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ABSTRACT
Peer-to-peer (P2P) networks suffer from the problem of “free-
loaders”, i.e., users who consume resources without con-
tributing anything in return. In this paper, we tackle this
problem taking a game theoretic perspective by modeling
the system as a non-cooperative game. We introduce Equi-
Cast, a wide-area P2P multicast protocol for large groups
of selfish nodes. EquiCast is the first P2P multicast proto-
col that is formally proven to enforce cooperation in selfish
environments. Additionally, we prove that EquiCast incurs
a low constant load on each user.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems[Distributed applications]

General Terms
Algorithms, Theory

Keywords
Peer-to-peer networks, multicast, non-cooperative game, in-
centives.

1. INTRODUCTION
Peer-to-peer (P2P) networks can distribute digital content

to a large number of users over the Internet by distributing
the load among the peers [19, 6]. However, these networks
suffer from the problem of “freeloaders”, i.e., users who con-
sume resources without contributing their fair share [3]. In
order to discourage “freeloaders”, some P2P systems em-
ploy incentives to motivate users to cooperate, e.g., con-
tribute upload bandwidth or disk space for some other users.
However, while current incentive-based P2P systems reward
cooperation to some extent, no existing protocol has been
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proven to enforce cooperation in selfish environments. More-
over, such systems, e.g., [6, 11], typically rely on user altru-
ism. For example, a node is expected to upload data blocks
to other nodes for no return whenever it has available band-
width [6, 11]. Hence, current incentive-based P2P systems
do not solve the problem of “freeloaders” [13], and would
not have worked well at all if users would have behaved self-
ishly, e.g, leaving a content distribution system after they
have finished downloading the file [13, 11].

Nowadays, user altruism is common since most users are
connected to the Internet using static machines via ISPs
with a flat pricing model, and hence sending a packet does
not incur a cost on its sender. However, these paradigms
are changing. First, the increasing access to digital con-
tent is expected to drive ISPs to implement a tiered pricing
scheme, where high end pricing plans shall allow unlimited
downloads and uploads, while lower tier pricing plans shall
limit traffic bandwidth [19]. With such a pricing scheme,
users will most likely cease to be altruistic [19]. This may
lead to low P2P system availability [14, 13] or even system
collapse [3, 18]. Second, wireless hotspots are proliferat-
ing in recent years, and users are increasingly connecting
to the Internet and downloading content to mobile devices
such as laptops and cell phones. In such networks, pricing is
typically based on connection time or transmission volume.
Moreover, battery power is a critical resource for mobile de-
vices. Hence, user altruism can hardly be expected in such
networks. Therefore, we believe that it is important to de-
sign P2P systems that work well even when all users are
selfish.

In this paper, we address this challenge. We introduce
EquiCast, a wide-area P2P multicast protocol for distribut-
ing content to large groups of selfish nodes. We treat the
problem of free-loading from a game theoretic perspective,
and we model the system as a non-cooperative game. In such
a game, nodes are selfish but rational, i.e., each user chooses
its own strategy regarding its level of cooperation so as to
minimize its own cost [10]. More specifically, the goal of each
node is to receive all the multicast packets while minimizing
its sending rate. We restrict the strategies a node can choose
to protocol-obedient ones, where a protocol-obedient strat-
egy determines how many connections the node maintains
and how many packets it sends on each connection, though
it does not include hacking the protocol’s code or assum-
ing that others do so. We believe that this set of strategies
is reasonable, since users usually do not have the techni-
cal knowledge required in order to modify an application
code. Our formal model and cost function are presented in



Section 3, and in Section 5.1 we formally define the set of
protocol-obedient strategies.

In EquiCast, a single distribution server S (which can
be implemented by multiple machines acting as one logical
server) organizes the nodes into a static overlay network.
We divide the time into rounds, and in each round, S in-
jects new data packets to a small random subset of the nodes
in the overlay. Nodes, then, communicate with their overlay
neighbors in order to retrieve missing data packets. S also
provides a “safety net” for a node whose data receiving rate
is lower than the multicast rate, by sending data packets to
either the node or its neighbors. This additional overhead
incurred on S is modest, since most of the nodes are ex-
pected to receive most if not all the multicast packets from
their overlay neighbors.

EquiCast enforces cooperation through two mechanisms.
The first is a monitoring mechanism, whereby each node
monitors the sending rate of each of its neighbors. Specifi-
cally, for each neighbor n̂, each node n maintains n̂’s balance,
which is the difference between the number of data packets
n̂ has sent to n so far and the expected per-link throughput.
As long as n̂’s balance is greater than or equal to a predefined
negative threshold L, n̂ is considered to be cooperative, and
n continues to send data packets to n̂. Otherwise, n termi-
nates its connection with n̂. Note, however, that it is always
possible for cooperative nodes to have a balance greater than
or equal to L with respect to all of their neighbors.

The second mechanism is a per-link penalty mechanism,
which further motivates nodes to adhere to the expected link
throughput. It charges a neighbor with one additional fine
packet for every round the neighbor has a negative balance,
where a fine packet is a dummy packet that has the same
size as a data packet. Fine packets, as opposed to data pack-
ets, do not affect the node’s balance. Therefore, a node is
motivated to achieve a non-negative balance, whenever pos-
sible. Note that the multicast rate is tens of data packets
per round, and hence the penalty mechanism incurs a mod-
est overhead. In general, in EquiCast, each node is required
to have an upload bandwidth that is slightly higher, e.g.,
by 10%, than the multicast rate. Note that similar require-
ments are also assumed by multicast systems for cooperative
environments [4].

In Section 5, we prove that, in environments in which all
the nodes are selfish, EquiCast disseminates all the multicast
packets to all the nodes. Additionally, every protocol-obed-
ient strategy in which a node exclusively cooperates with
all its neighbors strictly dominates every protocol-obedient
strategy in which it does not. This means that the cost
incurred on a “free-loader” node is strictly higher than the
cost incurred on a cooperative node, and hence all nodes
are expected to follow the protocol out of their own selfish
interests. We are unaware of any previous P2P multicast
protocol that was formally proven to enforce cooperation in
environments in which all nodes are selfish.

