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Abstract

Fault tolerant distributedsystemsoftenselecta primary
componentto allow a subsetof the processesto function
whenfailuresoccur. Thedynamicvotingparadigmdefines
rulesfor selectingtheprimarycomponentadaptively:when
a partition occurs, if a majority of the previous primary
componentis connected,a new and possiblysmaller pri-
maryis chosen.

Several studieshaveshownthatdynamicvotingleadsto
more available solutionsthan other paradigmsfor main-
taining a primary component.However, thesestudieshave
assumedthateveryattemptmadebythealgorithmto forma
new primary componentterminatessuccessfully. Unfortu-
nately, in realsystems,this is notalwaysthecase:a change
in connectivitycaninterruptthealgorithmwhileit is still at-
temptingto form a new primary component;in such cases,
algorithmsmayblock until processescan resolvethe out-
comeof theinterruptedattempt.

This paper usessimulationsto evaluate the effect of
interruptionson the availability of dynamicvoting algo-
rithms. We study four dynamic voting algorithms, and
identify two important characteristicsthat impact an al-
gorithm’s availability in runs with frequentconnectivity
changes. First, weshowthat the numberof processesthat
needto bepresentin order to resolvepastattemptsimpacts
the availability, especiallyduring long runs with numer-
ous connectivitychanges. Second,more surprisingly, we
showthat thenumberof communicationroundsexchanged
in an algorithm playsa significantrole in the availability
achieved, especiallyin the degradation of availability as
connectivitychangesbecomemore frequent.

Keywords: dynamicvoting, availability, primary com-
ponents.
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1 Intr oduction

Distributedsystemstypically consistof a groupof pro-
cessesworking on a commontask. Processesin thegroup
sendmessagesto eachother. Problemsarisewhenconnec-
tivity changesoccur, andprocessesarepartitionedinto mul-
tiple disjoint network components1. In many distributed
systems,at most one componentis permitted to make
progressin orderto avoid inconsistencies.

Many fault tolerantdistributedsystemsusetheprimary
componentparadigmto allow a subsetof the processes
to function when failuresandpartitionsoccur. Examples
of suchsystemsincludegroup-basedtoolkits for building
distributed applications,such as ISIS [3], Phoenix [12],
andxAMp [15]; algorithmssupportingstate-machinerepli-
cation, such as [11, 9]; and replicateddatabasesystems
like [6]. Typically, a majority (or quorum)of theprocesses
is chosento betheprimarycomponent.However, in highly
dynamicand unreliablenetworks this is problematic: re-
peatedfailuresalongwith processesvoluntarily leaving the
systemmaycausemajoritiesto furthersplit up, leaving the
systemwithout a primary component. To overcomethis
problem,thedynamicvotingparadigmwassuggested.

The dynamicvoting paradigmdefinesrules for select-
ing theprimarycomponentadaptively: whenapartitionoc-
curs, if a majority of the previous primary componentis
connected,a new andpossiblysmallerprimary is chosen.
Thus,eachnewly formedprimarycomponentmustcontain
a majority of thepreviousone,but not necessarilya major-
ity of theprocesses.

An importantbenefitof thedynamicvoting paradigmis
its flexibility to supporta dynamicallychangingsetof pro-
cesses.With emergingworld-widecommunicationtechnol-
ogy, new applicationswish to allow usersto freely join and
leave. Using dynamicvoting, suchsystemscan dynami-
cally accountfor thechangesin thesetof participants.

The availability of algorithmsthat usedynamicvoting
hasbeenextensively studied.Analysesof stochasticmod-

1A componentis sometimescalleda partition. In our terminology, a
partitionsplitsthenetwork into severalcomponents.



els [8, 4], simulations[13], andempirical results[2] have
beenusedto show that dynamicvoting is more available
than other paradigmsfor maintaininga primary compo-
nent.Specifically, thesestudieshaveshown thatalgorithms
that usedynamicvoting leadto a primary componentbe-
ing formed more often than algorithmsthat usea regular
quorum-basedrule for choosingtheprimarycomponent.

