
Efficient Dynamic Aggregation?

Yitzhak Birk, Idit Keidar, Liran Liss, and Assaf Schuster

Technion – Israel Institute of Technology, Haifa 32000, Isreal
E-mail: {birk@ee, idish@ee, liranl@tx, assaf@cs}.technion.ac.il

Abstract. We consider the problem of dynamic aggregation of inputs
over a large fixed graph. A dynamic aggregation algorithm must contin-
uously compute the result of a given aggregation function over a dynam-
ically changing set of inputs. To be efficient, such an algorithm should
refrain from sending messages when the inputs do not change, and should
perform local communication whenever possible.

We present an instance-based lower bound on the efficiency of such al-
gorithms, and provide two algorithms matching this bound. The first,
MultI-LEAG, re-samples the inputs at intervals that are proportional to
the graph size, achieving quiescence between samplings, and is extremely
message efficient. The second, DynI-LEAG, more closely monitors the
aggregate value by sampling it more frequently, at the cost of slightly
higher message complexity.

1 Introduction

We consider the problem of continuous monitoring of an aggregation function
over a set of dynamically changing inputs on a large fixed graph. We term this
problem dynamic aggregation. For example, the inputs may reflect sensor read-
ings of temperature or seismic activity, or load reported by computers in a com-
putational grid. The aggregation function may compute the average temperature,
or whether the percentage of sensors that detect an earthquake exceeds a certain
threshold, or the maximum computer load. It is desirable to seek local solutions
to this problem, whereby input values and changes thereof do not need to be
communicated over the entire graph.

Since virtually every interesting aggregation function has some input in-
stances on which it cannot be computed without global communication, a priori,
it is not clear whether one can do better. Nevertheless, we have recently shown
that when computing an aggregation function on a large graph for fixed (in time)
inputs, it is often possible to reach the correct result without global communi-
cation [1]. Specifically, while some problem instances trivially require global
communication, many instances can be computed locally, i.e., in a number of
steps that is independent of the graph size. We introduced a classification of in-
stances according to a measure called Veracity Radius (VR), which captures the
degree to which a problem instance is amenable to local computation. The VR

? This work was supported in part by a grant from the Israel Ministry of Science.

is computed by examining the r-neighborhood of a node v, which is the set of all
nodes within radius r from v. Roughly speaking, the VR identifies the minimum
neighborhood radius r0, such that for all neighborhoods with radius r ≥ r0 the
aggregation function yields the same value as for the entire graph. (The formal
definition of VR allows some slack in the environments over which the aggregate
function is computed.) VR provides a tight lower bound on computation time. In
addition, [1] presents an efficient aggregation algorithm, I-LEAG, which achieves
the lower bound up to a constant factor.

The results of [1], however, are restricted to the computation of a static
aggregation instance, and do not directly extend to dynamic aggregation. If
I-LEAG is to be used in a dynamic setting, the entire computation must be
periodically invoked anew, even if no inputs change. Specifically, all nodes must
periodically send messages to their neighbors, which can lead to considerable
waste of resources, especially when input changes are infrequent.

In this paper, we extend the results of [1] to deal with dynamic aggregation.
We focus on algorithms that continuously compute the result of a given aggrega-
tion function at each node in the graph, and satisfy the following requirements:
(1) the algorithm’s output converges to the correct result in finite time once all
input changes cease; and (2) once the algorithm has converged, no messages are
sent as long as the input values persist.

In Sect. 3, we derive a lower bound on computation time for dynamic aggrega-
tion algorithms satisfying the above requirements. We show that if an algorithm
has converged for some input Iold, and subsequently the inputs change to Inew,
then the computation of Inew must take a number of steps that is proportional to
the maximum between the VRs of Iold and Inew. The lower bound is proven for
both the time until the correct result is observed at all nodes (output stabilization
time) and the time until no messages are sent (quiescence time).

We provide two efficient dynamic aggregation algorithms that achieve this
lower bound up to a constant factor. Our algorithms employ the basic principles
of I-LEAG, but are more involved as they need to refrain from sending messages
when there are no changes.

In Sect. 4, we consider a scenario wherein it suffices to update the output
reflecting the aggregation result periodically, e.g., every few minutes. For this
setting, we present MultI-LEAG, which operates in a multi-shot fashion: the
inputs are sampled at regular intervals, and the correct (global) result relative
to the last sample is computed before the next sample is taken. The sampling
interval is proportional to the graph diameter. MultI-LEAG selectively caches
values according to the previous input’s VR to avoid sending messages when the
inputs do not change. After every sample, MultI-LEAG reaches both output-
stabilization and quiescence in time proportional to the lower bound, which
never exceeds the sampling interval and may be considerably shorter. We call
this sample-compute-output cycle an iteration. MultI-LEAG is very efficient, and
does not send more messages than necessary.

In Sect. 5, we consider a scenario wherein the output must reflect the correct
aggregation value promptly. That is, the input is sampled very frequently, e.g., at

intervals on the order of a single-hop message latency between neighboring nodes,
and not proportional to the graph’s diameter as in MultI-LEAG. For this setting,
we present DynI-LEAG, which invokes multiple MultI-LEAG iterations in par-
allel. Although each MultI-LEAG iteration is comprised of several phases with
different durations, DynI-LEAG manages to carefully pipeline a combination
of complete and partial MultI-LEAG iterations to achieve O(log2(diameter))
memory usage per node. Note that DynI-LEAG inspects multiple input sam-
ples during the time frame in which MultI-LEAG conducts a single sample. The
corresponding lower bound on algorithms that operate in this mode reflects not
only two inputs, Iold and Inew, as described above, but rather all inputs sampled
within a certain time window.