Finally, for simplicity, throughout most of the paper we
describe only a static version of EquiCast, in which no node
joins or leaves the service. In Section 6, we sketch out a
dynamic version of EquiCast that supports node joins and
leaves.

2. RELATED WORK
We are familiar with only two previous P2P multicast

protocols for selfish environments [18, 12]. Ngan et al. [18]

propose an incentive-based multicast protocol based on de-
tection of selfish nodes and periodic reconstruction of multi-
cast trees that exclude previously misbehaving nodes. How-
ever, this protocol induces high overhead. For example, with
500 nodes, the trees’ reconstruction requires each node to
send 256 control messages every two minutes; and when the
group size is 2000 nodes, each node sends nearly 400 control
messages every two minutes, in addition to data messages.
Habib and Chuang [12] propose an incentive-based protocol
for media streaming, in which cooperative nodes receive high
quality of service whereas “freeloaders” receive low quality
streaming. While this protocol rewards cooperation to some
extent, it does not solve the problem of “freeloaders”. These
two solutions, however, consider a different model, in which
only a fraction of the nodes are selfish. Moreover, neither is
formally proven to enforce cooperation.

Several previous distributed Internet services such as con-
tent distribution [6, 11], storage [7], and lookup [5] reward
cooperation to some extent by incentivizing cooperative be-
havior. The BitTorrent [6] and Avalanche [11] content dis-
tribution systems support the tit-for-tat strategy, in which
a user preferentially uploads blocks of information to users
from which it is also downloading blocks. But these sys-
tems rely on user altruism, and hence they do not purport
to work in a selfish environment where all users are rational
and selfish, and every packet incurs a cost on its sender. In
the SAMSARA storage system [7], each node is required to
contribute as much disk space to the system as it is using,
and in the GIA lookup system [5] the quality of service ex-
perienced by a node is proportional to its contribution to
the system. None of the aforementioned services, however,
models the system as a non-cooperative game or formally
proves cooperation as we do.

In P2P protocols based on a centralized reputation sys-
tem, e.g., eMule [1] and [3], each node sends to and requests
from the system reports about the level of cooperation of
other nodes. Hence, a node is motivated to collaborate with
other nodes. However, this approach achieves limited scala-
bility [3], since the reputation system continuously commu-
nicates with all the nodes.

The BAR-B backup service [2] can tolerate both Byzan-
tine nodes and an unbounded number of selfish nodes by us-
ing asynchronous replicated state machine. The replicated
state machine approach, however, can support only a limited
number of nodes. In addition, this service relies on public
key cryptography, which further limits the scalability of this
service.

Finally, cost-sharing multicast solutions e.g., [8], consider
a different model, in which multicast is provided over a ded-
icated infrastructure, and the infrastructure cost is shared
among all nodes. Such an approach, however, is not appli-
cable to P2P systems.

3. MODEL AND PROBLEM STATEMENT
We consider a large static collection of N nodes n1, n2,

..., nN . A single distribution server S distributes P data
packets to the nodes, where P is a random variable dis-
tributed exponentially with a large expectation, e.g., larger
than 10,000. S knows all the node identities, e.g., by each
node registering itself at S.

3.1 Network and timing model
Each node can directly communicate with every other



node and with S. The multicast rate is p data packets per δ

time units. Each node has an upload bandwidth of at most
p+kc packets per δ time units, where k and c are small con-
stants such that k≥3, c≥4, and p%k=0. In addition, we
require that (k2−k)(c−3)<p and k2(c−2)−2k<p, in order
to prove that every protocol-obedient strategy in which a
node exclusively cooperates with all its neighbors strictly
dominates every protocol-obedient strategy in which it does
not. There is a bound of ∆ time units on packet delay,
and sending a packet incurs zero delay on the sender. Local
computations also incur zero delay. Finally, for simplicity,
we assume no packet loss.

3.2 The game formulation
We model the system as a non-cooperative game, in which

the players are the N nodes. Each node chooses a strategy
out of a set of possible protocol-obedient strategies. We defer
the definition of this set to Section 5.1, since it relies on the
protocol’s code described in Section 4.3. Generally speaking,
a protocol-obedient strategy must run the protocol as is and
can only determine how many connections to maintain and
how many packets to send.

Each node is selfish and rational, i.e., ni chooses a strat-
egy sti that minimizes its selfish cost as defined below. A
strategy A strictly dominates another strategy B if choosing
A always incurs a lower cost than choosing B, regardless of
the strategies chosen by other nodes. A strongly dominating
strategy strictly dominates all other strategies. Although S
is not one of the players, we model its random injections
of data packets as its strategy st0, and hence our proof of
cooperation is valid regardless of S ’s random choices. Note
that st0 does not determine the length of the session, i.e.,
P . Denote by ri the total number of data packets received
by ni throughout the multicast session, and by si the to-
tal number of packets sent by ni throughout the multicast
session. Then, the cost function for a node ni is defined as:

fi(st0, st1, ..., stN) =

�
∞ if ri < P

si if ri = P .

That is, if ni receives all the multicast packets, then its cost
is the number of packets it has sent during the multicast
session. Otherwise, ni’s cost is infinite.

3.3 Problem statement
Our goal is to design a scalable P2P multicast protocol, in

which if each node chooses a dominating strategy out of the
set of protocol-obedient ones, then each node receives all the
multicast packets. A second goal is efficiency, i.e., the per-
round expected and maximal receiving/sending overhead in-
curred on each node is p + a·k and p + c·k packets, respec-
tively, where a is a small constant, e.g., 3, and the maxi-
mal total receiving and sending overhead incurred on each
node is P (1 + a·k

p
) and P (1 + a·k

p
) + k·H packets, respec-

tively, where H is a non-negative constant determined by
each node.

