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Abstract

We present LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor net-
works. LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-
changing sensor reads. It overcomes message loss, node failures and recoveries, and dynamic
network topology changes. We formally prove correctness of LiMoSense; we use simulations
to illustrate its ability to quickly react to network and value changes and provide accurate
information.

1 Introduction

The subject of environmental monitoring is gaining increasing interest in recent years. Monitoring
is necessary for research, and it is critical for protecting the environment by quickly discovering
fire outbreaks in distant areas, cutting off electricity in the event of an earthquake, etc. In order to
perform these tasks, it is necessary to perform constant measurements in wide areas, and collect this
data quickly. In years to come, we can expect to see sensor networks with thousands of light-weight
nodes monitoring conditions like seismic activity, humidity or temperature [1, 2]. Each of these
nodes is comprised of a sensor, a wireless communication module to connect with close-by nodes,
a processing unit and some storage. The large number of nodes prohibits a centralized solution in
which the raw monitored data is accumulated at a single location. Specifically, all sensors cannot
directly communicate with a central unit.

Fortunately, often the raw data is not necessary. Rather, an aggregate that can be computed
inside the network, such as the sum or average of sensor reads, is of interest. For example, when
measuring rainfall, one is interested only in the total amount of rain, and not in the individual reads
at each of the sensors. Similarly, one may be interested in the average humidity or temperature
rather than minor local irregularities.

In such settings, it is particularly important to perform live monitoring, that is, to constantly
obtain a timely and accurate picture of the ever-changing data. For example, for disaster avoid-
ance one must quickly propagate changes such as a rapid temperature incline that indicates a fire
outbreak, or an increase in seismic activity that indicates an earthquake. In this paper we intro-
duce and tackle this problem of live monitoring in a dynamic sensor networks. This problem is
particularly challenging due to the dynamic nature of sensor networks, where nodes may fail and
may be added on the fly, and the network topology may change due to battery decay or weather
change. The formal model and problem definition appear in Section 3.

Although many works have dealt with data aggregation in sensor networks, they have con-
centrated on a single aggregation iteration, assuming the sensor reads do not change during this
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iteration [3, 4, 5, 6] (for further details on previous work, see Section 2). Though it is in principle
possible to perform live monitoring using multiple iterations of such algorithms, this approach is
not adequate, due to the inherent tradeoff it induces between accuracy and speed of detection. If
one periodically restarts the aggregation, then it may take a long time to learn of changes that occur
between restarts. If, on the other hand, there are no changes between restarts, then resources are
wasted running the redundant aggregation. Alternatively, if one starts a new iteration every time a
data change is discovered at one of the nodes, then in a rapidly changing network, the aggregation
algorithm might repeatedly restart without ever getting a chance to complete its operation.

In Section 4 we present our new Live Monitoring for Sensor networks algorithm, LiMoSense.
Our algorithm computes the average over a dynamically changing collection of sensor reads, i.e., it
solves the live average monitoring problem. At its core, LiMoSense employs gossip-based aggrega-
tion [3, 5], with a new approach to accommodate data changes while the aggregation is on-going.
This is tricky, because when a sensor read changes, its old value should be removed from the system
after it has propagated to other nodes. LiMoSense further employs a new technique to accommo-
date message loss, failures, and dynamic network behavior in asynchronous settings. This is tricky
again, since a node cannot know whether a previous message it had sent over a faulty or lossy link
has arrived or not.

In Section 5, we prove that once the network stabilizes, in the sense that no more value or
topology changes occur, LiMoSense eventually converges to the correct average, despite message
loss. Obviously, we cannot bound the algorithm’s convergence time in a completely asynchronous
system. Instead, we analyze convergence time in a synchronous uniform run, where all nodes take
steps at the same average frequency. We show that in such runs, once the system stabilizes, the
estimates nodes have of the desired value converge exponentially fast (i.e., in logarithmic time).

To demonstrate the effectiveness of LiMoSense in various dynamic scenarios, we present in
Section 6 results of extensive simulations, showing its quick reaction to dynamic data read changes
and fault tolerance. We compare our algorithm to a periodically restarting aggregation algorithm.

In summary, this paper makes the following contributions:

• It presents LiMoSense, the first live monitoring algorithms for highly dynamic and error-prone
environments (Section 4).

• It proves correctness of the algorithm, namely robustness and eventual convergence (Sec-
tion 5).

• It shows, through analysis and simulation, that LiMoSense converges exponentially fast (Sec-
tion 5).

• It demonstrates by extensive simulation the algorithm’s efficiency and fault-tolerance in var-
ious dynamic scenarios (Section 6).

