hamper
correctness.

In line 20, the algorithm randomly decides whether to perform push or pull2.
When pulling, i sends the weighted value to j with the pull flag. Once node
j receives the message, it merges it with its own value, and relays i the same
weighted pair using the standard push mechanism, but with a negative weight

2 We use random choice for ease of presentation. One may choose to perform pull less
frequently to conserve bandwidth.

9

(line 31). Thus, the weights of the sent and received records fluctuate around 0
rather than grow to infinity. To prevent infinitesimal weights, a node does not
perform a send step if the result would bring its weight to be smaller than a
quantization constant q.

Upon notification of topology events, nodes act as follows. When notified of
an addNeighbor event, a node initializes its transfer records sent and received
for this link, noting that 0 weight was transferred in both directions. It also
adds the new neighbor to its neighbors list (lines 36-38). When notified of a
removeNeighbor event, a node reacts by nullifying the effect of this link. Pull
messages that were sent and/or received on this link had no effect. Nodes there-
fore need to undo only the effects of sent and received push messages, which are
summarized in the respective sent and received variables. When a node i dis-
covers that link (i, j) has failed, it adds the outgoing link summary sentji to its
estimate, thus cancelling the effect of ever having sent anything on the link, and
subtracts the incoming link summary receivedji from its estimate, thereby can-
celling the effect of everything it has received (line 40). The node also removes
the neighbor from its neighbors list and discards its link records (lines 41–43).

After a node joins the system or leaves it, its neighbors are notified of the
appropriate topology events, adding links to the new node, or removing links
to the failed one. Thus, when a node fails, any parts of its read value that had
propagated through the system are annulled, and it no longer contributes to the
system-wide estimate.

5 Correctness Overview

We defer the correctness proof of LiMoSense to the full version of this paper.
We overview here the key theorems.

First, define the invariant I. The estimate average at time t, Et, is the
weighted average over all nodes of their weighted values, their outgoing link
summaries in their sent variables and the inverse of their incoming logs in their
received variables. We denote the read average at time t by Rt. We define the

read sum to be 〈Rt, n〉 ∆=
⊕n

i=1〈rti , 1〉 and the estimate sum to be:

〈Et, n〉 ∆=
n⊕
i=1

〈estti, wti〉 ⊕ ⊕
j∈neighborsti

(
sentti(j)	 receivedti(j)

) .

The invariant I states that the estimate sum equals the read sum: 〈Rt, n〉 =
〈Et, n〉.

We prove the following theorem, which states that the invariant is maintained
throughout the system’s asynchronous operation, despite message loss, topology
changes and churn.

Theorem 1. In a run of the system, the read average equals the estimate aver-
age at all times.

10

Then, we prove the following theorem, that shows that after GST the es-
timates of the nodes eventually mix, i.e., all node estimates converge to the
estimate average, which, as the invariant states, equals the read average.

Theorem 2 (Liveness). After GST, the estimate error at all nodes converges
to zero.

6 Evaluation

6.1 static

We say that the suffix of a run is uniform synchronous if (1) the choice of
which node runs and choice of which neighbor it chooses for data exchange is
uniformly random, and (2) the latency of all operations and links is 0 (negligible
with respect to the time between periodic sends). This assumption means that
there are no asynchrony issues; it is still weaker than the lock-step assumption
often used to evaluate sensor networks.

In uniform synchronous runs, we argue that the nodes’ estimates are normally
distributed, and it is possible to show analytically that after each push operation,
the expected variance decreases by 1− 1

n . The details of this discussion may be
found in the technical report [5].

We have conducted simulations to verify the predicted convergence rate of
LiMoSense. We simulated a fully connected network of 100 sensors. The samples
were taken from a standard normal distribution. Figure 1 shows mean square
error of the nodes and the value predicted by the analysis. The simulation value
is averaged over 100 instances of the simulation. The result perfectly fits the
predicted behavior. This result also corresponds to those obtained in [8], where
a similar static algorithm is analyzed with the nodes running in lock step.