All of thesestudieshave assumedthat every attempt
madeby an algorithm to form a new primary component
terminatessuccessfully. Unfortunately, in a distributedsys-
tem, this cannotbe guaranteedto always be the case: a
changein connectivity caninterruptthedynamicvoting al-
gorithm while an attemptto form a primary componentis
in progress.In suchcases,dynamicvotingalgorithmsoften
block until they canresolve theoutcomeof the interrupted
attempt.Theanalysesof theavailability of dynamicvoting
mentionedabove did not take the possibility of blocking
into consideration,and therefore,the actualsystemavail-
ability is lower thananalyzed.

In thispaper, weusesimulationsto studytheavailability
of dynamicvotingalgorithms,withoutneglectingtheeffect
of interruptionsandblocking. We examinecasesin which
a sequenceof closelyclusteredchangesin connectivity oc-
cur in thenetwork, andthenthenetwork stabilizesto reach
a quiescentstate. Connectivity changescanbe eithernet-
work partitionsor mergingof previouslydisconnectedcom-
ponents.Wedonotstudyprocessfailuresseparately, sincea
processfailurecanbeseenasaspecialcaseof a connectiv-
ity change,wherethefailedprocessis partitionedfrom the
restof the processes.We vary the numberand frequency
of the connectivity changes.We studyhow gracefullydif-
ferentdynamicvotingalgorithmsdegradewhenthenumber
andfrequency of suchchangesincrease.

Therealisticsimulationof network connectivity changes
is still a subjectof much debateand research. The tests
were thereforerun undera wide variety of conditions,in
aneffort to cover mosteventualities.However, we did not
studycaseswith only a singlenetwork partition. In such
a scenario,simply choosingthe componentwith a major-
ity will always succeed. The dynamicvoting algorithms
comeinto play in theeventof multiple network connectiv-
ity changes.Closelyclusteredconnectivity changesmirror
the often sporadicnatureof network changes.This could
simulatesituationsassimpleasa routerfailing andthenre-
turning to service,or any other transientturbulencein the
network.

When interrupted,dynamicvoting algorithmsdiffer in
their resilience:someof thesuggestedalgorithms(e.g.,[8,
1]) may block until all the membersof the last attemptto
form a primary componentbecomereconnected.Others
(e.g., [12, 16, 5, 11]) canmake progresswhenever a ma-
jority of themembersof thelastattemptto form a primary
componentarepresent.Algorithmsalsodiffer in how long

it takesthemto resolve theoutcomeof interruptedattempts
to form a primarycomponent,andin their ability or inabil-
ity to pipelinemultiplesuchattempts.

We studyfour dynamicvoting algorithms:The first al-
gorithmis dueto YegerLotemet al. [16]. Thesecondis a
variationon thefirst, dueto De Priscoet al. [5]. The third
is basedon theideaof two phasecommit, similar to theal-
gorithmssuggestedin [8, 1]. The fourth resemblesthree
phasecommit, similar to ideaspresentedin [11, 12]. As
a control, we alsocomparethe algorithmwith the simple
(non-dynamic)majority rule for selectinga primary com-
ponent.

Thesetof algorithmswe studyis representative,but not
comprehensive; it is not the goal of this work to study
every algorithm ever suggested. Rather, our work illus-
tratesthe importanceof consideringthe effect of interrup-
tions whenstudyingthe availability of dynamicvoting al-
gorithms. Our studypointsout two parametersthat affect
availability while thereare interruptions. We invite other
researchersto useour framework2 in order to studyaddi-
tional algorithmsand to comparethemwith thosestudied
here.

Our resultsshow that the blocking periodhasa signifi-
canteffecton theavailability of dynamicvotingalgorithms
in the face of multiple subsequentconnectivity changes.
We point out two parametersthat significantly affect the
degradationof availability as the numberof connectivity
changesrises,andasthesechangesbecomemorefrequent:
(1) the numberof processesthat needbe contactedin or-
derto resolvepastattempts;and(2) thenumberof message
roundsconductedby analgorithm.Weobservedsignificant
degradationfor algorithmsthat requiremany communica-
tion rounds,andalgorithmsthat sometimesrequirea pro-
cessto hearfrom all themembersof apreviousattemptbe-
fore progresscanbemade.In contrast,algorithmsthatuse
few messageroundsandallow progresswhenevera major-
ity of themembersof thepreviousattemptreconnects,de-
gradegracefullyasthenumberof connectivity changesin-
creases,even during lengthyexecutionswith thousandsof
connectivity changes.

