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Abstract

Fault tolerant distributedsystem®ftenselecta primary
componento allow a subsetof the processego function
whenfailuresoccur Thedynamicvoting paradigmdefines
rulesfor selectingheprimary componenadaptively:when
a partition occurs, if a majority of the previous primary
componenis connecteda new and possiblysmaller pri-
maryis chosen.

Several studieshaveshownthat dynamicvotingleadsto
mote available solutionsthan other paradigmsfor main-
taining a primary componentHowever, thesestudieshave
assumedhat everyattemptmadebythealgorithmto forma
new primary componenterminatessuccessfully Unfortu-
nately in real systemsthisis notalwaysthecase:a change
in connectivitycaninterruptthealgorithmwhileit is still at-
temptingto form a new primary componentjn sud cases,
algorithmsmay block until processegan resolvethe out-
comeof theinterruptedattempt.

This paper usessimulationsto evaluate the effect of
interruptions on the availability of dynamicvoting algo-
rithms. We study four dynamic voting algorithms, and
identify two important characteristicsthat impact an al-
gorithm’s availability in runs with frequentconnectivity
changes. First, we showthat the numberof processeshat
needto bepresentin orderto resolvepastattemptimpacts
the availability, especiallyduring long runs with numer
ous connectivitychanges. Second,more surprisingly we
showthat the numberof communicatiomoundsexchanged
in an algorithm plays a significantrole in the availability
achieved, especiallyin the degradation of availability as
connectivitychangesbecomamore frequent.

Keywords: dynamicvoting, availability, primary com-
ponents.
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1 Intr oduction

Distributed systemsypically consistof a groupof pro-
cessesvorking on a commontask. Processem the group
sendmessage® eachother Problemsarisewhenconnec-
tivity change®ccur andprocessearepartitionednto mul-
tiple disjoint network components In mary distributed
systems,at most one componentis permitted to make
progressn orderto avoid inconsistencies.

Many fault tolerantdistributed systemsausethe primary
componentparadigmto allow a subsetof the processes
to function whenfailuresand partitionsoccur Examples
of suchsystemsinclude group-basedoolkits for building
distributed applications,such as ISIS [3], Phoenix[12],
andxAMp [15]; algorithmssupportingstate-machineepli-
cation, suchas[11, 9]; and replicateddatabasesystems
like[6]. Typically, amajority (or quorum)of the processes
is choserto bethe primary componentHowever, in highly
dynamicand unreliablenetworks this is problematic: re-
peatedailuresalongwith processesoluntarily leaving the
systemmay causemajoritiesto further split up, leaving the
systemwithout a primary component. To overcomethis
problem,thedynamicvoting paradigmwassuggested.

The dynamicvoting paradigmdefinesrules for select-
ing the primarycomponenadaptvely: whena partitionoc-
curs, if a majority of the previous primary componentis
connecteda new and possiblysmallerprimary is chosen.
Thus,eachnewly formedprimary componenmustcontain
amajority of the previousone,but not necessarilya major
ity of theprocesses.

An importantbenefitof the dynamicvoting paradigmis
its flexibility to supporta dynamicallychangingsetof pro-
cessesWith emegingworld-widecommunicatiortechnol-
ogy, new applicationswish to allow usersto freely join and
leave. Using dynamicvoting, suchsystemscan dynami-
cally accountfor the changesn the setof participants.

The availability of algorithmsthat use dynamicvoting
hasbeenextensiely studied. Analysesof stochastianod-

1A componenis sometimesalleda partition. In our terminology a
partitionsplitsthe network into severalcomponents.



els[8, 4], simulations[13], and empiricalresults[2] have
beenusedto shav that dynamicvoting is more available
than other paradigmsfor maintaininga primary compo-
nent. Specifically thesestudieshave shawvn thatalgorithms
that usedynamicvoting leadto a primary componente-
ing formed more often than algorithmsthat use a regular
qguorum-basedule for choosingthe primary component.