There is a tradeoff between our two algorithms: whereas MultI-LEAG deliv-
ers correct results corresponding to relatively old snapshots, DynI-LEAG closely
tracks the aggregate result at the expense of a somewhat higher message com-
plexity. Nevertheless, the total number of messages sent in both algorithms de-
pends only on the actual number of input changes and on the VR values of recent
inputs but not on the system size.

Related work. Following the proliferation of large-scale distributed systems such
as sensor networks [2, 3], peer-to-peer systems [4], and computational grids [5],
there is growing interest in methods for collecting and aggregating the massive
amount of data that these systems produce, e.g., [6–10]. The semantics of validity
for dynamic aggregation have been discussed in [11]. However, most of this work
has not dealt with locality.

The initial work on using an “instance-based” approach to solve seemingly
global problems in a local manner has focused on self-stabilization [12–14].
Instance-local solutions have also been proposed for distributed error confine-
ment [15], location services [16] and Minimum Spanning Tree [17]. The first
work that demonstrated instance-local aggregation algorithms by means of an
empirical study is [18, 19]. Only recently, instance-local aggregation has been
formalized [1]. However, this work did not consider dynamic scenarios.

2 Preliminaries

Model and Problem Definition. Given a set D, we denote a multi-set over D
by {dn1

1 ...dnm
m }, where di ∈ D and ni ∈ N indicates the multiplicity of di.

We denote the set of multi-sets over D by ND. An aggregation function is a
function F :ND → R, where R is a discrete totally-ordered set, and F satisfies
the following: (i) convexity : ∀X, Y ∈ ND: F (X ∪ Y) ∈

[
F (X), F (Y)

]
; and (ii)

onto (in singletons): ∀r ∈ R, ∃x ∈ D: F (x) = r. Many interesting functions
have these properties, e.g., min, max, majority, median, rounded average (with
a discrete range) and consensus (e.g., by using OR/AND functions).

We model a distributed system as a fixed undirected graph G = G(V, E).
Computation proceeds in synchronous rounds in which each node can commu-
nicate with its immediate neighbors. A graph G and an aggregation function F

define the aggregation problem PG,F as follows: Every node v has an input value
Iv ∈ D, which can change over time, and an output register Ov ∈ R ∪ {⊥}.
Initially, Ov = ⊥ and v only knows its own input. We denote by I(t) the input
assignment (of all nodes) at time t. For a set of nodes X ⊆ V , we denote by IX

the multi-set induced by the projection of I on X, e.g., IV = I. Assume that
there exists a time t0 such that ∀t ≥ t0: I(t) = I(t0). An algorithm solves PG,F

if it has finite output-stabilization and quiescence times after t0, and its final
outputs are ∀v ∈ V : O = F (I(t0)).

For a multi-shot algorithm A, given two consecutive sampled input assign-
ments Iold and Inew, we denote by OSA(Iold, Inew) and QA(Iold, Inew) the
output-stabilization and quiescence times, respectively, following Inew. In the
general case, we denote by OSA(I) and QA(I) the output-stabilization and qui-
escence times for an infinite input sequence I in which the inputs do not change
after some time t0.

Finally, we note that every aggregation function can be represented as a tuple
F = 〈R̂, FI , Fagg, FO〉, where: R̂ is some internal representation, and FI :D → R̂,
Fagg:R̂n → R̂ and FO:R̂ → R are functions such that for every set of nodes
V = {v1, ..., vn} and an input assignment I:

F (IV) = FO

(
Fagg

({FI(Iv) | v ∈ V })
)
.

In many cases, the internal representation R̂ can be extremely compact. For
example, for computing OR, it can be a single bit, and for simple majority
voting, the number of “yes” and “no” votes.

Graph Notions. Let G = G(V, E) be a graph. Denote G’s diameter and radius
by Diam(G) and Rad(G), respectively. We use the following graph-theoretic
notation:

Cluster A subset S ⊆ V of vertices whose induced subgraph G(S) is connected.
Distance For every two nodes v1, v2 ∈ V , the distance between v1 and v2 in G,

dist(v1, v2), is the length of the shortest path connecting them.
Neighborhood The r−neighborhood (r ∈ R+) of a node v, Γr(v), is the set of

nodes {v′ | dist(v, v′) ≤ r}. Γ̂ (v) = Γ1(v) − {v} denotes the neighbors of a
node v. For a cluster S: Γr(S) =

⋃
v∈S Γr(v) and Γ̂ (S) = Γ1(S)− S.

3 Lower Bound

In [1], we introduced an inherent metric for locality, the Veracity Radius (VR),
which is defined as follows. A K-bounded slack function, is a non-decreasing
continuous function α:R+ → R+ such that α(r) ∈ [r

K , r], for some K ≥ 1. Given
a graph G and an aggregation function F , the VR (parameterized by a slack
function α) of an input instance I is:

VRα(I) , min{r ∈ R+ | ∀r′ ≥ r, v ∈ V, S ⊆ V s.t. Γα(r′)(v) ⊆ S ⊆ Γr′(v):

F (IS) = F (I)}.