The results emphasizethe importanceof considering
the effect interruptionshave on the availability of these
algorithms. Previous studieshave overlooked the effects
of interruptionson the algorithms’ availability. We show
that interruptionshave a tangibleeffect on the algorithms’
availability, andthat resilientalgorithmswith few message
roundswill thereforehave anedgethathasnot beenprevi-
ouslyacknowledged.Theinsightsgainedin this work may
lead to studiesof the availability of other algorithms;for
example,atomiccommitalgorithms,in thefaceof frequent
interruptions.

2Our testing framework code is publicly available from
http://theory.lcs.mit.edu/� idish/test-env.html.
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1. Thesystemconsistsof five processes:���	�
�	���� and � .
Thesystempartitionsinto two components:�����
��� and
��	� .

2. ����� and � attemptto form a new primary component.
To this end,they exchangemessages.

3. Both � and � form the primary component�
���	�
�	�
� ,
assumingthat process� doesso too. However, � de-
tachesbeforereceiving thelastmessage,andtherefore
doesnot form this primarycomponent.Moreover, � is
not awareof the fact that this primarycomponenthas
beenformed.Processes� and � remainconnectedwith
eachother, while � connectswith  and � .

4. � and � noticethat � detachedfrom themandform a
new primary �����	��� – a majority of their last primary,
�����	�
�	�
� .

5. Concurrently, � ,  , and � form the primary com-
ponent ������������ – a majority of their last primary,
�����	�
�	���������� .

6. The systemnow containstwo live primary compo-
nents,which mayleadto inconsistencies.

Figure 1. Scenario illustrating inconsisten-
cies in the naive appr oach.

2 The Studied Algorithms

In this section,we give an overview of the algorithms
studiedin the paper, and highlight the differencesamong
them. Dueto spacelimitations,we do not includedetailed
algorithmdescriptionshere;theinterestedreaderis referred
to [16, 5, 7].

We study four algorithmsthat usedynamiclinear vot-
ing [8] to determinewhena setof processescanbecome
the next primary componentin the system. Dynamicvot-
ing allowsamajorityof thepreviousprimarycomponentto
form anew primarycomponent.Dynamiclinearvotingalso
admitsa groupof processescontainingexactly half of the
membersof the previous primary componentif the group
containsadesignatedmemberof thepreviousprimary, e.g.,
thememberwith thelowestprocess-identifier.

In orderto form a new primarycomponent,all thepro-
cessesneedto agree to form it. Lacking suchagreement,
subsequentfailuresmayleadto concurrentexistenceof two
disjoint primary components,asdemonstratedby the sce-
narioshown in Figure1.

In order to avoid suchinconsistencies,dynamicvoting
algorithmshaveall theprocessesagreeontheprimarycom-
ponentbeingformed. If connectivity changesoccurwhile

the algorithmis trying to reachsuchagreement,somedy-
namicvoting algorithms(e.g.,[8, 1]) mayblock until they
hearfrom all themembersof thelastattemptto form a pri-
marycomponent,anddo not attemptto form new primary
componentsin the meantime. Others,(e.g., [12, 16, 5]),
canmake progresswhenever a majority of themembersof
thelastattemptto form a primarycomponentarepresent.

In this paper, we studyfour algorithmsbasedon thedy-
namicvoting principle. In addition,we implementedand
testedthe simplemajority algorithmwhich declaresa pri-
mary componentwhenever a majority of the original pro-
cessesarepresent,without exchangingmessages.We now
describethefivestudiedalgorithms.