All of thesestudieshave assumedhat every attempt
madeby an algorithmto form a new primary component
terminatesuccessfullyUnfortunatelyin a distributedsys-
tem, this cannotbe guaranteedo always be the case: a
changen connectvity caninterruptthe dynamicvoting al-
gorithm while an attemptto form a primary componenis
in progressin suchcasesgdynamicvoting algorithmsoften
block until they canresolwe the outcomeof theinterrupted
attempt.The analyse®f the availability of dynamicvoting
mentionedabove did not take the possibility of blocking
into considerationand therefore,the actual systemavail-
ability is lowerthananalyzed.

In this paperwe usesimulationsto studytheavailability
of dynamicvoting algorithms without neglectingthe effect
of interruptionsandblocking. We examinecasesn which
asequencef closelyclusteredchangesn connectvity oc-
curin the network, andthenthe network stabilizesto reach
a quiescenstate. Connectvity changesanbe eithernet-
work partitionsor memging of previously disconnectedom-
ponentsWe donotstudyprocesdailuresseparatelysincea
procesdailure canbe seenasa specialcaseof a connectv-
ity changewherethefailed processs partitionedfrom the
restof the processesWe vary the numberand frequeny
of the connectvity changes.We studyhow gracefullydif-
ferentdynamicvoting algorithmsdegradewhenthe number
andfrequeng of suchchangesncrease.

Therealisticsimulationof network connectvity changes
is still a subjectof much debateand research. The tests
were thereforerun undera wide variety of conditions,in
an effort to cover mosteventualities.However, we did not
study caseswith only a single network partition. In such
a scenario,simply choosingthe componentwith a major
ity will always succeed. The dynamicvoting algorithms
comeinto play in the eventof multiple network connectv-
ity changesCloselyclusteredconnectvity changesnirror
the often sporadicnatureof network changes.This could
simulatesituationsassimpleasarouterfailing andthenre-
turning to service,or ary othertransientturbulencein the
network.

When interrupted,dynamicvoting algorithmsdiffer in
theirresilience:someof the suggestealgorithms(e.qg.,[8,
1]) may block until all the membersof the last attemptto
form a primary componentbecomereconnected. Others
(e.0.,[12, 16, 5, 11]) can make progresswhene/er a ma-
jority of themembersof the lastattemptto form a primary
componengarepresent.Algorithmsalsodiffer in how long

it takesthemto resolhe the outcomeof interruptedattempts
to form a primary componentandin their ability or inabil-
ity to pipelinemultiple suchattempts.

We studyfour dynamicvoting algorithms: The first al-
gorithmis dueto YegerLotemetal. [16]. The seconds a
variationon the first, dueto De Priscoetal. [5]. The third
is basedon theideaof two phasecommit similar to the al-
gorithmssuggestedn [8, 1]. The fourth resembleghree
phasecommit similar to ideaspresentedn [11, 12]. As
a control, we also comparethe algorithmwith the simple
(non-dynamic)majority rule for selectinga primary com-
ponent.

The setof algorithmswe studyis representatie, but not
comprehensie; it is not the goal of this work to study
every algorithm ever suggested. Rather our work illus-
tratesthe importanceof consideringthe effect of interrup-
tions when studyingthe availability of dynamicvoting al-
gorithms. Our study points out two parametershat affect
availability while thereare interruptions. We invite other
researcherso useour framework? in orderto study addi-
tional algorithmsandto comparethemwith thosestudied
here.

Our resultsshav that the blocking period hasa signifi-
canteffecton the availability of dynamicvoting algorithms
in the face of multiple subsequentonnectvity changes.
We point out two parameterghat significantly affect the
degradationof availability asthe numberof connectvity
changesises,andasthesechangedbecomemorefrequent:
(1) the numberof processeshat needbe contactedn or-
derto resol\e pastattemptsand(2) the numberof message
roundsconductedy analgorithm.We obsenedsignificant
degradationfor algorithmsthat requiremary communica-
tion rounds,and algorithmsthat sometimegequirea pro-
cesgo hearfrom all the membersf a previousattemptbe-
fore progresscanbe made.In contrastalgorithmsthatuse
few messageoundsandallow progressvhenerer a major
ity of the membersof the previous attemptreconnectsde-
gradegracefullyasthe numberof connectvity changesn-
creaseseven during lengthy executionswith thousandof
connectvity changes.