4. EQUICAST
Section 4.1 describes EquiCast’s architecture. Section 4.2

provides a high-level description of EquiCast’s cooperation
enforcement scheme, and Section 4.3 describes the protocol
in detail.

4.1 Architecture

S organizes the nodes into a static overlay that satisfies
the following properties: (KRRG1) each node in the overlay
has exactly k neighbors for some parameter k; (KRRG2) the
overlay’s diameter is logarithmic in N ; and (KRRG3) the
expected distance between a given node and a random node
in the overlay equals the average distance between a pair of
nodes in the overlay. For k≥3, a k-regular random graph1

satisfies these properties with high probability [21, 9, 15]. S
constructs the overlay, e.g., using one of the constructions
in [21], and sends to each node the identities of its overlay
neighbors, henceforth, simply called neighbors. Note that
since the construction is centralized, no node cooperation is
required.

In the next section, we show that, under our model as-
sumptions, for each node, maintaining connections with its
k neighbors is a dominating strategy. Hence, connections
are expected to persist. However, if a given connection is
terminated, e.g., due to a node failure, then a node n can
end up with less than k neighbors. In such cases, n contacts
S, and S emulates a selfish rational EquiCast node n̂, and
a new connection is formed between n and n̂. n̂’s interface
is identical to the interface of each EquiCast node with the
following two exceptions: i) n’s balance with respect to n̂ is
initialized to the lowest possible balance, i.e., L; and ii) in
each round, n must send a fine packet to n̂ regardless of its
balance with respect to n̂, otherwise n̂ terminates its con-
nection with n. Hence, as we show in Section 5.2, a node
prefers to maintain a connection with a non-emulated node
over an emulated one.

4.2 Overview
We divide the time into R=dP

p
e rounds. Every round, S

creates p new data packets, and for each node n, S sends all
the copies of these p packets to n with a probability of k

N
,

so that, on average, each data packet is sent to k nodes.
In each round, every node n gossips with its neighbors

about new data packets it has received in the previous round,
i.e., for each neighbor, n sends a gossip packet containing the
identities of all the data packets it has received in the previ-
ous round. After receiving gossip packets from its neighbors,
n requests from each of its neighbors data packets that the
neighbor has and were not previously received by n. If a
given packet is available at more than one neighbor, then n

randomly picks one of those neighbors to request the packet
from. Finally, n sends its neighbors the data packets they
requested from it.

We note that since a given packet is sent by S to each
of the nodes with equal probability and since the expected
distance between a random node and a given node equals
the average distance between a pair of nodes in the overlay
(KRRG3), if all the nodes comply with the protocol, then
the average latency with which nodes receive data packets
is identical for all nodes, and the expected throughput is p

k

data packets per-round on every overlay link. In a previous
study [17], we used a similar technique in order to support
reliable multicast in cooperative environments. The aim of
this study is achieving similar results in a non-cooperative
environment.

In order to motivate cooperation, we introduce a moni-

1A k-regular random graph with N nodes is a graph chosen
uniformly at random from the set of k-regular graphs with
N nodes.



toring mechanism, whereby each node n monitors the send-
ing rate of each of its neighbors. For each neighbor n̂, n

maintains n.neighbor balance[n̂], which is the difference be-
tween the number of data packets n̂ has sent so far and the
expected per-link throughput of p

k
data packets per-round.

Note that, in a given round, n̂ may have less than p

k
new

data packets that have not yet been received at n, whereas
in another round it may have more than p

k
data packets for

n. Therefore, we allow for some slack in the balance. The
allowed imbalance is captured by a negative threshold L.
As long as n̂’s balance with respect to n is greater than or
equal to L, n̂ is considered to be cooperative by n. But if
n̂’s balance with respect to n drops below L, then n ter-
minates the connection with n̂. Note that, as long as n̂’s
balance with respect to n is greater than or equal to L, the
uploading rate from n to n̂ is unaffected by the downloading
rate from n̂ to n. This independence is required in order to
prove cooperation.

In order to further motivate nodes to adhere to the ex-
pected throughput, we introduce a per-link penalty mecha-
nism that charges a neighbor with one additional fine packet
for every round the neighbor has a negative balance with re-
spect to the node, where a fine packet contains no useful data
but has the same size as a data packet. If the node does not
receive a fine packet from a neighbor with a negative bal-
ance, then it terminates its connection with that neighbor.
Fine packets, as opposed to data packets, do not affect the
node’s balance. Therefore, a node is motivated to achieve
a non-negative balance, where all sent packets contribute to
its balance. Moreover, it is beneficial for nodes to have a
strictly positive balance whenever possible. This is because
there is no guarantee that a given neighbor will request at
least p

k
packets from the node in forthcoming rounds. If a

neighbor requests fewer than p

k
packets when the node’s bal-

ance toward it is zero, then the balance becomes negative,
and the node pays the fine. Each node chooses its maximal
balance with respect to a given neighbor. This maximal bal-
ance is captured by the non-negative threshold H . As long
as the node’s balance with respect to a given neighbor n̂

does not exceed H the node sends all the data packets that
n̂ requests from it, yet it refrains from sending data packets
that would increase its balance with respect to n̂ beyond
H . Note that a node cannot optimize the value of H ac-
cording to the session duration, as P is a random variable
distributed exponentially. Note also that the penalty mech-
anism does not eliminate the need for L, since without this
threshold, a selfish node could have sent only fine packets.

Although nodes are motivated to have a non-negative bal-
ance, due to randomness, a node n may have an insufficient
number of new packets for a given neighbor in order to be
able to maintain a balance greater than or equal to L. In
order to avoid a disconnection in such a scenario, n can ask
S to send up to p

k
new data packets on behalf of it to a

given neighbor n̂ in return for sending the same number of
fine packets to S. n̂ counts S ’s packets towards n’s balance
only if ignoring these packets would drop n’s balance with
respect to n̂ below L. Hence, n contacts S only when its
balance with respect to n̂ drops below L. In addition, after
the end of the multicast session, n can ask S to send to it up
to |L|k data packets in return for sending the same number
of fine packets to S.