2 Related Work

To gather information in a sensor network, one typically relies on in-network aggregation of sensor
reads. The vast majority of the literature on aggregation has focused on obtaining a single summary
of sensed data, assuming these reads do not change while the aggregation protocol is running [6, 3,
4, 5]. The only exception we are aware of is work on dynamic aggregation by Birk et al. [7]; however,
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this solution is limited to unrealistic settings, namely a static topology with reliable communication
links, failure freedom, and synchronous operation.

For obtaining a single aggregate, two main approaches were employed. The first is hierarchical
gathering to a single base station. This approach is used in TAG [6]. The hierarchical method
incurs considerable resource waste for tree maintenance in the face of topology changes. Moreover,
the use of tree aggregation in dynamic environments results in aggregation errors, as shown in [8].

The second approach is gossip-based aggregation at all nodes. To avoid counting the same
data multiple times, Nath et al. [9] employ order and duplicate insensitive (ODI) functions to
aggregate inputs in the face of message loss and a dynamic topology. However, these functions do
not support dynamic inputs or node failures. Moreover, due to the nature of the ODI functions
used, the algorithms’ accuracy is inherently limited – they do not converge to an accurate value [10].

An alternative approach to gossip-based aggregation is presented by Kempe et al. [3]. They
introduce Push-Sum, an average aggregation algorithm, and show that it converges exponentially
fast in fully connected networks where nodes operate in lock-step. Shah et al. analyze this algorithm
in an arbitrary topology [4]. Jesus et al. [11] employ a similar approach enhanced with flow tracking
to overcome message loss. Although these algorithms do not deal with dynamic inputs and topology
as we do, we borrow some techniques from them. In particular, our algorithm is inspired by the
Push-Sum construct, and operates in a similar manner in static settings. We analyze its convergence
speed when the nodes operate independently.

It was noted in [5] that any function that can be separated to calculating sums and averages
of the input values can be efficiently calculated with an average aggregation algorithm. LiMoSense
can therefore be used to perform live monitoring of such separable functions.

Note that aggregation in sensor networks is distinct from other aggregation problems, such as
stream aggregation, where the data in a sliding window is summarized. In the latter, a single
system component has the entire data, and the distributed aspects do not exist.

3 Model and Problem Definition

3.1 Model

The system is comprised of a dynamic set of nodes (sensors), partially connected by dynamic
undirected communication links. Two nodes i and j connected by a link are called neighbors, and
they can send messages to each other. These messages either arrive at some later time, or are lost.
Messages that are not lost on each link arrive in FIFO order. Links do not generate or duplicate
messages.

The system is asynchronous and progresses in steps, where in each step an event happens and
the appropriate node is notified, or a node acts spontaneously. When performing actions due to
notifications or spontaneously, nodes may change their internal state and send messages to their
neighbors.

Nodes can be dynamically added to the system, and may fail or be removed from the system.
The set of nodes at time t is denoted Nt. The system state at time t consists of the internal states
of all nodes in Nt, and the links among them. When a node is added (init event), it is notified,
and its internal state becomes a part of the system state. When it is removed (remove event), it is
not allowed to perform any action, and its internal state is removed from the system state.

Each sensor has a time varying data read in R. A node’s initial data read is provided as a
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parameter when it is notified of its init event. This value may later change (change event) and
the node is notified with the newly read value. For a node i in Ni, we denote1 by rti , the latest
data read provided by an init or change event at that node before time t.

Communication links may be added or removed from the system. A node is notified of link
addition (addNeighbor event) and removal (removeNeighbor event), given the identity of the link
that was added/removed. We call these topology events. For convenience of presentation, we
assume that initially, nodes have no links, and they are notified of their neighbors by a series of
addNeighbor events. We say that a link (i, j) is up at step t if by step t, both nodes i and j had
received an appropriate addNeighbor notification and no later removeNeighbor notification. Note
that a link (i, j) may be “half up” in the sense that the node i had been notified of its addition but
node j was not, or if node j had failed.

A node may send messages on a link only if the last message it had received regarding the state
of the link is addNeighbor. If this is the case, the node may also receive a message on the link
(receive event). The node is notified of the event with the received message.

Global Stabilization Time

In every run, there exists a time called global stabilization time, GST, from which onward the
following properties hold:

1. The system is static, i.e., there are no change, init, remove, addNeighbor or removeNeighbor
events.

2. If the latest topology event a node i ∈ NGST has received for another node j is addNeighbor,
then node j is alive, and the latest topology event j has received for i is also addNeighbor

(i.e. there are no “half up” links).