The results emphasizethe importanceof considering
the effect interruptionshave on the availability of these
algorithms. Previous studieshave overlooked the effects
of interruptionson the algorithms’ availability. We shav
thatinterruptionshave a tangibleeffect on the algorithms’
availability, andthatresilientalgorithmswith few message
roundswill thereforehave anedgethathasnot beenprevi-
ouslyacknavledged.Theinsightsgainedin this work may
lead to studiesof the availability of otheralgorithms;for
example, atomiccommitalgorithms,in thefaceof frequent
interruptions.

20ur testing framework code is
http://theoryics.mit.edutidish/est-ev.html.

publicly available from



1. Thesystemconsistof five processesua, b, ¢, d ande.
Thesystempartitionsinto two componentsua, b, ¢ and
d,e.

To this end,they exchangemessages.

3. Both a and b form the primary component{a, b, ¢},
assuminghat processc doessotoo. However, ¢ de-
tachedeforereceving thelastmessageandtherefore
doesnot form this primary componentMoreover, ¢ is
not awareof the factthatthis primary componenhas
beenformed.Processes andb remainconnectedvith
eachother, while ¢ connectwith d ande.

4. a andb noticethat ¢ detachedrom themandform a
new primary {a, b} — a majority of their last primary,
{a,b,c}.

5. Concurrently ¢, d, and e form the primary com-
ponent{c,d,e} — a majority of their last primary,
{a7 b7 CJ d7 e}'

6. The systemnow containstwo live primary compo-
nentswhich mayleadto inconsistencies.

2. a,b andc attemptto form a new primary component.

Figure 1. Scenario illustrating inconsisten-

cies in the naive approach.

2 The Studied Algorithms

In this section,we give an overviewn of the algorithms
studiedin the paper and highlight the differencesamong
them. Dueto spacdimitations, we do notincludedetailed
algorithmdescriptiondere;theinterestedeadeliis referred
to[16, 5, 7].

We study four algorithmsthat use dynamiclinear vot-
ing [8] to determinewhen a setof processeganbecome
the next primary componenin the system. Dynamic vot-
ing allows amajority of the previous primarycomponento
formanew primarycomponentDynamiclinearvotingalso
admitsa group of processesontainingexactly half of the
membersof the previous primary componenif the group
containsadesignateanemberof thepreviousprimary; e.g.,
themembewith thelowestprocess-identifier

In orderto form a new primary componentall the pro-
cessegieedto agreeto form it. Lacking suchagreement,
subsequerfailuresmayleadto concurrenexistenceof two
disjoint primary componentsas demonstratedby the sce-
narioshavn in Figurel.

In orderto avoid suchinconsistenciesgynamicvoting
algorithmshave all theprocesseagreeontheprimarycom-
ponentbeingformed. If connectvity changeccurwhile

the algorithmis trying to reachsuchagreementsomedy-
namicvoting algorithms(e.g.,[8, 1]) may block until they
hearfrom all the membersf thelastattemptto form a pri-
mary componentanddo not attemptto form new primary
componentsn the meantime. Others,(e.g.,[12, 16, 5]),
canmale progressvhenerer a majority of the membersof
thelastattemptto form a primary componenarepresent.

In this paper we studyfour algorithmsbasedon the dy-
namicvoting principle. In addition, we implementedand
testedthe simple majority algorithmwhich declaresa pri-
mary componentwhenever a majority of the original pro-
cessesrepresentwithout exchangingmessageswe now
describethefive studiedalgorithms.