On the one hand, the allowed imbalance should be large
enough to reduce the probability of a cooperative node reach-

ing L, in order to avoid over-loading S. On the other hand,
a high imbalance allows a selfish node to receive many data
packets, i.e., |L|k, without sending any data packets in re-
turn. Hence, there is an inherent tradeoff between the over-
head incurred on S and the number of data packets a node
can receive for free. For example, setting L to −200 is a
good tradeoff between the two opposite requirements. On
the one hand, if k=3, then a node can get only 600 data
packets without contributing anything in return to the sys-
tem. Since we assume that the multicast session is signifi-
cantly longer, including at least 10,000 packets, it seems like
users will not be satisfied with getting a mere 600 packets
and will therefore be motivated to contribute. On the other
hand, such a bound is expected to incur a modest overhead
on S. Note that the value of L is independent of all the other
system parameters.

4.3 Detailed description

4.3.1 The source protocol
Each round, S creates p new data packets, and for each

node n it sends all the copies of these packets to n with a
probability of k

N
. In the rare case in which, at a given round,

no node is chosen to receive all the copies of the p new data
packets, S restarts the round. Note that this does not add
to the round duration, since computation time is zero.

Upon receiving a request from a node n to send x data
packets to another node n̂, S verifies that: (i) x≤ p

k
; (ii) this

request is followed by the sending of x fine packets from n;
(iii) n and n̂ are neighbors; (iv) neither n nor n̂ has asked
S to replace the other node with an emulated node; and
(v) n is not pretending to be another node (IP-spoofing).
The latter is checked, e.g., by sending a random string to
n that n should send back to S in one of the fine packets.
If n passes the checks, then S sends to n̂ copies of x new
data packets that it intends to distribute in the next round.
If two or more of n̂’s neighbors ask S to send data packets
to n̂, then S sends to n̂ different packets on behalf of each
neighbor. We neglect the possibility that in the next round
n̂ will be chosen by S to receive data packets from it, as the
probability for this scenario is k

N
.2

After the end of the multicast session, S provides a “safety
net” for cooperative nodes that did not receive all the P

multicast packets. Specifically, upon receiving x fine packets
from a node n, S sends x data packets to n, for x≤|L|k. In
order to avoid server overloading at the end of the multicast
session, we use the randomized back-off strategy described
in [20].

4.3.2 The node protocol
Fig. 1 presents the data structures and parameters main-

tained by an EquiCast node. The set neighbors holds the
node’s neighbors. The array my balance holds the node’s
balance with respect to each of its neighbors, and the array
neighbor balance holds the neighbors’ balances with respect
to the node. The set ids contains identifiers of data packets
that the node heard about (from one or more of its neigh-
bors) but has not yet received. The array reqs holds identi-
fiers of data packets that the node asks its neighbors to send
to it. The (negative) threshold L determines the minimal
allowed balance. Finally, each node chooses its own upper

2In this case, if n̂ is chosen by S to receive data packets in
round t, then S can send data packets to n̂ in round t+1.



Data structures:
neighbors – set of the overlay neighboring nodes.
my balance[k] – outgoing balance, initially ∀n ∈ neighbors,
my balance[n] = 0.
neighbor balance[k] – incoming balance, initially ∀n ∈
neighbors, neighbor balance[n] = 0.
H – an upper bound on the balance, chosen by the node.
ids – set of data packet identifiers that the node has not yet
received, initially ∅.
reqs[n] – a set of data packets identifiers to ask from neigh-
bor n, initially ∀n ∈ neighbors, req[n] = ∅.
Parameters:
L – a lower bound on the balance (a negative number).

Figure 1: EquiCast’s data structures and parame-
ters.

bound H on its balance with respect to a given neighbor,
which defines its level of cooperation.

The pseudo-code of the node’s protocol is presented is
Fig. 2. It consists of four phases, which are executed se-
quentially.

In the first phase, which lasts ∆ time units, a node sends
to its neighbors identifiers of data packets it received in the
previous round (lines 1–5).

In the second phase, which also lasts ∆ time units, if the
node does not receive a gossip packet from some neighbor,
then the node terminates its connection with that neighbor
(lines 6–8). Then, the node processes gossip packets it has
received from its neighbors. For each identifier in ids, the set
id set holds all the neighbors that have the corresponding
data packet. One such neighbor n is randomly chosen from
this set, and the node asks n to send it the corresponding
data packet by appending the identifier to reqs[n].

In the third phase, which lasts δ−3∆ time units, if the
node does not receive a request packet from some neighbor,
then the node terminates its connection with that neighbor
(lines 19–21). Then, the node sends data packets to each
of its neighbors. Note that, according to the model (see
Section 3), each node has an upload bandwidth of at most
p+kc packets per δ time units. Therefore, in the third phase,
the node sends up to x= p

k
+c−3 data packets to a given

neighbor n, as long as its balance with respect to n does
not exceed H (line 21). Additionally, the node increases
its balance with respect to n by x. If the node’s balance
with respect to n is smaller than L, then the node asks S to
send to n sufficiently many packets so that at the end of the
current round the node will have a balance that is equal to
or larger than L with respect to n (lines 23–25).

In the fourth phase, which lasts ∆ time units, the node
updates each neighbor’s balance according to the number
of data packets it received from the neighbor and from S
on behalf of the neighbor in the previous phase (lines 28–
32). Note that the node does not accept unsolicited data
packets from its neighbors. Likewise, the node accepts data
packets from S on behalf of some neighbor n only if, at the
beginning of the fourth phase, n has a balance lower than
L+ p

k
with respect to the node. Then, if the node has a

negative balance with respect to n, then it sends one fine
packet to n. Finally, if n either has a balance lower than L

or did not send the fine packet it was required to, then the
node terminates its connection with n.