Simply speaking, VR identifies the minimum neighborhood radius r0 such that
for all neighborhood-like environments with radius r ≥ r0 (i.e., all subgraphs S
that include an α(r)-neighborhood and are included in an r-neighborhood), the
aggregation function yields the same value as the entire graph. If F (Iv) = F (I)
for every v ∈ V , then VR(I) = 0 and I is called a trivial input assignment.

Given an aggregation problem PG,F , we proved in [1] that for every r ≥ 0, ev-
ery slack function α and every deterministic algorithm A that solves P , there ex-
ists an assignment I with VRα(I) ≤ r for which OSA(I) ≥ min{bα(r)c,Rad(G)}.
A similar bound was also proven for quiescence. However, this single-shot lower
bound is overly restrictive for dynamic systems because it ignores previous in-
puts. We now show that for dynamic aggregation, in which an algorithm is not
allowed to send messages after it converges, both current and previous inputs
are inherent to computation time. Due to lack of space, the proofs are detailed
in the full paper [20].

For multi-shot algorithms, in which convergence is guaranteed following every
input sample, it suffices to consider only the two latest input samples:

Theorem 1 (Multi-shot Lower Bound). Let PG,F be an aggregation prob-
lem. For every slack function α, every rold, rnew ≥ 0 such that α(rold), α(rnew) ≤
Rad(G), and every deterministic multi-shot algorithm A that solves F , there ex-
ist two input samples Iold, Inew such that V Rα(Iold) ≤ rold, V Rα(Inew) ≤ rnew,
and OSA({Iold, Inew}) ≥ max{bα(rold)/6c, bα(rnew)c}. The same holds for qui-
escence.

For algorithms that do not necessarily converge between consecutive samples,
the multi-shot lower bound implies that the effects of an input assignment may
impact algorithm performance during multiple future samples; the duration of
these effects is proportional to the input’s VR:

Corollary 1 (Dynamic Lower Bound). Let PG,F be an aggregation problem.
For every slack function α, every rold, rnew ≥ 0 such that α(rold), α(rnew) ≤
Rad(G), every constant C ≥ 1, and every deterministic algorithm A that solves
F , there exist an input sequence I and time t0 such that: (1) ∀r > rold: for
every t ∈ [t0 − C · r, t0), VR(I(t)) < r; (2) VR(I(t0)) ≤ rnew; and (3) ∀t ≥ t0:
I(t) = I(t0); for which OSA(I) ≥ max{bα(rold)/6c, bα(rnew)c}. The same holds
for quiescence.

Finally, we note that for output-stabilization, these bounds are nearly tight:
in [20], we show how full information (FI) protocols, in which every node broad-
casts all input changes to all other nodes, achieve O(max{bα(rold)c, bα(rnew)c})
output-stabilization time (for both multi-shot and ongoing operation), albeit at
high memory usage and communication costs. Nevertheless, eventual quiescence
is still guaranteed.

4 MultI-LEAG: An Efficient Multi-shot Aggregation
Algorithm

We now introduce MultI-LEAG, an efficient aggregation algorithm that operates
in a multi-shot fashion. MultI-LEAG is quiescent and maintains fixed outputs
when the input does not change, while leveraging the veracity radius of the inputs
to reach fast quiescence and output stabilization when changes do occur. This
enables MultI-LEAG to achieve an extremely low communication complexity,
which depends only on the number of changes and the VR of the previous and
current input samples, rather than on graph size.

Let G = G(V, E) be a graph, and let Λθ = dlogθ(Diam(G))e. In order to
operate, MultI-LEAG requires a (θ, α)-local partition hierarchy of G, which was
first defined in [1] and utilized by the I-LEAG algorithm:

Definition 1 ((θ, α)-Local Partition Hierarchy (LPH)). Let θ ≥ 2 and let
α be a slack function. A (θ, α)-local partition hierarchy of a graph G is a triplet
〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ, where:

– {Si} is a set of partitions, in which for every cluster S′ ∈ Si−1 there exists
a cluster S ∈ Si such that S′ ⊆ S. The topmost level, SΛθ

, contains a single
cluster equal to V . Denote by Si(v) the cluster S ∈ Si such that v ∈ S.

– {Pi} is a set of pivot sets. Pi includes a single pivot (sometimes called cluster
head) for every cluster S ∈ Si. For every p ∈ Pi, denote Subi−1(p) = {p′ ∈
Pi−1 | p′ ∈ Si(p)}.

– {Ti} is a set of forests. For every p ∈ Pi, Ti contains a directed tree Ti(p)
whose root is p and whose leaves are either Subi−1(p) or the nodes in S0(p)
if i = 0. For every i > 0, denote by T̃i(p) the logical tree formed by con-
catenating Ti(p) and T̃i−1(p′) at every p′ ∈ Subi−1(p), where ∀p′ ∈ P0:
T̃0(p′) = T0(p′).

In addition, the following conditions must hold for every p ∈ Pi, Si(p) ∈ Si, and
Ti(p) ∈ Ti: (1) Γα(θi)(p) ⊆ Si(p) ⊆ Γθi(p); (2) Ti(p) ⊆ Si(p); (3) the height of
T̃i(p) is at most θi.