2.1 YKD

The first algorithmwe studyis dueto Yeger Lotem et
al. [16], henceforvard YKD. The YKD algorithmassigns
monotonicallyincreasingnumbersto primary components
it attemptgo form. Thealgorithmovercomeshe difficulty
demonstratedh the scenarioin Figure 1 by keepingtrack
of unresohedattemptgo form new primaries.We call such
attemptgendingor ambiguousnterchangeablyin the ex-
ampleabore,the YKD algorithmguaranteethatif process
a succeeds$n forming the primary component{a, b, ¢} (in
Step3), thenc is aware of this possibility and recordsit.
From¢'s point of view, the primary componenta, b, c} is
ambiguousit mighthave or mighthave notbeenformedby
a and/orby b.

Whena processunningthe YKD algorithmhaspending
attemptsjt may still initiate further attemptsto form other
primary componentsThus,therecanbe multiple pending
attemptshat a processattemptedo form but detachede-
fore actuallyforming them. Every processrecords,along
with the last primary componentit successfullyformed,
later primary componentghatit attemptedo form. These
ambiguousattemptsaretakeninto accountn laterattempts
to form aprimarycomponentOnceaprimarycomponenis
successfullformed,all ambiguousattemptsaredeleted.n
otherwords,a procesghatformsanew primarycomponent
doesnot keepary recordof pastattempts.

In a nutshell, the YKD algorithm works as follows:
Whenever a connectvity changeoccurs,the algorithmis
invokedto try to make the new connecteccomponenthe
primary one. To this end, the processesonducttwo mes-
sagerounds.In thefirst round,theprocessesxchangestate
—sendingeachothertheirambiguousttempts|astprimary
componentsandso on. Basedon this state,eachprocess
p checksif the new componentcan becomethe primary
one, by checkingif it containsa majority of the members
of the lastformed primary componentandalsoof all am-
biguousattemptsetainedafterit. If the componenpasses
thesechecks(at p), processp then attemptsto make this



componenthe primary; p recordsthe primary asa pend-
ing attemptandsendsan attemptmessagéo the otherpro-
cesseslf p recevesattemptmessagefrom all processes,
then p forms the primary component. If, dueto another
connectvity changep doesnotreceve all theattemptmes-
sagesthenthe attemptedorimary remainsambiguousuntil
thenext successfuformationof a primary.

Considerthe scenaridn Figurel above. In Step2, pro-
cesses:, b, and ¢ exchangemessagesSincein Step3 a
andb form the new primary; all the processedncludingc,
musthave sentattemptmessagefor it. Thisimpliesthatc
recordsthe attempt{a, b, ¢} asambiguous.Consequently
in Step5, ¢, d, ande cannotform a new primary, because
the component{c, d, e} doesnot containa majority of the
memberf all theambiguousattemptshatc retains.

In addition, the YKD algorithm employs an optimiza-
tion that reducesthe numberof ambiguousattemptsthat
processestoreandsendto eachother The optimizationre-
ducesthe worst-casenumberof attemptsfrom exponential
in the numberof processeto linear. In practice,however,
the numberof attemptsretainedis very small: In experi-
mentspresentedn [7] we obsenre that very few ambigu-
ous attemptsare actually retained. Evenin highly unsta-
ble runs, with up to 64 processeparticipating,the num-
ber of ambiguousattemptsetainedby the YKD algorithm
wasdominantlyzero. In fact, the highestobsened number
in over 600,00064-processunswasfour, andit occurred
only twice. Theoptimizationdoesnot affecttheavailability
of thealgorithm,only theamounf storageutilized andthe
sizeof exchangednessages.

2.2 DFLS: unoptimized YKD with anextraround

Thesecondstudiedalgorithmis avariationon YKD due
to De Priscoet al. [5], henceforvard called DFLS. The
DFLSalgorithmwasintroducedn orderto simplify thecor-
rectnesgroof of YKD. It is avariationon the YKD algo-
rithm that doesnot implementthe optimization, and also
doesnot deleteambiguousattemptsimmediatelywhen a
new primary is formed. Instead,it waits for anothermes-
sageexchangeroundto completein the new formed pri-
mary beforedeletingthem. This delayin deletingambigu-
ousattemptsmay limit the systemavailability, sincethese
attemptsactasconstraintghatlimit future primarycompo-
nentchoices.