6.2 Dynamic

In order to evaluate LiMoSense in the dynamic settings it was designed for, we
have conducted simulations of various scenarios. Our goal is to asses how fast
the algorithm reacts to changes, and succeeds to provide accurate information.
Some of the results are described below. Further details can be found in the
technical report [5].

We performed the simulations using a custom made Python event driven
simulation that simulated the underlying network and the nodes’ operation.
Unless specified otherwise, all simulations are of a fully connected network of
100 nodes, with initial values taken from the standard normal distribution. We
have seen that in well connected networks, the convergence behavior is similar
to that of a fully connected network. The simulation proceeds in steps, where in
each step, the topology and read values may change according to the simulated
scenario, and one node performs a pull or push action. Scheduling is uniform
synchronous, i.e., the node performing the action is chosen uniformly at random.

11

0 1000 2000 3000 4000 5000
steps

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Simulation

Theory

Fig. 1. Exponential convergence rate — Simulation and theory.

Unless specified otherwise, each scenario is simulated 1000 times. In all sim-
ulations, we track the algorithms’ output and accuracy over time. In all of our
graphs, the X axis represents steps in the execution. We depict the following
three metrics for each scenario:

(a) base station. We assume that a base station collects the estimated read av-
erage from some arbitrary node. We show the median of the values obtained
in the runs at each step.

(b) ε-inaccuracy. For a chosen ε, we depict the percentage of nodes whose
estimate is off by more than ε after each step. The average of the runs is
depicted.

(c) MSE. We depict the average square distance between the estimates at all
nodes and the read average at each step. The average of all runs is depicted.

We compare LiMoSense, which does not need restarts, to a Push-Sum algo-
rithm that restarts at a constant frequency — every 5000 steps unless specified
otherwise. This number is an arbitrary choice, balancing between convergence
accuracy and dynamic response. In base station results, we also show the read
average, i.e., the value the algorithms are trying to estimate.

Slow monotonic increase This simulation investigates the behavior of the algo-
rithm when the values read by the sensors slowly increase. This may happen if
the sensors are measuring rainfall that is slowly increasing. Every 10 steps, the
read values of a random set of 5 nodes increase by 0.01. The results are shown
in Figures 2a–2c. LiMoSense closely follows the correct dynamically changing
average, whereas a restarting Push-Sum is unable to get close to the moving
target.

12

0 2000 4000 6000 8000 10000
steps

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

va
lu

e
at

 b
as

e
st

at
io

n

Average
LiMoSense
Periodic P-S

(a) Base station value read (median)

0 2000 4000 6000 8000 10000
steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
de

s
ou

ts
id

e
0.

1
ne

ig
hb

or
ho

od LiMoSense
Periodic P-S

(b) % nodes off by > 0.1 (average)

0 2000 4000 6000 8000 10000
steps

10-5

10-4

10-3

10-2

10-1

100

101

M
ea

n
Sq

ua
re

 E
rr

or

LiMoSense
Periodic P-S

(c) MSE (average)

0 2000 4000 6000 8000 10000
steps

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

va
lu

e
at

 b
as

e
st

at
io

n

Average
LiMoSense
Periodic P-S

(d) Base station value read (median)

0 2000 4000 6000 8000 10000
steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
de

s
ou

ts
id

e
0.

01
 n

ei
gh

bo
rh

oo
d LiMoSense

Periodic P-S

(e) % nodes off by > 0.01 (average)

0 2000 4000 6000 8000 10000
steps

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102

M
ea

n
Sq

ua
re

 E
rr

or

LiMoSense
Periodic P-S

(f) MSE (average)

0 2000 4000 6000 8000 10000
steps

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

va
lu

e
at

 b
as

e
st

at
io

n

Link
Failure

Node
Failure

P. P-S
Restart

Average
LiMoSense
Periodic P.S.

(g) Base station value read (median)

0 2000 4000 6000 8000 10000
steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
de

s
ou

ts
id

e
0.

01
 n

ei
gh

bo
rh

oo
d

Link
Failure

Node
Failure

P. P-S
Restart

LiMoSense
Periodic P.S.