Apart from the second condition, this definition of an LPH is identical to [1],
which provides general LPH construction algorithms. Although we can do with-
out it, it greatly simplifies the presentation. Note that this condition also implies
that clusters must be connected within themselves (i.e., clusters are not weak
[1]).

An LPH can be computed once per graph, and used for any duration and any
aggregation function. We next introduce two notions that link an aggregation
problem and an LPH for it, which are closely related to VR:

Cluster in conflict Let PG,F be an aggregation problem. Given an input as-
signment I and an LPH for G, for every level i > 0, a cluster S ⊆ Si is
in conflict if at least two of the level-(i− 1) clusters that constitute S have
different aggregate results. Level-0 clusters are always considered in conflict.

Algorithm 1 (MultI-LEAG) for node v ∈ V

Parameters: F :ND → R, (θ, α)-local hierarchy 〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ of
G(V, E)

Input: Iv ∈ D
Output: Ov ∈ R ∪ {⊥} initially ⊥
Definitions: Pi−1 , V , Phases , {−1, 0, ..., Λθ},

Tree+ ,
S

i,p∈Pi
Ti(p) ignoring edge directions (i.e., Tree+ ⊆ E),bSi(v) , Si(v) ∪ {w ∈ bΓ (Si(v)) | ∃u ∈ Si(v): (u, w) ∈ Tree+}

Variables:
∀u ∈ bΓ (v): Ou

v ∈ R ∪ {⊥} initially ⊥,
VPv,VPnew

v ∈ Phases initially 0,
Conf v(i):Phases → {true, false}, initially true for i = 0 and false otherwise,

Aggv(i):Phases → bR ∪ {⊥} initially ⊥,

Aggsent
v (i):Phases → bR ∪ {⊥} initially ⊥,

Aggrecv
v (i, p):Phases × V → bR ∪ {⊥} initially ⊥

Synchronous phases:

1: loop /* forever */
2: Aggv(−1) ← FI(Iv) /* read changes in input */
3: ∀i > 0: Conf v(i) ← false
4: VPv ← VPnew

v

5: for phase i = 0 to Λθ do
6: do-phase(i)

Veracity Level (VL) Let PG,F be an aggregation problem. Given an input
assignment I and an LPH for G, a node v’s Veracity Level is defined as:

VLv(I) , max{i ∈ [0, Λθ] | Si(v) is in conflict}.

It directly follows from convexity that the aggregate result of any level-
i cluster whose nodes’ VL is i, equals the global outcome. We denote by
VL(I) the maximum VL over all nodes.

MultI-LEAG is presented in Algorithm 1. It is provided with an LPH, and
uses two procedures, do-phase and converge-cast, which are depicted in Algo-
rithms 2 and 3, resp. Code in gray only applies to the DynI-LEAG algorithm
presented in the next section, which also uses these procedures. Apart from its
input Iv and output register Ov, every node v holds the following variables: Ou

v ,
the output of every neighbor u ∈ Γ̂ (v), VPv and VPnew

v , v’s veracity phase
(used to compute v’s VL as explained shortly) in the previous and current input
samples, resp. Additionally, for every level i in which v is a pivot, v holds the
following mappings: Conf v, a boolean indicating if Si(v) is in conflict; Aggv, the
internal aggregate representation of the input values in Si(v); Aggsent

v , the last
value of Aggv sent to v’s pivot in the next level; and Aggrecv

v , the last internal
representation received from every p′ ∈ Subi−1(v).

Algorithm 2 (do-phase procedure) for node v ∈ V

Function do-phase(i, t)

1: set timer to 5θi

2: let p ∈ Pi s.t. v ∈ Si(p)
3: if i > VPv

v(t) then /* fall back to I-LEAG */

4: if v ∈ Ti(p) ∧ ∃u ∈ bΓ (v) s.t. u is v’s parent in Ti(p) and Ov
v(t) 6= Ou

v (t) then
5: send 〈conflict,i,p,t〉 to u
6: else /* i ≤ VPv

v(t) */
7: if v ∈ Subi−1(p) ∧ Aggsent

v (i− 1) 6= Aggv(i− 1, t) then /* send changes */
8: Aggsent

v (i− 1) ← Aggv(i− 1, t)
9: forward 〈change, i, v,Aggv(i− 1, t), p〉 towards p in Ti(p)

10: if v = p then
11: wait until timer < 4θi /* wait for all changes to arrive */
12: if ∃p′, p′′ ∈ Subi−1(v) s.t. FO(Aggrecv

v (i, p′)) 6= FO(Aggrecv
v (i, p′′)) then

13: Conf v(i, t) ← true
14: Aggv(i, t) ← Fagg({Aggrecv

v (i, p′) | p′ ∈ Subi−1(v)})
15: if i = VPv

v(t) then /* reached prev. VL: update output and VP */
16: if Ov

v(t) 6= FO(Aggv(i, t)) then

17: multicast 〈output, i, v, FO(Aggv(i, t)), t〉 to bSi(v)
18: if i > 0 ∧ Conf v(i, t) = false then multicast 〈update-vp, i, v, 0, t〉 to Ti(v)
19: wait until timer expires