2.3 1-pending: oneambiguousattempt only

We alsostudyanalgorithmthatdoesnot attemptto form
anew primarycomponentvhile thereis a pendingattempt.
We callthisalgorithm1-pending Wheneerthereis apend-
ing ambiguousttempt,l-pendingriesto resohethepend-
ing ambiguousttemptbeforeattemptingo form anew pri-

mary. 1-pendingresohesa pendingattemptby learningthe

outcomeof thatattemptfrom otherprocessesln the worst
case,a procesmeedsto hearfrom all the membersof the

pendingattemptin orderto resole its outcome. If it can-
not resole the attempt,1-pendingblocks. In comparison,
YKD is sometimesbleto make progressvenwhenit can-
not resol\e the previous ambiguousattempt. 1-pendingis

very similar to two phasecommitbasedalgorithmssuchas
thosesuggestedh [8, 1].

2.4 MR1p: majority-r esilient 1-pending

As mentionedabove, 1-pendingmay needto hearfrom
every processn an ambiguousattemptbeforethe attempt
canbe resolhed. Dynamicvoting algorithmsthat employ
three phasecommit like mechanismgfor example,those
suggestedn [11, 12]), are always ableto resohe an am-
biguousattemptwhen hearingfrom a majority of the at-
temptsmembersWe haveimplementeduchanalgorithm;
we referto this algorithmasMajority-Resilient1-pending
or MR1p Like 1-pendingjt canretainat mostoneambigu-
ous attempt. However, it is ableto resohe its ambiguous
attemptin morecaseghanl-pendingcan.

Whenthereareno pendingambiguousattempts MR1p
forms a primary componentusing two messagerounds,
similar to thoseof YKD. Whenthereis a pendingambigu-
ous attempt,MR1p first runsthree messageoundsto re-
solve the statusof the pendingattempt.Oncethe attemptis
resoled, two additionalroundsarethenrun to attemptto
form anew primary. Thealgorithmusedby MR1pto form
andresole primary components very similar to the Con-
sensusalgorithmof [11], andto threephasecommit[10].
For more detailson our implementationof MR1p, please
seg[7].

2.5 Simple majority

Additionally, asa control, we testeda simple majority-
basedprimary componentalgorithm which doesnot in-
volvemessagexchange Thisalgorithmdeclares primary
whenereramajority of the processearepresentlt alsode-
claresa primary for a group containinghalf the processes
if thatgroupcontainsa designateadnember— the onewith
the lowestprocess-identifierin this respectthe algorithm
canbe seenasa staticversionof linearvoting. This major
ity ruleis themostavailablestaticquorumsystem{14].

This simplealgorithmrequiresalmostno stateotherthan
process-identifiersendsniomessagesndis veryfast. The
dynamicvoting principle and algorithmsbasedon it were
createdin an effort to improve upon this simple idea in
highly failure-pronenetworks.



2.6 Comparisonofthe dynamicvoting algorithms

The studied algorithmsdiffer in two important ways:
First, they differ in their resilience,thatis, in the number
of memberof afailedattemptthatneedbe contactedn or-
derto resohetheattempt.Secondthey differin thenumber
of messageoundsthey execute.

While thereareno pendingambiguousattemptsall the
dynamicvoting algorithmsattemptto form a new primary
if a majority of the membersof the previously formedpri-
marycomponenarepresentWhenthereareambiguoust-
tempts,YKD, DFLS, andMR1p canmake progressvhen-
ever a majority of the membersof all ambiguousattempts
arepreseniwith MR1p thereis at mostonesuchattempt).
1-pendingis the leastresilientof the studiedalgorithms;it
requireshearingfrom all the memberof a pendingattempt
in orderto make progress.