5. PROOF OF COOPERATION
Recall that P , the number of data packets in a session,

is a random variable distributed exponentially with a large
expectation, at least an order of magnitude larger than |L|k.
Hence, in every round, S is expected to create more than
|L|k new data packets in the future. In this section, we ne-
glect the probability that, starting from some round t, S will
create less than |L|k new data packets, and hence we assume
that, in every round, the probability that S will create more
that |L|k data packets in the future is 1. Therefore, for ev-
ery constant const, const

R
is negligible, and for simplicity is

assumed to be 0.
In Section 5.1 we define the set of protocol-obedient strate-

gies, and in Section 5.2 we prove that every protocol-obedient
strategy in which a node cooperates with all its neighbors
strictly dominates every protocol-obedient strategy in which
it does not. Additionally, we prove that if a node chooses
such a dominating strategy, then it receives all the multicast
packets.

5.1 The set of protocol-obedient strategies
We say that a connection is maintained between two neigh-

boring nodes n and n̂, if both n’s and n̂’s strategy is to be
connected to each other assuming the other node does so
too. That is, both n and n̂ send the necessary packets in
order to avoid a situation where the protocol dictates that
the connection be terminated. Note that n and n̂ can be
either real nodes or nodes emulated by S.

Definition 1 (Protocol-obedient strategy). A
node’s strategy is protocol-obedient if (i) the node runs the
protocol’s code described in Fig. 2 without changing any of
the protocol’s parameters except H; and (ii) the node main-
tains connections only with nodes whose identities are re-
ceived from S.

We believe that this set of strategies is reasonable for the
common user, since such a user usually does not have the
technical knowledge to modify an application code. More-
over, in many P2P applications, a node communicates with
nodes whose identities are received from a centralized server.
For example, in BitTorrent, a node locates other nodes by
contacting a “tracker”, which is a centralized process that
keeps track of all nodes interested in a specific file [6, 13].
Note that we do allow a node to decide whether or not to
send each packet. This allows a node to disconnect from a
neighbor by simply not sending the necessary packets. Since
such behavior is not supported by the code of most P2P ap-
plications, our assumptions about protocol-obedient strate-
gies are less restrictive than theses applications’ codes.

5.2 Proof of cooperation
Throughout this section, we use the following notations re-

lated to a node n and a given neighbor n̂ of n: bt(n, n̂) is n’s
balance towards n̂ after t rounds as stored in n.my balance[n̂].
xt(n, n̂) is the number of data packets n (or S on behalf of

n) sends to n̂ during round t, and Xt(n, n̂) = � i=t

i=0 xt(n, n̂).

Lemma 1. At the end of each round, for every two neigh-
boring nodes n and n̂, n.my balance[n̂] = n̂.neighbor bal-
ance[n].

Proof. By induction.
Base: t = 0. n.my balance[n̂] = n̂.neighbor balance[n] = 0.



Phase I (gossip)
1. /* Send gossip packets to neighbors */
2. foreach n ∈ neighbors

3. create new gossip packet p with all the data
packet identifiers received in the last round

4. send 〈GOSSIP,p〉 to n

5. wait ∆ time

Phase II (process gossip, send requests)
6. foreach n ∈ neighbors from which no GOSSIP

packet arrived
7. disconnect from n

8. contact S and ask for an alternative neighbor
9. ids← set of identifiers received in gossip packets,

whose corresponding data packets were
not received yet

10. foreach n ∈ neighbors reqs[n]← ∅
11. foreach id ∈ ids

12. id set← set of neighbors that gossiped
about id

13. ne← a random neighbor from id set so that
|reqs[ne]|< p

k
+c−3

14. if there is no such ne then continue
15. reqs[ne]← reqs[ne] ∪ {id}
16. foreach n ∈ neighbors

17. send 〈REQUEST,reqs[n]〉 to n

18. wait ∆ time

Phase III (send data)
19. foreach n ∈ neighbors from which

no REQUEST packet arrived
20. disconnect from n

21. contact S and ask for an alternative neighbor
22. /* Send data packets */

20. send up to x data packets to n according to n’s
request, where
x = min(H+ p

k
−my balance[n], p

k
+c−3)

21. my balance[n]← my balance[n]+x− p

k

22. if my balance[n]<L then
23. w← min( p

k
+c−(x+3), p

k
)

24. send S w fine packets and ask
it to send w data packets to n

25. my balance[n]← my balance[n]+w

26. wait δ − 3∆ time

Phase IV (update data structures, pay fine)
27. foreach neighbor n

28. d← number of data packets that I
asked n to send me in phase II and
were received from n in this round

29. if neighbor balance[n]<L+ p

k
and I

received in this round m data packets
from S on behalf of n then

30. d← d + m

31. neighbor balance[n]← neighbor balance[n]
+d− p

k

32. /* Send a fine packet (if needed) */
33. foreach neighbor n

34. if my balance[n] < 0 then
35. send a FINE packet to n

36. wait ∆ time
37. foreach neighbor n

38. /* Check if neighbor is OK */
39. if neighbor balance[n] < L or

neighbor balance[n] < 0 and n did not
send me a FINE packet in this round then

40. disconnect from n

41. contact S and ask for an alternative neighbor

Figure 2: Code for EquiCast node.

Step: Assume that, at the end of round t, n.my balance[n̂] =
n̂.neighbor balance[n]. We will prove that, at the end of
round t+1, n.my balance[n̂] = n̂.neighbor balance[n].

In round t+1, both n.my balance[n̂] and n̂.neighbor bal-
ance[n] are reduced by p

k
(see Fig. 2, lines 22 and 32). In ad-

dition, in round t+1, n.my balance[n̂] and n̂.neighbor bal-
ance[n] are increased upon the sending of data packets from
n and from S on behalf of n to n̂ (see Fig. 2, lines 22, 26,
and 32).