Message handlers:

upon receiving the first 〈conflict,i,p,t〉 message:

if v = p then
Aggv(i, t) ← converge-cast(i, t) /* see Algorithm 3 */
Conf v(i, t) ← true

multicast 〈output, i, v, FO(Aggv(i, t)), t〉 to bSi(p)
multicast 〈update-vp, i, v, i, t〉 to Ti(v)

else forward message to v’s parent in Ti(p)

upon receiving a 〈change, i, p′, bR, p〉 message:

if v = p then Aggrecv
v (i, p′) ← bR

else forward message to v’s parent in Ti(p)

upon receiving a 〈output, i, p, val , t〉 message:

wait until timer expires
if v ∈ Si(p) then Ov

v(t) ← val

∀u ∈ bΓ (v): if u ∈ Si(p) then Ou
v (t) ← val

upon receiving a 〈update-vp, i, p, l, t〉 message:

if i = 0 then
if v ∈ Si(p) then

∀u ∈ bΓ (v) s.t. u 6∈ Si(p) ∧ (u, v) ∈ Tree+: send 〈update-vp, 0, p, l, t〉 to u
wait until timer expires,∀u ∈ Γ (v) s.t. u ∈ Si(p): VPnew,u

v (t) ← l
else if v ∈ Pi−1 then

if l = 0 ∧ Conf v(i− 1, t) = true then l ← (i− 1)
multicast 〈update-vp, i− 1, v, l, t〉 to Ti−1(v)

Algorithm 3 (converge-cast RPC) for node v ∈ V

Function converge-cast(i, t) → bR
if i > VPv

v(t) ∧ Conf v(i, t) = false then
for all p′ ∈ Subi−1(v) parallel do

tmp(p′) ← p′.converge-cast(i− 1, t) /* p′ is reached via Ti(v) */
Aggv(i, t) ← Fagg({tmp(p′) | p′ ∈ Subi−1(v)})

return Aggv(i, t)

MultI-LEAG operates in iterations (the outer loop). An iteration begins by
sampling the input and ends with all nodes holding the correct aggregate re-
sult matching the sampled inputs. Within an iteration, MultI-LEAG executes
Λθ synchronous phases that correspond to the levels of the partition hierarchy,
calling do-phase each time. (A timer ensures that the next phase is not started
before all nodes complete the current phase.) It is convenient to think of do-phase
as a sequential operation that takes place concurrently in every cluster S of the
current level. Informally, for every phase i and cluster S ∈ Si, do-phase operates
in one of two modes. The first is to react according to S’s conflict state: if S is in
conflict, explicitly compute its aggregate result and assign it to the output of all
nodes in S. (If not in conflict, do nothing.) The second is to merely propagate
input changes in S, if any exist, to S’s pivot.

The decision regarding which mode to use, from a node v’s perspective, is as
follows. Let j be v’s VL in the previous input, Iold. Until phase j for the current
input, Inew, is reached, we just propagate changes if there are any, and otherwise
do nothing. At phase j, we additionally verify that all nodes in Sj(v) hold the
correct output according to Inew; if they do not, we multicast the correct output
to them. Subsequently, we reactively handle conflicts as they occur. Note that
for every phase i higher than v’s current VL, Si(v) does not incur conflicts.
Thus, Multi-LEAG achieves O(max{VR(Iold),VR(Inew)}) output stabilization
and quiescence times (Theorem 2). In any case, no messages are sent when there
are no input changes.

Had we chosen to operate in conflict detection mode at all times, the resulting
protocol would closely resemble I-LEAG [1], and would send messages for every
non-trivial input (because at least one cluster would suffer a conflict) regardless
of whether any inputs change, which is unacceptable.

We now describe MultI-LEAG’s operation in more detail. For every node
v, VPv equals v’s VL according to the previous input, and remains unchanged
until the end of the iteration. VPnew

v is gradually updated to reflect the current
VL, and is only used to set VPv in the next iteration. Therefore, for facility of
exposition, we currently ignore the Conf v mapping and the update-vp message
handler, which are responsible for updating VPnew

v . For every phase i, p ∈ Pi,
and Si(p) ∈ Si, we distinguish among the following cases:

∀v ∈ Si(p): i < VPv (change propagation) Every p′ ∈ Subi−1 sends changes
in Aggp′(i−1) to p (lines 7-9). Every such update is saved in Aggrecv

p (i, p′) by

the change message handler. After all updates are accepted (this is ensured
by the wait statement in line 11), Aggp(i) is recalculated (line 14).

∀v ∈ Si(p): i = VPv (change propagation and output validation) First,
we update Aggp(i) as described above. Next, we ensure that the output of
every v ∈ Si(p) equals F (ISi(p)). As previous phases (which follow the first
case) have not altered Si(p)’s outputs at all, every v ∈ Si(p) holds the same
output, which equals the aggregate result according to the previous input.
Therefore, it is sufficient to check only p’s output. If Op 6= FO(Aggp(i)) (line
16), then Si(p)’s correct aggregate result is multicast to Ŝi(v) and assigned
by the output handler. Specifically, every v ∈ Si(p) updates Ov, and every
neighbor u of v such that u ∈ Si(p) or (u, v) ∈ Tree+ updates Ov

u. (Tree+

denotes the union of all tree edges; see definition in Algorithm 1.) Otherwise,
the outputs of all nodes in Si(p) remain unaltered.

∀v ∈ Si(p): i > VPv (conflict detection) Assuming that all nodes within a
level-(i − 1) cluster have the same output (see previous case), conflicts are
detected without communication by comparing outputs of neighboring nodes
along Ti(p), which know each other’s output. Detected conflicts are reported
to p and handled by the conflict handler. In this case, p issues a converge-cast
call (see Algorithm 3 and explanation below) to explicitly update Aggp(i).
Finally, Si(p)’s aggregate result, FO(Aggp(i)), is multicast to Ŝi(v) as in the
previous case.