3. The network is connected.

4. If a link is up after GST, and infinitely many messages are sent on it, then infinitely many of
them arrive.

3.2 The Live Average Monitoring Problem

We define the read average of the system at time t as

Rt ∆
=

1

|Nt|
∑
i∈Nt

rti .

Note that the read average does not change after GST. Our goal is to have all nodes estimate the
read average after GST. More formally, an algorithm solving the Live Average Monitoring Problem
gets time-varying data reads as its inputs, and has nodes continuously output their estimates of
the average, such that at every node in NGST, the output estimate converges to the read average
after GST.

1For any variable, the node it belongs to is written in subscript and, when relevant, the time is written in
superscript.
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Metrics

We evaluate live average monitoring algorithms using the following metrics: (1) Mean square error,
MSE, which is the mean of the squares of the distances between the node estimates and the read
average; and (2) ε-inaccuracy, which is the percentage of nodes whose estimate is off by more
than ε.

4 The LiMoSense Algorithm

We describe the operation of our algorithm for performing live average monitoring in a sensor net-
work. The algorithm is based on Push-Sum, and introduces mechanisms for live updates following
changes of sensor reads, and for overcoming message loss, link failures and node failures.

In Section 4.1 we describe a simplified version of the algorithm for dynamic inputs but static
topology and no failures. Then, in Section 4.2, we describe the complete robust algorithm.

4.1 Failure-Free Algorithm

4.1.1 Overview

We begin by describing a version of the algorithm that handles dynamically changing inputs, but
assumes no message loss, and no link or node failures. This algorithm is shown in Algorithm 1.

The base of the algorithm operates like Push-Sum. Each node maintains a weighted estimate
of the read average (a pair containing the estimate and a weight), which is updated as a result of
the node’s communication with its neighbors. As the algorithm progresses, the estimate converges
to the read average. In the absence of value changes, this algorithm behaves like Push-Sum, which
was indeed shown to converge to the correct read average in static networks [3, 4].

A node whose read value changes must notify the other nodes. It need not only introduce the
new value, but also needs to undo the effect of its previous read value, which by now has partially
propagated through the network.

4.1.2 Details

The algorithm often requires nodes to merge two weighted values into one. They do so using the
weighted value sum operation, which we define below and concisely denote by ⊕:

〈va, wa〉 ⊕ 〈vb, wb〉
∆
= 〈vawa + vbwb

wa + wb
, wa + wb〉 . (1)

Note that weighted value sum is a commutative and associative operation. Subtraction operations
will be used later, they are denoted by 	 and are defined as:

〈va, wa〉 	 〈vb, wb〉
∆
= 〈va, wa〉 ⊕ 〈vb,−wb〉 . (2)

The state of a node (lines 2–3) consists of a weighted value, 〈esti, wi〉, where esti is an output
variable holding the node’s estimate of the read average, and the value prevReadi of the latest data
read. We assume at this stage that each node knows its static set of neighbors. We shall remove
this assumption later, in the robust LiMoSense algorithm.
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Algorithm 1: Failure Free

1 state
2 〈esti, wi〉 ∈ R
3 prevReadi ∈ R

4 on initi(initVal)
5 〈esti, wi〉 ← 〈initVal, 1〉
6 prevReadi ← initVal

7 periodically sendi()
8 Choose a neighbor j uniformly at random.
9 wi ← wi/2

10 send (〈esti, wi〉) to j

11 on receivei(〈vin, win〉) from j
12 〈esti, wi〉 ← 〈esti, wi〉 ⊕ 〈vin, win〉
13 on changei(newRead)
14 esti ← esti + 1

wi
· (newRead− prevReadi)

15 prevReadi ← newRead

Node i initializes its state on its init event. The data read is initialized to the given value
initVal, and the estimate is 〈initVal, 1〉 (lines 5–6).

The algorithm is implemented with the functions receive and change, which are called in
response to events, and the function send, which is called periodically.

Periodically, a node i shares its estimate with a neighbor j chosen uniformly at random (line 8).
It transfers half of its estimate to node j by halving the weight wi of its locally stored estimate
and sending the same weighted value to that neighbor (lines 9-10). When the neighbor receives the
message, it merges the accepted weighted value with its own (line 12).

Correctness of the algorithm in static settings follows from two key observations. First, safety
of the algorithm is preserved, because the system-wide weighted average over all weighted-value
estimate pairs at all nodes and all communication links is always the correct read average; this
invariant is preserved by send and receive operations. Thus, no information is “lost”. Second,
the algorithm’s convergence follows from the fact that when a nodes merges its estimate with that
received from a neighbor, the result is closer to the read average.