Algorithms thatrequiremary messageoundsare more
likely to be interruptedby further connectvity changes.
YKD and 1-pendingrequire only two messagerounds.
DFLS requiresthreerounds— two to form a primary com-
ponent,and a third beforeit deletesambiguousattempts.
MR1p requiresonly two roundswhenno pendingview is
presentbut requiredive roundsif apendingview mustalso
beresohed.

3 The Testing Framework

Thedynamicvoting algorithmsareimplementecasC++
classewvith asetof call-backroutinesandnoinherentcom-
municationabilities. Programausinga dynamicvoting al-
gorithm are expectedto call the algorithm’s call-backrou-
tineswith every messageeceved, every messagaboutto
be sent,andevery connectvity change.The call-backrou-
tinesreturnwith messagethatneedto be sentto otherpro-
cessesto bein turn handledby the appropriatecall-back
handlersat the recipients.The call-backroutinesdeclarea
primarycomponentvhenthealgorithmsuccessfullyermi-
nates.

Becausehealgorithmsareindividual classesvith node-
pendenciesnary givencommunicatiorsystemthetesting
systemeasily simulatesan arbitrary numberof processes
by creatingmultiple instance®f thealgorithm. Thetesting
ervironmentconsistf adriverloop implementedn C++.
Thedriverloop routesall messageamongthe multiple in-
stanceof the algorithmwithout usingthe network or any
communicationsystem. It doesthis by polling individual
processefor messagew send andthenimmediatelydeliv-
eringthosemessage® theotherprocessesThedriverloop
alsosupportsfault injection and statisticsgatheringduring
the simulation.

The userspecifieswo simulationparametersthe num-
ber of connectvity changego inject in eachrun, andthe

frequeng of thesechanges.The frequeng of changess
specifiedas the meannumberof messageoundsthat are
successfullyexecutedetweerntwo subsequertonnectvity
changes.The meanis obtainedusingan appropriateprob-
ability p, sothata connectvity changeis injectedat each
stepwith probability p.

The testing systembegins eachsimulationwith all the
processesutually connected.The processesre thenal-
lowed to exchangemessages. The driver loop chooses
whetherto inject a connectvity changeat eachstep, ac-
cordingto thefailure probability Oncethe desirednumber
of changes$ave beenintroducedthedriverloop allowsthe
processes$o exchangemessagesvithout further interrup-
tions until the algorithmterminates. The driver loop then
prints out final statistics,the mostrelevant of which is the
presencer absencef a primarycomponent.

A connectvity changeis either a network partition,
whereprocessem onenetwork componenaredividedinto
two smallercomponentspr a meige, wheretwo compo-
nentsare unified to produceone. The driver loop hasan
equallikelihoodof generatingeitherof thesechanged The
componentgo be partitionedor memgedarechoserat ran-
dom. Partitionsdo not necessarilynapperevenly — the per
centageof processethataremovedto the new component
is determinecat randomeachtime.

4 Primary ComponentAvailability Measure-
ments

We comparethe availability of five algorithms: YKD,
DFLS, 1-pendingMR1p,andsimplemajority, asexplained
in Section2. We alsoran the testsfor a versionof YKD
without the optimizationthat reducesthe numberof am-
biguousattemptsretained. The availability of the unopti-
mizedYKD wasidenticalto thatof YKD with theoptimiza-
tion, asexpected.Therefore we do not plot the availability
of theunoptimizedYKD separately

We choseto simulate64 processesWe alsoranthesame
testswith 32 and 48 processeso seeif the availability is
affectedby scalingthe numberof processes.The results
obtainedwith 32 and48 processewerealmostidenticalto
thoseobtainedwith 64. Therefore we do not presenthem
here.

We simulatedthree differentnumbersof network con-
nectvity changeger run: two, six, andtwelve. For each
of these,we ran eachof the algorithmswith connectvity
changeratesvaryingfrom nearlyzeroto twelve meanmes-
sageroundsbetweerchanges.

Eachcasespecifiedy thealgorithm,thenumberof con-
nectvity changesandtherate,wassimulatedn 1000runs.