Note that according to VL’s definition, no other cases are possible.
To show how VPnew

v is gradually adjusted to reflect the current input, we
begin by describing Conf v, which records cluster conflict states. At the beginning
of an iteration, Conf v maps trivially to false for every phase other than 0 in all
nodes. In every phase i and pivot p ∈ Pi, Conf p(i) is assigned true if Si(p) is in
conflict. This is done either by examining updated aggregate results if i ≤ VPp

(line 12), or by receiving a conflict message if i > VPp.
When a new iteration begins, VPnew

v is equal to VPv. Subsequently, it is
updated by update-vp messages, which are initiated by pivot nodes and flooded
along their logical trees. Specifically, at phase i, a pivot p ∈ Pi changes VPnew

v

for every node v ∈ Si(p) in two cases. If i > VPp and Si(p) is in conflict (i.e., a
conflict message is received by p at level i), p increases VPnew

v to i. Alternatively,
if i > 0, i = VPp and Si(p) is not in conflict (line 18), p decreases VPnew

v to the
highest level for which v’s cluster wan in conflict so far. This is done by sending
the first update-vp messages with a VP value (the last parameter) of 0. When a
descendent pivot p′ of p at some level j < i receives a 0 VP value and its cluster
is in conflict, it replaces this value with j for the rest of the subtree.

Thus, for any node v, VPnew
v can be lowered at most once when phase VPv

is reached (by v’s pivot in level VPv), and possibly increased one or more times
in subsequent phases. At the end of the iteration, VPnew

v equals the input’s VL,
and is assigned to VPv.

The converge-cast procedure is described in Algorithm 3 using remote pro-
cedure call (RPC) semantics. At every phase j and pivot p ∈ Pj , invoking
p.converge-cast(j) aggregates the inputs of Sj(p) recursively based on p’s logical

tree, T̃j(p). Note that for every level i < j and pivot p′ ∈ Pi, if i ≤ VPp′ then
Aggp′(i) is already up to date because all input changes in Sj(p′) have already
been accounted for during phase i. In addition, if i > VPp′ but Conf p′(i) = true,
then Aggp′(i) was updated by a prior converge-cast operation during conflict han-
dling in phase i. Thus, Aggp′(i) needs to be recalculated only if i ≤ VPp′ and
Conf v(i) = false.

MultI-LEAG’s correctness and complexity are proved in [20]. Specifically, we
show that MultI-LEAG achieves the multi-shot lower bound (Theorem 1) up to
a constant factor:

Theorem 2. Let PG,F be an aggregation problem. Given a (θ, α)-LPH of G,
for every two consecutive iterations with non-trivial input assignments, Iold and
Inew, MultI-LEAG’s output stabilization and quiescence times for Inew are at
most:

(
5θ2

θ−1

)
r, where r = max{VRα(Iold),VRα(Inew)}.

5 DynI-LEAG: An Efficient Dynamic Aggregation
Algorithm

While MultI-LEAG is efficient in terms of communication and converges rapidly
after sampling the inputs, its sampling interval is proportional to the graph
diameter. Therefore, it is not suitable for applications in which fast output sta-
bilization is desirable at all times. In this section, we present DynI-LEAG, an
efficient aggregation algorithm with fast output stabilization.

DynI-LEAG achieves this by concurrently invoking multiple MultI-LEAG
iterations, one per sample, and pipelining their phases. This is challenging, how-
ever, because phases have exponentially increasing durations. DynI-LEAG’s sam-
ples occur frequently, at intervals reflecting the operation time of the first phase.
Thus, invoking a full iteration upon each sample would create a number of con-
current iterations that is linear in the graph’s diameter, which would lead to
considerable resource (messages and memory) consumption. We overcome this
challenge by invoking partial MultI-LEAG iterations, i.e., iterations that do not
execute all phases, to ensure that at every level of the LPH only a single corre-
sponding MultI-LEAG phase is executed at any given moment. This results in a
“ruler-like” schedule that executes only O(log(Diam(G))) concurrent iterations,
which we call Ruler Pipelining. Figure 1 illustrates ruler pipelining for an LPH
with θ = 2. As a consequence, DynI-LEAG requires only O(log2(Diam(G)))
memory per node (each MultI-LEAG iteration has practically the same memory
utilization as I-LEAG, which requires O(log(Diam(G))) memory for reasonable
LPHs [1]), while the interval between two consecutive MultI-LEAG phases at
the same level is only θ times that of an algorithm that requires Ω(Diam(G))
memory.

A MultI-LEAG iteration ensures that its calculated output and VP values are
correct only after it completes. Since this takes O(Diam(G)) time, yet another
challenge is to select the proper output and VP (for new iterations) from among

Fig. 1. Ruler Pipelining for a 3-level LPH with θ = 2.

multiple ongoing iterations, while achieving output-stabilization and quiescence
times proportional to the lower bound rather than the diameter.