2.1 YKD

The first algorithm we study is due to Yeger Lotem et
al. [16], henceforward YKD. The YKD algorithmassigns
monotonicallyincreasingnumbersto primary components
it attemptsto form. Thealgorithmovercomesthedifficulty
demonstratedin the scenarioin Figure1 by keepingtrack
of unresolvedattemptsto form new primaries.Wecall such
attemptspendingor ambiguousinterchangeably. In theex-
ampleabove,theYKD algorithmguaranteesthatif process
� succeedsin forming theprimarycomponent�����	�
�	�
� (in
Step3), then � is awareof this possibility and recordsit.
From � ’s point of view, theprimarycomponent�������
���
� is
ambiguous:it mighthaveor mighthavenotbeenformedby
� and/orby � .

WhenaprocessrunningtheYKD algorithmhaspending
attempts,it maystill initiate furtherattemptsto form other
primarycomponents.Thus,therecanbe multiple pending
attemptsthata processattemptedto form but detachedbe-
fore actually forming them. Every processrecords,along
with the last primary componentit successfullyformed,
laterprimarycomponentsthat it attemptedto form. These
ambiguousattemptsaretakeninto accountin laterattempts
to formaprimarycomponent.Onceaprimarycomponentis
successfullyformed,all ambiguousattemptsaredeleted.In
otherwords,aprocessthatformsanew primarycomponent
doesnot keepany recordof pastattempts.

In a nutshell, the YKD algorithm works as follows:
Whenever a connectivity changeoccurs,the algorithm is
invoked to try to make the new connectedcomponentthe
primary one. To this end,the processesconducttwo mes-
sagerounds.In thefirst round,theprocessesexchangestate
– sendingeachothertheirambiguousattempts,lastprimary
components,andso on. Basedon this state,eachprocess� checksif the new componentcan becomethe primary
one,by checkingif it containsa majority of the members
of the last formedprimary component,andalsoof all am-
biguousattemptsretainedafter it. If thecomponentpasses
thesechecks(at � ), process� then attemptsto make this
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componentthe primary; � recordsthe primary asa pend-
ing attemptandsendsanattemptmessageto theotherpro-
cesses.If � receivesattemptmessagesfrom all processes,
then � forms the primary component. If, due to another
connectivity change,� doesnot receiveall theattemptmes-
sages,thentheattemptedprimaryremainsambiguousuntil
thenext successfulformationof a primary.

Considerthescenarioin Figure1 above. In Step2, pro-
cesses� , � , and � exchangemessages.Sincein Step3 �
and � form thenew primary, all theprocesses,including � ,
musthave sentattemptmessagesfor it. This implies that �
recordsthe attempt �
���	�
�	�
� asambiguous.Consequently,
in Step5, � ,  , and � cannotform a new primary, because
the component������������ doesnot containa majority of the
membersof all theambiguousattemptsthat � retains.

In addition, the YKD algorithm employs an optimiza-
tion that reducesthe numberof ambiguousattemptsthat
processesstoreandsendto eachother. Theoptimizationre-
ducestheworst-casenumberof attemptsfrom exponential
in the numberof processesto linear. In practice,however,
the numberof attemptsretainedis very small: In experi-
mentspresentedin [7] we observe that very few ambigu-
ous attemptsare actually retained. Even in highly unsta-
ble runs, with up to 64 processesparticipating,the num-
berof ambiguousattemptsretainedby theYKD algorithm
wasdominantlyzero. In fact,thehighestobservednumber
in over 600,00064-processrunswasfour, andit occurred
only twice. Theoptimizationdoesnotaffect theavailability
of thealgorithm,only theamountof storageutilizedandthe
sizeof exchangedmessages.

2.2 DFLS: unoptimizedYKD with anextra round

Thesecondstudiedalgorithmis avariationonYKD due
to De Prisco et al. [5], henceforward called DFLS. The
DFLSalgorithmwasintroducedin orderto simplify thecor-
rectnessproof of YKD. It is a variationon the YKD algo-
rithm that doesnot implementthe optimization,and also
doesnot deleteambiguousattemptsimmediatelywhen a
new primary is formed. Instead,it waits for anothermes-
sageexchangeround to completein the new formed pri-
marybeforedeletingthem. This delayin deletingambigu-
ousattemptsmay limit the systemavailability, sincethese
attemptsactasconstraintsthatlimit futureprimarycompo-
nentchoices.