3Giventhatsucha changeis possible of course- onecannotperform
ameige unlessthereareat leasttwo componentpresentandonecannot
performapartitionunlessthereis acomponentvith atleasttwo processes.



The runs were differentdue to the use of randomization.
The samerandomsequencevasusedto testeachof the al-
gorithms. Theresultsfor eachcasewerethensummarized
asa percentageshaving how mary of the runsresultedin
theformationof a primarycomponenattheendof therun.

We rantwo typesof tests:“fresh start” tests whereeach
of the1000runsbeginsfrom thesamanitial state and“cas-
cading’testswhereeachrun startsin the stateat which the
previous run ends. The fresh starttestscapturethe effect
of interruptionson a singleinvocationof analgorithm.The
cascadingestscapturethe build-up that can occur during
alengthyexecution,whereearlierinvocationscanleave the
algorithmin ablockingstate.Thecascadingestsreflectthe
algorithms’expectedbehaior in realisticlong-termexecu-
tions. Therefore,algorithmsthat exhibit lower availability
in thesetestswill belessavailablein practice.

The resultsfor all five algorithms, for two, six, and
twelve connectyity changesare presentedn Figures2, 3,
and4, respectiely. Thex-axisrepresentshe averagenum-
ber of communicatiorroundsthat occurbetweena pair of
injectedconnectvity changesderivedfrom theappropriate
failure probability. They-axisdepictsthe percentagef the
1000simulatedrunsfor thisfailure probabilitythatresulted
in successfuformationof a primarycomponent.

On the extremeleft side of the graphs,the connectv-
ity changesare so tightly spacedhe algorithmsare often
unableto exchangeary additionalinformation. On the ex-
tremeright sideof the graphsthe connectity changesre
sowidely spacedhatthe algorithmsarerarelyinterrupted.
As expectedtheavailability improvesasthe conditionsbe-
comemorestable.

In all cases,the algorithmsare shovn to be aboutas
available as the simple majority algorithm whenthe con-
nectvity changesccurrapidly (with zeroroundsbetween
them). This is simply dueto the fact that rapid changes
do not allow the algorithmsto exchangeary information
betweenconnectvity changesandthey have no additional
knowledgewith which to decideon a primary component.
Thus,oncethe connectvity changestop,all thealgorithms
malke the samedecisionasthe simplemajority algorithm.

For a moderateto high meantime betweenchanges,
YKD and DFLS are most available, with YKD being
slightly more available than DFLS; in approximately3%
of theruns, YKD succeedsn forming a primary whereas
DFLS doesnot. This differencestemsfrom the additional
roundof messagesequiredby DFLS beforeanattemptcan
bedeleted.As long astheattemptis notdeletedt imposes
extra constraintawhich limit the systems choiceof future
primary components.Both algorithms— YKD and DFLS
— degradegracefullyasthe numberof connectvity changes
increasesthatis, their availability is almostunafected.

The 1-pendingand MR1p algorithmsare significantly
less available than YKD and DFLS. Furthermore,their
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Figure 2. System availability with 2 connec-
tivity changes.

availability degradesdrasticallyasthe numberof connec-
tivity changesncreasesThis degradationis dueto thefact
that thesealgorithmscannotmake any progressvheneer
they cannotresohe an ambiguousattempt. In the worst
case, 1-pendingrequireshearingthe outcomeof its am-
biguousattemptfrom all of its members.Thus,permanent
absenceof somememberof the latestambiguousattempt
may causeeternalblocking. AlthoughMR1p requiresonly
a majority of the membersof the ambiguousattemptto be
presentjt requiresfive messageoundsto complete,mak-
ing it moreproneto interruption.Thisemphasizethevalue
of YKD’ s ability to make progressevenwhensomeof the
algorithm’s prior ambiguousattemptscannotberesohed.