We proceed to discuss the dynamic operation of the algorithm. When a node’s data read
changes, the read average changes, and so the estimate should change as well. Let us denote the
previous read of node i by rt−1

i and the new read at step t by rti . In essence, the new read, rti , should
be added to the system-wide estimate with weight 1, while the old read, rt−1

i , ought to be deducted
from it, also with weight 1. But since the old value has been distributed to an unknown set of
nodes, we cannot simply “recall” it. Instead, we leverage the algorithm’s convergence property, and
make the appropriate adjustment locally, allowing the natural flow of the algorithm to propagate
it.

We now explain how we compute the local adjustment. The system-wide estimate should move
by the difference between the read values, factored by the relative influence of a single sensor, i.e.,
1/n. To achieve this, we could shift a weight of 1 by rti − r

t−1
i . Alternatively, we can shift a weight
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of w by this difference factored by 1/w. Therefore, in response to a change event at time t, if the
node’s estimate before the change was estt−1

i and its weight was wt−1
i , then the estimate is updated

to (lines 14-15)
estti = estt−1

i + (rti − rt−1
i )/wt−1

i .

4.2 Adding Robustness

4.2.1 Overview

Overcoming failures is challenging in an asynchronous system, where a node cannot determine
whether a message it has sent was successfully received.

In order to overcome message loss and link and node failure, each node maintains a summary
of its conversations with its neighbors. Nodes interact by sending and receiving these summaries,
rather than the weighted values they have sent in the failure-free algorithm. The data in each
message subsumes all previous value exchanges on the same link. Thus, if a message is lost, the
lost data is recovered once an ensuing message arrives. When a link fails, the nodes at both of its
ends use the summaries to retroactively cancel the effect of all the messages transferred over it. A
node failure is treated as the failure of all its adjacent links.

Implementing the summary approach näıvely would cause summary sizes to increase unbound-
edly as the algorithm progresses. To avoid that, we devised a hybrid approach of push and pull
gossip that negates this effect without resorting to synchronization assumptions.

4.2.2 Details

The full LiMoSense algorithm, shown as Algorithm 39, is based on the failure-free algorithm. In
addition to the state information of the failure-free algorithm, is also maintains the list of its
neighbors, and a summary of the data it has sent and received on each of them (lines 5-6). On
initialization, a node has no neighbors (lines 10–12).

The change function is identical to the one of the failure-free algorithm. The functions receive
and send, however, instead of transferring the weighted values as in the failure-free case, transfer
the summaries maintained for the links. In addition, when a node i wishes to send a weighted value
to a node j, it may do so using either push or pull.

When pushing, node i adds the new weighted value to senti(j) and sends senti(j) to j (lines 14–
16). When receiving this summary, node j calculates the received weighted value by subtracting
the appropriate received variable from the newly received summary (line 27). After acting on
the received message (line 28), node j replaces its received variable with the new weighted value
(line 29). Thus, if a message is lost, the next received message compensates for the loss and brings
the receiving neighbor to the same state it would have reached had it received the lost messages as
well. Whenever the last message on a link (i, j) is correctly received and there are no messages in
transit, the value of sentji is identical the value of receivedij .

Since the weights are (usually) positive, push operations, if used by themselves, cause the sent
and received variables to grow to infinity. In order to overcome that, LiMoSense uses a hybrid
push/pull approach, which keeps these weights small without requiring bilateral coordination. A
node uses pull operations to decrease the sent variables of its neighbors, and thereby its own
received. The pull message is a request from a neighbor to push back an inverse weighted value.
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Algorithm 2: LiMoSense

1 state
2 〈esti, wi〉 ∈ R
3 prevReadi ∈ R
4 neighborsi ⊂ N
5 senti : n→ (R2 × R2) ∪ ⊥
6 receivedi : n→ (R2 × R2) ∪ ⊥

7 on initi(initVal)
8 〈esti, wi〉 ← 〈initVal, 1〉
9 prevReadi ← initVal

10 neighborsi ← ∅
11 ∀j : senti(j) = ⊥
12 ∀j : receivedi(j) = ⊥

13 function pushSendi(sendVal)
14 〈esti, wi〉 ← 〈esti, wi〉 	 sendVal
15 senti(j)← senti(j)⊕ sendVal
16 send (senti(j),push), to j

17 periodically sendi()
18 if wi < 2q then return (weight min.)
19 Choose a neighbor j uniformly at

random.
20 type←

choose at random from {push,pull}
21 if type = push then
22 pushSend(〈esti, wi/2〉)
23 else (type = pull)
24 send (〈esti, wi/2〉,pull) to j