(h) % nodes off by > 0.01 (average)

0 2000 4000 6000 8000 10000
steps

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

103

M
ea

n
Sq

ua
re

 E
rr

or

Link
Failure

Node
Failure

P. P-S
Restart

LiMoSense
Periodic P.S.

(i) MSE (average)

Fig. 2. (a)–(c) Creeping value change: LiMoSense promptly tracks the creeping change, providing an accurate esti-
mates at 95% of the nodes. (d)–(f) Response to a step function: LiMoSense immediately reacts, quickly propagating
the new values. (g)–(i) Failure robustness: LiMoSense quickly overcomes link loss and node crash.

13

Step function This simulation investigates the behavior of the algorithm when
the values read by some sensors are shifted. This may occur due to a fire outbreak
in a limited area, as close-by temperature nodes suddenly read high values. At
step 2500, the read values of a random set of 10 nodes increase by 10. The results,
shown in Figures 2d–2f, demonstrate how the LiMoSense algorithm updates
immediately after the shift, whereas the periodic Push-Sum algorithm updates
at its first restart only.

Robustness To investigate the effect of link and node failures, we construct the
following scenario. The sensors are spread in the unit square, and they have
a transmission range of 0.7 distance units. The neighbors of a sensor are the
sensors in its range. The system is run for 3000 steps, at which point, due to
battery decay, the transmission range of 10 sensors decreases by 0.99. Due to
this decay, about 7 links are lost in the entire system, and the relevant nodes
employ their removeNeighbor functions. In step 5000, a node fails, removing its
read value from the read average. Upon node failure, all its neighbors call their
removeNeighbor functions.

The results, shown in Figures 2g–2i, shows the small error caused at some
of the nodes due to the link failure. A much stronger interruption is caused by
the node failure, which actually changes the read average. While the restarting
Push-Sum algorithm is oblivious to the link failure, it is unable to recover from
the node failure until its next restart.

7 Conclusion

We presented LiMoSense, a fault-tolerant live monitoring algorithm for dynamic
sensor networks. This is the first asynchronous robust average aggregation algo-
rithm to accommodate dynamic inputs. LiMoSense employs a hybrid push/pull
gossip mechanism to dynamically track and aggregate a large collection of ever-
changing sensor reads. It overcomes message loss, node failures and recover-
ies, and dynamic network topology changes. We have proven the correctness of
LiMoSense and illustrated by simulation its ability to quickly react to network
and value changes and provide accurate information.

Acknowledgements

This work was partially supported by the Hasso-Plattner Institute for Software
Systems Engineering.

14

References

1. Almeida, P., Baquero, C., Farach-Colton, M., Jesus, P., Mosteiro, M.A.: Fault-
tolerant aggregation: Flow updating meets mass distribution. In: OPODIS (2011)

2. Asada, G., Dong, M., Lin, T., Newberg, F., Pottie, G., Kaiser, W., Marcy, H.:
Wireless integrated network sensors: Low power systems on a chip. In: ESSCIRC
(1998)

3. Birk, Y., Keidar, I., Liss, L., Schuster, A.: Efficient dynamic aggregation. In: DISC
(2006)

4. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis
and applications. In: INFOCOM (2005)

5. Eyal, I., Keidar, I., Rom, R.: LiMoSense – live monitoring in dynamic sensor net-
works. Tech. Rep. CCIT 786, Technion, Israel Institute of Technology (2011)

6. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 31(2) (1985)

7. Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network
imprecision: A new consistency metric for scalable monitoring. In: OSDI (2008)

8. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems (TOCS) 23(3) (2005)

9. Jesus, P., Baquero, C., Almeida, P.: Fault-tolerant aggregation for dynamic net-
works. In: SRDS (2010)

10. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS (2003)

11. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. In: OSDI (2002)

12. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: PODC
(2006)

13. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: SenSys (2004)

14. Warneke, B., Last, M., Liebowitz, B., Pister, K.: Smart dust: communicating with
a cubic-millimeter computer. Computer 34(1) (2001)