In the “fresh start” testswith two connectvity changes,
we obserethatMR1pis almostasavailableasYKD. This
is dueto the factthattherecanbe at mostone ambiguous
attemptto resohe betweenthe two connectity changes,
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Figure 3. System availability with 6 connec-
tivity changes.

andthat YKD and MR1p are equally powerful at resolv-
ing a single ambiguousattempt. However, asthe connec-
tivity changesncreasan numberandfrequeny, MR1pis
lessavailablethanall otheralgorithmsstudied. Although
it is ableto resohe ambiguousattemptsmoreoftenthan1-
pending,it requiresmary messageoundsto execute.The
algorithmis thereforanterruptedsofrequentlycomparedo
theothersthatit is unableto readily make progress.

YKD and DFLS have almostidentical availability in
testswith cascadingrailuresasin testswith a fresh start.
This indicatesthat even if the algorithmsare run for ex-
tensie periodsof time, their availability doesnot degrade.
Note that for the two, six andtwelve connectvity change
casestheresultsarecomputedverarunwith 2,000,6,000,
and12,000connectvity changestespectiely.

In contrast,the availability of the 1-pendingalgorithm
shavs major degradationin the cascadingsituation. In
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Figure 4. System availability with 12 connec-
tivity changes.

caseswith numeroudrequentconnectvity changestheal-
gorithmis oftenevenlessavailablethanthesimplemajority.
This shavsthatif the 1-pendingalgorithmis run for exten-
sive periodsof time, its availability continuesto decrease.
This makesthe algorithminappropriatefor usein systems
with lengthylife periods.

The MR1p algorithm hasfurther difficulties when the
failuresare allowed to cascade.Althoughit is ableto re-
solwve its single ambiguousattemptmore quickly than 1-
pendingcan, it is still hamperedy the large numberof
messageoundsit requiresin orderto form a primary. In
addition, YKD is often able to make progresseven when
oneor more ambiguousattemptsare present. MR1p does
nothave this luxury.



5 Conclusions

We have comparedhe availability of four dynamicvot-
ing algorithmsin thefaceof frequentconnectvity changes.
Our measurementshaw that interruptionshave a signifi-
canteffect onthe availability of dynamicvoting algorithms
in the face of multiple subsequentonnectvity changes.
This effect was overlooked by previous availability analy-
sesof suchalgorithms(e.g.,[8, 13, 4]).

We have shown that the numberof processeshat need
be contactedin orderto resole pastambiguousattempts
significantly affects the availability, especiallyin long ex-
ecutionswith numerousconnectvity changes. A two
phasecommit like algorithm, 1-pending,experiencesma-
jor degradationasthe numberandfrequeng of connecty-
ity changedncrease.In highly unstablerunswith cascad-
ing connectvity changes;1-pendingis even lessavailable
thanthe simplemajority algorithm. This is dueto the fact
that 1-pendingsometimesequiresa processo hearfrom
all the membersof the previous primary componenbefore
progrescanbemade.

We have also obsered that the number of message
roundsexecutecby analgorithmhasamajoreffectonavail-
ability, especiallythe degradationof availability asthere
are more connectvity changesand as thesechangesbe-
comemore frequent. To the bestof our knowledge, this
effect wasnot previously obsened. A threephasecommit
like algorithm,MR1p, wasshowvn to degradedrasticallyas
thenumberandfrequeny of connectvity changesncrease.
This degradationis becausghe MR1p algorithmis highly
vulnerableo interruptionsdueto thelarge numberof mes-
sageroundsit executes.

In contrast,an algorithmthat usesfew communication
roundsandalsomakesprogressvheneer a majority of the
membersof pendingattemptsare presentdegradesgrace-
fully asthe numberandfrequeng of connectvity changes
increase. The YKD [16] and DFLS [5] algorithmsare
nearlyasavailablein runswith thousandef cascadingon-
nectvity changessthey arein runswith afreshstart. This
featuremakesthealgorithmshighly appropriatdor deploy-
mentin realsystemawith extensive life spans.

We hopethattheinsightsgainedin this work will leadto
similar studiesof the availability of otheralgorithmsin the
faceof frequentinterruptions.For example,it maybeinter-
estingto studythe availability of differentatomiccommit
algorithmswhentherearemultiple connectvity changes.
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