When n sends d new data packets to n̂, n.my balance[n̂]
is increased by d (see Fig. 2, line 22). Since there is no
packet loss, these packets are received at n̂. We note that
n sends to n̂ only data packets that n̂ requested from it in
phase II of round t+1, as n̂ ignores unsolicited data packets
(see Fig. 2, line 29). Therefore, upon receiving the d data
packets, n̂ increases n̂.neighbor balance[n] by d.

If n.my balance[n̂] drops below L during phase III of round
t+1, then n sends w fine packets to S and it asks S to send
w data packets on behalf of it to n̂ (see Fig. 2, lines 23–
25). Additionally, n.my balance[n̂] is increased by w (see
Fig. 2, line 26). We note that n does not request from S
to send to n̂ more than p

k
data packets, as S ignores such

requests (see Section 4.3). Hence, upon receiving the re-
quest from n, S sends w data packets on behalf of n to n̂.

Since there is no packet loss, these packets are received at
n̂. According to the induction assumption and the proto-
col, n̂.neighbor balance[n]<L+ p

k
at the beginning of phase

IV of round t+1. Hence, n̂ accepts the data packets re-
ceived from S, and it increases n̂.neighbor balance[n] by w

(see Fig. 2, lines 30–32). Finally, we note that if n asks S
to send data packets to n̂ when n.my balance[n̂]≥L, then
n̂ ignores these data packets (see Fig. 2, line 30), since in
this case n̂.neighbor balance[n]≥L+ p

k
, and hence n asks S

to send data packets to n̂ only if n.my balance[n̂]<L during
phase III of a given round.

Lemma 2. Assume that a node n is connected to another
node n̂. If both n’s and n̂’s strategy is maintaining the con-
nection between them, then this connection is maintained.

Proof. Without loss of generality, we will prove that n̂

does not terminate the connection with n. Since n̂’s strategy
is maintaining the connection with n, then it terminates the
connection with n in a given round t if: (i) it does not receive
a gossip packet from n in phase I of round t; or if (ii) it does
not receive a request packet from n in phase II of round
t; or if (iii) n did not send to n̂ a fine packet in round t

and either n̂ is an emulated node or, at the end of round
t, n̂.neighbor balance[n]<0; or if (iv) at the end of round t,



n̂.neighbor balance[n]<L.
Since n’s strategy is maintaining the connection with n,

then (i), (ii), and (iii) do not happen. In addition, we
note that n can ensure that, at the end of each round,
n.my balance[n̂]≥L by asking S to send data packets to
n̂ when n.my balance[n̂]<L (during phase III of a given
round). Hence, according to Lemma 1, (iv) does not happen
either.

Lemma 3. If a node n maintains a connection with an-
other node n̂ through the first t rounds of the multicast ses-
sion, then Xt(n, n̂)= tp

k
+bt(n, n̂).

Proof. By induction.
Base: t = 0. X0(n, n̂) = b0(n, n̂) = 0. Therefore, X0(n, n̂) =
tp

k
+ b0(n, n̂).

Step: Assume Xt(n, n̂) = tp

k
+ bt(n, n̂). We will prove that

Xt+1(n, n̂) = (t+1)p
k

+ bt+1(n, n̂).

Xt+1(n, n̂) = Xt(n, n̂) + xt+1(n, n̂) = tp

k
+ bt(n, n̂) +

xt+1(n, n̂). From the code (Fig. 2, lines 22 and 26), we
know that: bt+1(n, n̂) = bt(n, n̂)+xt+1(n, n̂)− p

k
. Therefore,

bt(n, n̂) + xt+1(n, n̂) = bt+1(n, n̂) + p

k
. Hence, Xt+1(n, n̂) =

(t+1)p
k

+ bt+1(n, n̂).

Lemma 4. If a node n maintains connections with k nodes
throughout the multicast session, then it receives from its
neighbors and from S on behalf of its neighbors at least P+Lk

data packets (recall that L is negative).

Proof. By Lemma 3, for every neighbor n̂ of n, XR(n̂, n)
= Rp

k
+ bR(n̂, n). Recall that bR(n, n̂)≥L and R=P

p
. Hence,

from all its k neighbors, n receives at least Rp+Lk=P+Lk

data packets.

Lemma 5. The per-round overhead of maintaining a con-
nection over the entire multicast session is between p

k
+2 and

p

k
+c packets.

Proof. The overhead of maintaining a connection con-
sists of: (i) data overhead (XR), i.e., packets that contribute
to the node’s balance with respect to the neighbor, (ii) gos-
sip/request packets, and (iii) penalty packets.

According to the protocol (Fig. 2, lines 21–25), the max-
imum data overhead is p

k
+c−3 data packets per-round. By

Lemma 3, and since L is fixed, XR(n,n̂)
R

= p

k
+ bR(n,n̂)

R
≥ p

k
+ L

R
=

p

k
. The gossip/request overhead is fixed, namely: two pack-

ets per-round. The penalty on either a negative balance or
on maintaining a connection with an emulated node is one
fine packet per round, and zero otherwise. Hence, the min-
imal and maximal per-round overheads are p

k
+2 and p

k
+c

packets, respectively.

Lemma 6. If a node n maintains connections with at most
k−1 nodes throughout the multicast session, then fn=∞.

Proof. We first note that, during the multicast session,
n cannot request from S to send it data packets. From at
most k−1 neighbors and from S on behalf of these neighbors,
n can receive at most x=(k−1)( p

k
+c−3) data packets per

round. Recall that (k2−k)(c−3)<p. Hence, x<p. We note
that x<p even if n maintains connections with more than
k−1 nodes for a bounded number of rounds. This is since n

receives a bounded number, denoted as num, of data packets
from these nodes, and hence xR+num

R
=x< p. Finally, if n

receives up to |L|k data packets from S after the end of
the multicast session, then it still cannot receive all the P

multicast packets, since xR+|L|k
R

=x< p. Hence, fn=∞.