DynI-LEAG is depicted in Algorithm 4, and uses the do-phase and converge-
cast procedures (code in gray applies). To execute concurrent MultI-LEAG it-
erations, DynI-LEAG holds for every MultI-LEAG variable, except Aggsent

v and
Aggrecv

v , a mapping that associates each value the variable holds with a time
stamp. This is also done for MultI-LEAG’s output register, Ov, which is renamed
to Ov

v to distinguish between the outputs of different iterations and the actual
DynI-LEAG output. Note that the VPv and VPnew

v variables are expanded to
include a qualifier u ∈ Γ̂ (v), which enables nodes to hold the corresponding val-
ues of their neighbors. (u = v designates v’s values.) In addition, DynI-LEAG
introduces one new variable, tv(i), which designates the starting time of the last
level-i phase. Aggsent

v and Aggrecv
v are not associated with time stamps since they

can be perfectly pipelined, i.e., for every level i, Aggsent
v (i−1) and Aggrecv

v (i) are
only accessed by phase i. This enables DynI-LEAG to use partial iterations at
no extra cost: each input change is communicated at most once to higher levels.

DynI-LEAG runs Λθ threads at each node, corresponding to the LPH levels,
each of which repeatedly calls the do-phase procedure (line 14) for the matching
level. An individual MultI-LEAG iteration is identified by its starting time, which
is also passed during do-phase invocations. For every level-i phase, tv(i) equals
the current time when it starts and is incremented by the phase duration, 5θi,
when it completes (line 15). The starting time of the corresponding iteration is
found by subtracting from tv(i) the duration of previous phases, ∆(i− 1). Ruler
pipelining is obtained as a direct outcome of this timing: the results of each
completed level-i phase are either used in the level-(i + 1) phase that starts at
the same time or ignored in the case of a partial iteration that ends at phase i.
The barrier in line 16 eliminates data races between phases.

The crux of the algorithm is concentrated at the beginning of a new iteration
(i.e., it is executed only by the thread handling phase 0), and comprises four op-
erations: (1) sampling the input; (2) choosing the VP and initial output values
for the new iteration; (3) estimating the output; and (4) performing some book-
keeping. The second operation is done both for a node itself and its neighbor
information to ensure that neighboring nodes know each other’s output upon
starting the iteration.

Algorithm 4 (DynI-LEAG) for node v ∈ V

Parameters: F :ND → R, (θ, α)-local hierarchy 〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ of
G(V, E)

Input: Iv ∈ D
Output: Ov ∈ R initially ∅
Definitions: Pi−1 , V , Phases , {−1, 0, ..., Λθ},

Tree+ ,
S

i,p∈Pi
Ti(p) ignoring edge directions (i.e., Tree+ ⊆ E),bSi(p) , Si(p) ∪ {v ∈ bΓ (Si(p)) | ∃u ∈ Si(p): (u, v) ∈ Tree+},

∆(i) ,
Pi

j=0 5θj ,

LastIter(i, t) , t− (t mod 5θi)−∆(i)
Variables:

tv(i):Phases → Z initially 0,
∀u ∈ Γ (v): Ou

v (t):Z→ R ∪ {⊥} initially ⊥,
Conf v(i, t):Phases ×Z→ {true, false} initially true for i = 0 and false otherwise,
∀u ∈ Γ (v): VPu

v (t),VPnew,u
v (t):Z→ Phases initially 0,

Aggv(i, t):Phases ×Z→ bR ∪ {⊥} initially ⊥,

Aggsent
v (i):Phases → bR ∪ {⊥} initially ⊥,

Aggrecv
v (i, p):Phases × V → bR ∪ {⊥} initially ⊥

1: for all i ∈ [0, Λθ] parallel do
2: loop /* forever */
3: if i = 0 then
4: Aggv(−1, tv(i)) ← FI(Iv) /* read input */
5: for all u ∈ Γv do
6: Candidates ← {k ∈ [0, Λθ] | VPu

v (LastIter(k, tv(0))) ≤ k ∧
VPnew,u

v (LastIter(k, tv(0))) = k}
7: VPu

v (tv(0)),VPnew,u
v (tv(0)) ← max (Candidates ∪ {0})

8: Ou
v (tv(0)) ← Ou

v (t′) where t′ = LastIter(VPu
v (tv(0)), tv(0))

9: do-bookkeeping(tv(0))
10: Ov ← Ov

v(tv(0)) /* adjust output */
11: if tv(i) ≥ ∆(i− 1) then
12: do-phase(i, tv(i)−∆(i− 1))
13: else
14: wait for 5θi time steps
15: tv(i) ← tv(i) + 5θi

16: barrier(tv(i)) /* synchronize all threads and message handlers that
complete a phase at time tv(i) */

Function do-bookkeeping(t)