2.3 1-pending: oneambiguousattempt only

Wealsostudyanalgorithmthatdoesnotattemptto form
anew primarycomponentwhile thereis a pendingattempt.
Wecall thisalgorithm1-pending. Wheneverthereis apend-
ing ambiguousattempt,1-pendingtriesto resolvethepend-
ing ambiguousattemptbeforeattemptingto form anew pri-

mary. 1-pendingresolvesapendingattemptby learningthe
outcomeof thatattemptfrom otherprocesses.In theworst
case,a processneedsto hearfrom all the membersof the
pendingattemptin orderto resolve its outcome.If it can-
not resolve the attempt,1-pendingblocks. In comparison,
YKD is sometimesableto makeprogressevenwhenit can-
not resolve the previous ambiguousattempt. 1-pendingis
very similar to two phasecommitbasedalgorithmssuchas
thosesuggestedin [8, 1].

2.4 MR1p: majority-r esilient 1-pending

As mentionedabove, 1-pendingmay needto hearfrom
every processin an ambiguousattemptbeforethe attempt
canbe resolved. Dynamicvoting algorithmsthat employ
threephasecommit like mechanisms(for example, those
suggestedin [11, 12]), arealways able to resolve an am-
biguousattemptwhen hearingfrom a majority of the at-
tempt’smembers.Wehaveimplementedsuchanalgorithm;
we refer to this algorithmasMajority-Resilient1-pending,
or MR1p. Like1-pending,it canretainatmostoneambigu-
ousattempt. However, it is able to resolve its ambiguous
attemptin morecasesthan1-pendingcan.

Whenthereareno pendingambiguousattempts,MR1p
forms a primary componentusing two messagerounds,
similar to thoseof YKD. Whenthereis a pendingambigu-
ousattempt,MR1p first runs threemessageroundsto re-
solve thestatusof thependingattempt.Oncetheattemptis
resolved, two additionalroundsarethenrun to attemptto
form a new primary. Thealgorithmusedby MR1p to form
andresolve primarycomponentis very similar to theCon-
sensusalgorithmof [11], andto threephasecommit [10].
For more detailson our implementationof MR1p, please
see[7].

2.5 Simple majority

Additionally, asa control, we testeda simplemajority-
basedprimary componentalgorithm which doesnot in-
volvemessageexchange.Thisalgorithmdeclaresaprimary
wheneveramajorityof theprocessesarepresent.It alsode-
claresa primary for a groupcontaininghalf the processes
if thatgroupcontainsa designatedmember— theonewith
the lowestprocess-identifier. In this respect,the algorithm
canbeseenasa staticversionof linearvoting. This major-
ity rule is themostavailablestaticquorumsystem[14].

Thissimplealgorithmrequiresalmostnostateotherthan
process-identifiers,sendsnomessages,andis veryfast.The
dynamicvoting principle andalgorithmsbasedon it were
createdin an effort to improve upon this simple idea in
highly failure-pronenetworks.
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2.6 Comparisonof thedynamicvoting algorithms

The studiedalgorithmsdiffer in two important ways:
First, they differ in their resilience,that is, in the number
of membersof a failedattemptthatneedbecontactedin or-
derto resolvetheattempt.Second,they differ in thenumber
of messageroundsthey execute.

While thereareno pendingambiguousattempts,all the
dynamicvoting algorithmsattemptto form a new primary
if a majority of themembersof thepreviously formedpri-
marycomponentarepresent.Whenthereareambiguousat-
tempts,YKD, DFLS, andMR1p canmake progresswhen-
ever a majority of the membersof all ambiguousattempts
arepresent(with MR1p thereis at mostonesuchattempt).
1-pendingis the leastresilientof thestudiedalgorithms;it
requireshearingfrom all themembersof apendingattempt
in orderto makeprogress.