Lemma 7. If a node n maintains connections with k nodes
throughout the multicast session, then fn<∞ and fn

R
≤p+kc.

Proof. We first note that n can always maintain connec-
tions with k nodes if it chooses to do so, since n can always
maintain connections with k nodes emulated by S. Hence,
according to Lemma 4, if n maintains connections with k

nodes throughout the multicast session, then it receives at
least P+Lk data packets from its neighbors and from S on
behalf of its neighbors. In addition, after the end of the mul-
ticast session, n can receive up to |L|k data packets from S
(in return for sending S a fine packet for each data packet),
and hence fn=sn<∞.

By Lemma 5, maintaining k connections incurs sending

at most p+kc packets per-round. In addition, since |L|k
R

=0
(L and k are fixed), sending at most |L|k fine packets at the
end of the multicast session does not increase the per-round
overhead. Thus, fn

R
≤p+kc.

We now discuss a scenario in which a node n maintains
connections with more than k nodes throughout the multi-
cast session. Note that n can maintain up to 2k connections
if it maintains connections with all of its initial neighbors
and with k emulated nodes as well. However, by Lemma 5
and due to bandwidth limitations, n cannot maintain more
than b p+kc

p
k

+2
c connections. Below, we prove that maintaining

connections with additional nodes other than its neighbors
can only increase n’s cost.

Lemma 8. Every protocol-obedient strategy in which a no-
de n maintains connections with k nodes throughout the
multicast session strictly dominates every protocol-obedient
strategy in which n maintains connections with j nodes throu-
ghout the multicast session, where j>k.

Proof. By Lemma 5, if n maintains connections with
k+1 or more nodes throughout the multicast session, then
sn

R
≥(k+1)( p

k
+2), i.e., fn

R
≥(k+1)( p

k
+2). By Lemma 7, if n

maintains connections with k nodes throughout the multi-
cast session, then fn

R
≤p+kc. Recall that k2(c−2)−2k<p.

Hence, p+kc<(k+1)( p

k
+2). Therefore, maintaining k con-

nections throughout the multicast session incurs a lower
cost than the cost of maintaining k+1 or more connections
throughout the multicast session.

The following lemma shows that it is preferable for a node
to maintain connections with k neighbors throughout the
multicast session.

Lemma 9. Every protocol-obedient strategy in which a no-
de n maintains connections with k nodes throughout the
multicast session strictly dominates every protocol-obedient
strategy in which n maintains connections with j nodes,
where j 6=k.

Proof. We note that maintaining a connection for a bou-
nded number of rounds cannot reduce n’s cost, since from
this connection n receives a bounded number of data pack-
ets, denoted as num, and num

R
=0. Hence, the theorem fol-

lows from Lemmas 6, 7, and 8.

We next show that a node benefits more from connections
with its original k neighbors than from emulated ones.

Lemma 10. Assume that a node n maintains a connec-
tion with a non-emulated node n̂. Then, n does not replace
its connection with n̂ with a connection with an emulated
node e.



Proof. Recall that e’s interface is identical to n̂’s inter-
face with the following two exceptions: i) n’s balance with
respect to e is initialized to the lowest possible balance, i.e.,
L; and ii) in each round, n must send a fine packet to e,
regardless of its balance with respect to e, otherwise e ter-
minates its connection with n. Hence, there is no difference
between the data receiving rate from n̂ and the data receiv-
ing rate from e.

The overhead of maintaining a connection with either n̂ or
e is composed of: (i) data overhead, (ii) gossip/request pack-
ets, and (iii) penalty packets. The gossip/request overhead
is fixed. The data sending rate to e is larger than or equal
to the data sending rate to n̂, since n’s balance with respect
to e is initialized to the lowest possible balance, i.e., L. The
penalty overhead incurred by maintaining a connection with
e is larger than or equal to the penalty overhead incurred by
maintaining a connection with n̂, since, each round, n is re-
quired to send a penalty packet to e, regardless of its balance
with respect to e. Finally, in order to maintain a connection
with e, n needs to send a join message to S. Hence, the over-
head of maintaining a connection with e is larger than the
overhead of maintaining a connection with n̂. Hence, since
there is no difference between the data receiving rate from
n̂ and the data receiving rate from e, n does not replace its
connection with n̂ with a connection with e.

Theorem 1. If all nodes choose strongly dominating stra-
tegies out of the set of protocol-obedient strategies, then ev-
ery node n exclusively maintains connections with its initial
k neighbors throughout the multicast session, and it receives
all the multicast packets.

Proof. By Lemmas 9 and 10, n’s strategy is maintain-
ing connections with its initial k neighbors throughout the
multicast session. By Lemma 2, these connections are main-
tained. Hence, n exclusively maintains connections with its
initial k neighbors throughout the multicast session. Finally,
by Lemma 7, n receives all the multicast packets.

We have shown that it is beneficial for nodes to maintain
their connections with their neighbors. We now show that it
is also beneficial for them to cooperate with their neighbors,
by maintaining a non-negative balance. That is, each node
sets its H parameter to be equal to or larger than 0. This
reduces the probability for nodes reaching a balance lower
than L, and hence limits the overhead on S.

Lemma 11. Assume that a node n maintains connections
with k nodes throughout the multicast session. Assume also
that some neighbor n̂ of n requests from n to send to it
q≤ p

k
+c−3 data packets in some round r, and in the begin-

ning of round r, n has a negative balance of b with respect
to n̂. Then, in round r, n sends min(|b|, q) data packets to
n̂.

Proof. We first note that, at the end of each round t,
bt(n, n̂)≥L, since n maintains the connection with n̂. Thus,
the sending rate to n̂ does not affect the data receiving rate
from n̂, and hence n can minimize its sending rate to n̂ in
order to minimize its cost.