T ← { t′ | ∃j ∈ [0, Λθ] s.t. t− (t mod 5θj)− t′ = ∆(j) or ∆(j − 1) }
∀j ∈ Phases, u ∈ Γ (v), t′ 6∈ T :Ou

v (t′) ← ⊥, Conf v(j, t′) ← false,
VPu

v (t′),VPnew,u
v (t′) ← 0, Aggv(j, t′) ← ⊥

To choose a VP value, we initially prepare a list of candidate levels. Level k is
considered a candidate if Sk(v) is known to be in conflict according to the most
recent information. More formally, we look at the last iteration that completed
phase k, i.e., the iteration that started at LastIter(k, tv(0)), where tv(0), at

this point, is the current time. During an iteration, nodes can learn if their
cluster at a certain level is in conflict by the reception (or absence) of update-vp
messages during the corresponding phase. Specifically, upon completing phase
k, if VRnew,v

v = k, then Sk(v) is in conflict. However, as update-vp messages
are only sent after an iteration completes its VP phase, this information is not
available beforehand. Consequently, we only accept k as a candidate if both
VPu

v (LastIter(k, tv(0))) ≤ k and VPnew,u
v (LastIter(k, tv(0))) = k hold. Next, we

choose the highest candidate, where 0 is always considered a candidate. Both the
initial output value and DynI-LEAG’s output estimate, Ov, are simply taken as
the current output of the iteration corresponding to the chosen candidate. Thus,
after the inputs stabilize, the choices of VP converge to VL and the outputs
converge to the global aggregate result, thereby guaranteeing both quiescence
and output stabilization (Theorem 3).

Finally, the do-bookkeeping procedure ensures that every mapping that is
never referenced again, i.e., the time its iteration has started corresponds to
neither the current nor last phase of any level, is reset to its default value. Thus,
every node has to maintain state for only 2Λθ MultI-LEAG iterations.

DynI-LEAG’s correctness and complexity are proved in [20]. Specifically, we
show that DynI-LEAG achieves the dynamic lower bound (Corollary 1) up to a
constant factor:

Theorem 3. Let PG,F be an aggregation problem. For every slack function α,
every rold, rnew ≥ 0, and every input sequence I such that all input changes cease
at time t0 and:

1. ∀r > rold: for every t ≥ t0 − 30θ · r, VRα(t) < r
2. VRα(t0) = rnew

DynI-LEAG reaches both quiescence and output-stabilization by time 40θ ·
max{rold, rnew}.

6 Conclusions

We provided two efficient algorithms, MultI-LEAG and DynI-LEAG, for dy-
namic aggregation in large graphs with fixed topologies. When the inputs are
stable, the algorithms are quiescent and hence do not waste any resources from
the communication network. When changes do occur, the performance of these
algorithms is proportional to the Veracity Radius of the inputs at hand, which
enables them to achieve optimal instance-local operation and resource utiliza-
tion.

Consequently, these algorithms are extremely attractive for data aggrega-
tion tasks in dynamic, resource-constrained environments in which topological
changes are infrequent compared to the sampling rate, be it for periodically
obtaining the result according to the most recent sample in a very efficient man-
ner (MultI-LEAG) or for closely tracking the monitored environment to capture
global trends as fast as possible (DynI-LEAG).

References

1. Birk, Y., Keidar, I., Liss, L., Schuster, A., Wolff, R.: Veracity radius - capturing
the locality of distributed computations. To appear in PODC (2006)

2. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a tiny aggregation service
for ad-hoc sensor networks. In: Proc. of the 5th Annual Symposium on Operating
Systems Design and Implementation (OSDI). (2002)

3. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.: Wireless sensor networks
for habitat monitoring. In: Proc. of the ACM Workshop on Sensor Networks and
Applications. (2002)

4. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems (2003)

5. The Condor Project, http://www.cs.wisc.edu/condor/.
6. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and

robust communication paradigm for sensor networks. In Proceedings of the Sixth
Annual Intl. Conf. on Mobile Computing and Networking (2000)

7. Kempe, D., Dobra, A., Gehrke, J.: Computing aggregate information using gossip.
Proceedings of Fundamentals of Computer Science (2003)

8. Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating aggregates
on a peer-to-peer network. Technical report, Stanford University, Database group
(2003) Available from: http://www-db.stanford.edu/~bawa/publications.html.

9. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques
for sensor databases. In: Proc. of ICDE. (2004)

10. Zhao, J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless
sensor networks. In: Proc. of SNPA. (2003)

11. Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The price of validity in
dynamic networks. In: Proc. of ACM SIGMOD. (2004)

12. Kutten, S., Peleg, D.: Fault-local distributed mending. Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (1995)

13. Kutten, S., Peleg, D.: Tight fault-locality. In: Proc. of the 36th IEEE Symposium
on Foundations of Computer Science. (1995)

14. Kutten, S., Patt-Shamir, B.: Time-adaptive self-stabilization. Proceedings of the
16th Annual ACM Symposium on Principles of Distributed Computing (1997)
149–158

15. Azar, Y., Kutten, S., Patt-Shamir, B.: Distributed error confinement. In: Proc. of
the 22nd Annual Symp. on Principles of Distributed Computing. (2003)

16. Li, J., Jannotti, J., Couto, D.D., Karger, D., Morris, R.: A scalable location service
for geographic ad hoc routing. In: Proc. of the 6th ACM Intl. Conf. on Mobile
Computing and Networking. (2000)

17. Elkin, M.: A faster distributed protocol for constructing a minimum spanning
tree. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA). (2004) 359–368

18. Liss, L., Birk, Y., Wolff, R., Schuster, A.: A local algorithm for ad hoc majority
voting via charge fusion. In: Proceedings of the Annual Conference on Distributed
Computing (DISC). (2004)

19. Wolff, R., Schuster, A.: Association rule mining in peer-to-peer systems. In: Proc.
of the IEEE Conference on Data Mining (ICDM). (2003)

20. Birk, Y., Keidar, I., Liss, L., Schuster, A.: Efficient dynamic aggregation. CCIT
Technical Report 589, EE Department, Technion (2006)