Algorithms that requiremany messageroundsaremore
likely to be interruptedby further connectivity changes.
YKD and 1-pending require only two messagerounds.
DFLSrequiresthreerounds— two to form a primarycom-
ponent,and a third beforeit deletesambiguousattempts.
MR1p requiresonly two roundswhenno pendingview is
present,but requiresfiveroundsif apendingview mustalso
beresolved.

3 The TestingFramework

ThedynamicvotingalgorithmsareimplementedasC++
classeswith asetof call-backroutinesandnoinherentcom-
municationabilities. Programsusinga dynamicvoting al-
gorithmareexpectedto call the algorithm’s call-backrou-
tineswith every messagereceived,every messageaboutto
besent,andevery connectivity change.Thecall-backrou-
tinesreturnwith messagesthatneedto besentto otherpro-
cesses,to be in turn handledby the appropriatecall-back
handlersat the recipients.Thecall-backroutinesdeclarea
primarycomponentwhenthealgorithmsuccessfullytermi-
nates.

Becausethealgorithmsareindividualclasseswith node-
pendenciesonany givencommunicationsystem,thetesting
systemeasily simulatesan arbitrary numberof processes
by creatingmultiple instancesof thealgorithm.Thetesting
environmentconsistsof a driver loop implementedin C++.
Thedriver loop routesall messagesamongthemultiple in-
stancesof the algorithmwithout usingthe network or any
communicationsystem. It doesthis by polling individual
processesfor messagesto send,andthenimmediatelydeliv-
eringthosemessagesto theotherprocesses.Thedriverloop
alsosupportsfault injectionandstatisticsgatheringduring
thesimulation.

Theuserspecifiestwo simulationparameters:thenum-
ber of connectivity changesto inject in eachrun, and the

frequency of thesechanges.The frequency of changesis
specifiedas the meannumberof messageroundsthat are
successfullyexecutedbetweentwo subsequentconnectivity
changes.Themeanis obtainedusingan appropriateprob-
ability � , so that a connectivity changeis injectedat each
stepwith probability � .

The testingsystembegins eachsimulationwith all the
processesmutually connected.The processesare thenal-
lowed to exchangemessages. The driver loop chooses
whetherto inject a connectivity changeat eachstep,ac-
cordingto thefailureprobability. Oncethedesirednumber
of changeshavebeenintroduced,thedriver loopallows the
processesto exchangemessageswithout further interrup-
tions until the algorithmterminates.The driver loop then
prints out final statistics,the mostrelevant of which is the
presenceor absenceof a primarycomponent.

A connectivity changeis either a network partition,
whereprocessesin onenetwork componentaredividedinto
two smallercomponents,or a merge, where two compo-
nentsare unified to produceone. The driver loop hasan
equallikelihoodof generatingeitherof thesechanges3. The
componentsto bepartitionedor mergedarechosenat ran-
dom.Partitionsdo not necessarilyhappenevenly– theper-
centageof processesthataremovedto thenew component
is determinedat randomeachtime.

4 Primary ComponentAvailability Measure-
ments

We comparethe availability of five algorithms: YKD,
DFLS,1-pending,MR1p,andsimplemajority, asexplained
in Section2. We also ran the testsfor a versionof YKD
without the optimizationthat reducesthe numberof am-
biguousattemptsretained. The availability of the unopti-
mizedYKD wasidenticalto thatof YKD with theoptimiza-
tion, asexpected.Therefore,we do not plot theavailability
of theunoptimizedYKD separately.

Wechoseto simulate64processes.Wealsoranthesame
testswith 32 and48 processesto seeif the availability is
affectedby scalingthe numberof processes.The results
obtainedwith 32 and48 processeswerealmostidenticalto
thoseobtainedwith 64. Therefore,we do not presentthem
here.

We simulatedthreedifferentnumbersof network con-
nectivity changesper run: two, six, andtwelve. For each
of these,we ran eachof the algorithmswith connectivity
changeratesvaryingfrom nearlyzeroto twelvemeanmes-
sageroundsbetweenchanges.

Eachcase,specifiedby thealgorithm,thenumberof con-
nectivity changes,andtherate,wassimulatedin 1000runs.