The per-round overhead incurred by maintaining the con-
nection with n̂ consists of: (i) data overhead (XR

R
), (ii)

gossip/request packets, and (iii) penalty packets. The gos-
sip/request overhead is fixed. Hence, n tries to minimize the
data and penalty overheads.

By Lemma 3, XR(n,n̂)
R

= p

k
+ bR(n,n̂)

R
. The per-round data

overhead is bounded from below by p

k
+ L

R
. Since L is a

constant that does not depend on R, we can neglect L
R

, i.e.,
assume it is zero. The per-round penalty overhead is the
percentage of rounds in which the balance is negative. Recall
that, in each round, the probability that S will create more
that |L|k data packets in the future is 1. Hence, the overall
cost is lower if n maintains a zero balance with respect to n̂

at the end of each round when this is possible. Therefore, n

sends min(|b|, q) data packets to n̂ in round r.

6. DYNAMIC SETTING
We now describe in a nutshell a dynamic version of Equi-

Cast, called DEC (Dynamic EquiCast), in which nodes can
join and leave the protocol during its execution. Below, we
detail only the differences between the two versions.

Architecture
DEC is deployed on top of a dynamic overlay that supports
node joins and leaves. For example, we can use the overlay
in [16], which is a dynamically maintained k-regular graph
composed of k

2
Hamiltonian cycles.

The cost function
DEC’s cost function is obtained from EquiCast’s cost func-
tion by replacing the requirement to receive all the P multi-
cast packets with the requirement to receive m·p data pack-
ets, where m is the number of rounds during which the node
is connected to the overlay.

A join operation
A joining node n sends a join message to S. Upon receiv-
ing this request, S incorporates n into the overlay, e.g., by
inserting n between k

2
pairs of neighboring nodes [16]. For

example, assume that nodes n1 and n2 are connected to the
overlay prior to n’s joining, and n becomes n1’s neighbor
instead of n2. We describe how S sets n’s and n1’s incom-
ing (neighbor balance) and outgoing (my balance) balances
with respect to each other.

Prior to incorporating n into the overlay, S asks both n1

and n2 for their incoming and outgoing balances with re-
spect to each other. If these balances do not match, then
S disconnects both n1 and n2 from the overlay by sending
an appropriate message to all their neighbors. Hence, since
both n1 and n2 are rational, they could be expected to cor-
rectly report about their incoming and outgoing balances
with respect to each other.

Denote n1’s outgoing and incoming balances with respect
to n2 at the end of round t as B12 and B21, respectively. We
would like to ensure that n1’s cost will not increase due to
n’s joining. Therefore, at the beginning of round t+1, both
n1’s outgoing balance with respect to n and n’s incoming
balance with respect to n1 are set to B12. Additionally,
at the beginning of round t+1, both n1’s incoming balance
with respect to n and n’s outgoing balance with respect to
n1 are set to max(B21, 0). This is to ensure that n will not
pay a fine for n2’s negative outgoing balance with respect to
n1. Finally, if B21<0, then S sends |B21| new data packets
to n1, in order to ensure that it receives at least m·p data
packets, where m is the number of rounds during which n1 is
connected to the overlay. Similarly, if B12>0, then S sends
B12 new data packets to n.



A leave operation
A leaving node n sends a leave message to S. Upon receiving
this request, S removes n from the overlay, e.g., by connect-
ing each pair of n’s neighbors with each other [16]. For
example, assume that, prior to n’s leave, n was connected
to nodes n1 and n2, and n1 and n2 become neighbors after
n’s leave. We describe how S sets n1’s and n2’s incoming
and outgoing balances with respect to each other.

Prior to leaving the overlay, n sends to S its incoming and
outgoing balances with respect to both n1 and n2. Note that
n cannot gain anything from reporting about false balances,
and hence n could be expected to correctly report about its
balances with respect to n1 and n2.

Denote n1’s and n2’s outgoing balances with respect to n

at the end of round t as B1n and B2n, respectively. We would
like to ensure that n1’s and n2’s cost will not increase due
to n’s leave. Therefore, at the beginning of round t+1, n1’s
and n2’s outgoing balances with respect to each other are
set to B1n and B2n, respectively. Additionally, in order to
ensure the protocol’s correctness, at the beginning of round
t+1, n1’s and n2’s incoming balances with respect to each
other are set to B2n and B1n, respectively.

Denote n1’s and n2’s incoming balances with respect to
n at the end of round t as Bn1 and Bn2, respectively. If
B2n>Bn1, then n1 may not receive m·p data packets, where
m is the number of rounds during which n1 is connected to
the overlay. Hence, in such a case, S sends B2n−Bn1 new
data packets to n1. Similarly, if B1n>Bn2, then S sends
B1n−Bn2 new data packets to n2.

Finally, a node n′ that is connected to the overlay for
m rounds may receive less than m·p data packets if it has
negative incoming balances with respect to its neighbors on
leave time. Hence, after it leaves the overlay, n′ can receive
up to |L|k data packets from S in return for sending S a
fine packet for each data packet.

7. CONCLUSIONS
“Freeloaders” degrade the performance of P2P systems

and may lead to their collapse. We have tackled the problem
of “freeloaders” in a P2P multicast protocol from a theoretic
perspective by modeling the system as a non-cooperative
game. We have introduced EquiCast, a P2P multicast pro-
tocol for selfish environments. In such environments, Equi-
Cast distributes all the multicast packets to all the nodes.
We have formally proven EquiCast’s cooperation enforce-
ment scheme, namely: in EquiCast, for each node, collabo-
rating with all its neighbors is a strongly dominating strat-
egy. We are unaware of any previous P2P multicast proto-
col that is proven to enforce cooperation in environments in
which all the nodes are selfish. We have also proven that
EquiCast incurs a constant load on each node, and hence
it can support large groups of users. Finally, we have de-
scribed a dynamic version of EquiCast, which supports node
joins and leaves.
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