3Given thatsucha changeis possible,of course– onecannotperform
a mergeunlessthereareat leasttwo componentspresent,andonecannot
performapartitionunlessthereis acomponentwith at leasttwo processes.
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The runs were different due to the useof randomization.
Thesamerandomsequencewasusedto testeachof theal-
gorithms.Theresultsfor eachcasewerethensummarized
asa percentage,showing how many of the runsresultedin
theformationof aprimarycomponentat theendof therun.

We rantwo typesof tests:“freshstart” tests,whereeach
of the1000runsbeginsfrom thesameinitial state,and“cas-
cading”tests,whereeachrunstartsin thestateatwhich the
previous run ends. The freshstart testscapturethe effect
of interruptionson a singleinvocationof analgorithm.The
cascadingtestscapturethe build-up that canoccurduring
a lengthyexecution,whereearlierinvocationscanleavethe
algorithmin ablockingstate.Thecascadingtestsreflectthe
algorithms’expectedbehavior in realisticlong-termexecu-
tions. Therefore,algorithmsthatexhibit lower availability
in thesetestswill belessavailablein practice.

The results for all five algorithms, for two, six, and
twelve connectivity changesarepresentedin Figures2, 3,
and4, respectively. Thex-axisrepresentstheaveragenum-
berof communicationroundsthatoccurbetweena pair of
injectedconnectivity changes,derivedfrom theappropriate
failureprobability. They-axisdepictsthepercentageof the
1000simulatedrunsfor this failureprobabilitythatresulted
in successfulformationof a primarycomponent.

On the extremeleft side of the graphs,the connectiv-
ity changesareso tightly spacedthe algorithmsareoften
unableto exchangeany additionalinformation. On theex-
tremeright sideof thegraphs,theconnectivity changesare
sowidely spacedthat thealgorithmsarerarely interrupted.
As expected,theavailability improvesastheconditionsbe-
comemorestable.

In all cases,the algorithmsare shown to be aboutas
available as the simple majority algorithm when the con-
nectivity changesoccurrapidly (with zeroroundsbetween
them). This is simply due to the fact that rapid changes
do not allow the algorithmsto exchangeany information
betweenconnectivity changes,andthey have no additional
knowledgewith which to decideon a primarycomponent.
Thus,oncetheconnectivity changesstop,all thealgorithms
makethesamedecisionasthesimplemajorityalgorithm.

For a moderateto high meantime betweenchanges,
YKD and DFLS are most available, with YKD being
slightly more available than DFLS; in approximately3%
of the runs,YKD succeedsin forming a primary whereas
DFLS doesnot. This differencestemsfrom the additional
roundof messagesrequiredby DFLSbeforeanattemptcan
bedeleted.As longastheattemptis not deleted,it imposes
extra constraintswhich limit the system’s choiceof future
primary components.Both algorithms– YKD andDFLS
– degradegracefullyasthenumberof connectivity changes
increases,thatis, theiravailability is almostunaffected.

The 1-pendingand MR1p algorithmsare significantly
less available than YKD and DFLS. Furthermore,their
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Figure 2. System availability with 2 connec-
tivity chang es.

availability degradesdrasticallyas the numberof connec-
tivity changesincreases.This degradationis dueto thefact
that thesealgorithmscannotmake any progresswhenever
they cannotresolve an ambiguousattempt. In the worst
case,1-pendingrequireshearingthe outcomeof its am-
biguousattemptfrom all of its members.Thus,permanent
absenceof somememberof the latestambiguousattempt
maycauseeternalblocking. AlthoughMR1p requiresonly
a majority of themembersof the ambiguousattemptto be
present,it requiresfive messageroundsto complete,mak-
ing it moreproneto interruption.Thisemphasizesthevalue
of YKD’ s ability to make progressevenwhensomeof the
algorithm’sprior ambiguousattemptscannotberesolved.

In the “fresh start” testswith two connectivity changes,
we observethatMR1p is almostasavailableasYKD. This
is dueto the fact that therecanbe at mostoneambiguous
attemptto resolve betweenthe two connectivity changes,
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Figure 3. System availability with 6 connec-
tivity chang es.

and that YKD and MR1p are equally powerful at resolv-
ing a singleambiguousattempt. However, asthe connec-
tivity changesincreasein numberandfrequency, MR1p is
lessavailable thanall otheralgorithmsstudied. Although
it is ableto resolve ambiguousattemptsmoreoftenthan1-
pending,it requiresmany messageroundsto execute.The
algorithmis thereforeinterruptedsofrequentlycomparedto
theothersthatit is unableto readilymakeprogress.

YKD and DFLS have almost identical availability in
testswith cascadingfailuresas in testswith a fresh start.
This indicatesthat even if the algorithmsare run for ex-
tensive periodsof time, their availability doesnot degrade.
Note that for the two, six andtwelve connectivity change
cases,theresultsarecomputedoverarunwith 2,000,6,000,
and12,000connectivity changes,respectively.

In contrast,the availability of the 1-pendingalgorithm
shows major degradationin the cascadingsituation. In
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Figure 4. System availability with 12 connec-
tivity chang es.

caseswith numerousfrequentconnectivity changes,theal-
gorithmisoftenevenlessavailablethanthesimplemajority.
Thisshows thatif the1-pendingalgorithmis run for exten-
sive periodsof time, its availability continuesto decrease.
This makesthe algorithminappropriatefor usein systems
with lengthylife periods.

The MR1p algorithm hasfurther difficulties when the
failuresareallowed to cascade.Although it is ableto re-
solve its single ambiguousattemptmore quickly than 1-
pendingcan, it is still hamperedby the large numberof
messageroundsit requiresin order to form a primary. In
addition,YKD is often able to make progresseven when
oneor moreambiguousattemptsarepresent.MR1p does
not havethis luxury.
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5 Conclusions

We have comparedtheavailability of four dynamicvot-
ing algorithmsin thefaceof frequentconnectivity changes.
Our measurementsshow that interruptionshave a signifi-
canteffecton theavailability of dynamicvotingalgorithms
in the face of multiple subsequentconnectivity changes.
This effect wasoverlookedby previous availability analy-
sesof suchalgorithms(e.g.,[8, 13, 4]).

We have shown that the numberof processesthat need
be contactedin order to resolve pastambiguousattempts
significantlyaffects the availability, especiallyin long ex-
ecutions with numerousconnectivity changes. A two
phasecommit like algorithm,1-pending,experiencesma-
jor degradationasthenumberandfrequency of connectiv-
ity changesincrease.In highly unstablerunswith cascad-
ing connectivity changes,1-pendingis even lessavailable
thanthesimplemajority algorithm. This is dueto the fact
that 1-pendingsometimesrequiresa processto hearfrom
all themembersof thepreviousprimarycomponentbefore
progresscanbemade.

We have also observed that the number of message
roundsexecutedby analgorithmhasamajoreffectonavail-
ability, especiallythe degradationof availability as there
are more connectivity changes,and as thesechangesbe-
comemore frequent. To the bestof our knowledge,this
effect wasnot previously observed. A threephasecommit
like algorithm,MR1p, wasshown to degradedrasticallyas
thenumberandfrequency of connectivity changesincrease.
This degradationis becausethe MR1p algorithmis highly
vulnerableto interruptions,dueto thelargenumberof mes-
sageroundsit executes.

In contrast,an algorithmthat usesfew communication
roundsandalsomakesprogresswhenevera majorityof the
membersof pendingattemptsarepresentdegradesgrace-
fully asthenumberandfrequency of connectivity changes
increase. The YKD [16] and DFLS [5] algorithmsare
nearlyasavailablein runswith thousandsof cascadingcon-
nectivity changesasthey arein runswith a freshstart.This
featuremakesthealgorithmshighly appropriatefor deploy-
mentin realsystemswith extensive life spans.

Wehopethattheinsightsgainedin thiswork will leadto
similar studiesof theavailability of otheralgorithmsin the
faceof frequentinterruptions.For example,it maybeinter-
estingto studythe availability of differentatomiccommit
algorithmswhentherearemultipleconnectivity changes.
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