25 on receivei(〈vin, win〉, type) from j
26 if type = push then
27 diff← 〈vin, win〉 	 receivedi(j)
28 〈esti, wi〉 ← 〈esti, wi〉 ⊕ diff
29 receivedi(j)← 〈vin, win〉
30 else (type = pull)
31 pushSend(〈vin,−win〉)

32 on changei(rnew)
33 esti ← esti + 1

wi
· (rnew − prevReadi)

34 prevReadi ← rnew

35 on addNeighbori(j)
36 neighborsi ← neighborsi ∪ {j}
37 senti(j)← 〈0, 0〉
38 receivedi(j)← 〈0, 0〉

39 on removeNeighbori(j)
40 〈esti, wi〉 ←

〈esti, wi〉 ⊕ senti(j)	 receivedi(j)
41 neighborsi ← neighborsi \ {j}
42 senti(j)← ⊥
43 receivedi(j)← ⊥

In line 20, the algorithm randomly decides whether to perform push or pull2. When pulling,
i sends the weighted value to j with the pull flag. Once node j receives the message, it merges
it with its own value, and relays i the same weighted pair using the standard push mechanism,
but with a negative weight (line 31). Thus, the weights of the sent and received records fluctuate
around 0 rather than growing to infinity. Additionally, to prevent infinitesimal weights, a node
does not perform a send step if the result would bring its weight to be smaller than a quantization
constant q.

Upon notification of topology events, nodes act as follows. When notified of an addNeighbor

event, a node initializes its transfer records sent and received for this link, noting that 0 weight was
transferred in both directions. It also adds the new neighbor to its neighbors list (lines 36-38).

When a link notified of a removeNeighbor event, a node reacts by nullifying the effect of this
link. Pull messages that were sent and/or received on this link had no effect. Nodes therefore need
to undo only the effects of sent and received push messages, which are summarized in the respective

2We use random choice for ease of presentation. One may choose to perform pull less frequently to conserve
bandwidth.
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sent and received variables. When a node i discovers that link (i, j) has failed, it adds the outgoing
link summary sentji to its estimate, thus cancelling the effect of ever having sent anything on the

link, and subtracts the incoming link summary receivedji from its estimate, thereby cancelling the
effect of everything it has received (line 40). The node also removes the neighbor from its neighbors
list and discards its link records (lines 41–43).

After a node joins the system or leaves it, its neighbors are notified of the appropriate topology
events, adding links to the new node, or removing links to the failed one. Thus, when a node fails,
any parts of its read value that had propagated through the system are annulled, and it no longer
contributes to the system-wide estimate.

5 Analysis

In this section, we show that the LiMoSense algorithm adapts to network topology and value
changes and converges to the correct average. We start in Section 5.1 by proving safety: we define
an invariant of the system state and prove that it holds (even during periods with changes). Then,
in Section 5.2, we prove liveness, namely that after GST the estimates at all nodes converge to
the average of the latest read values. Liveness is proven for all runs, including asynchronous ones.
Clearly, in asynchronous settings, any algorithm’s convergence time is inherently unbounded. In
Section 5.3, we consider some limitations on scheduling (synchrony), and analyze the convergence
time after system stabilization under these realistic though more limited circumstances.

5.1 Safety

We show the existence of an invariant that holds throughout the system’s operation. The estimate
average at time t, Et, is the weighted average over all nodes of their weighted values, their outgoing
link summaries in their sent variables and the inverse of their incoming logs in their received
variables. We denote the read average at time t, by Rt. We define the estimate sum 〈Et, n〉 and
the read sum 〈Rt, n〉.

The invariant I states that the estimate sum equals the read sum:

I : 〈Rt, n〉 =

n⊕
i=1

〈rti , 1〉 =

n⊕
i=1

〈estti, w
t
i〉 ⊕

⊕
j∈neighborsti

(
sentti(j)	 receivedti(j)

) = 〈Et, n〉 (3)

Static Behavior

First, we consider the case where the system is completely static (no topology or value changes),
so the only possible events are send and receive. Note that message loss is not an event and it
does not effect the state of the system. Specifically, it does not effect the correctness of this lemma
or the following ones.

Lemma 1 (Static operations). If the invariant I holds at time t− 1, and step t is either send or
receive, then the invariant holds at time t.

Proof. If step t is a push send at node i, then the weighted value 〈estt−1
i , 1

2w
t−1
i 〉 is subtracted from

the weighted value of node i (line 14), and the weighted value 〈estt−1
i , 1

2w
t−1
i 〉 is added to sentji

(line 15). If step t is a push receive at node j, then the weighted value 〈estt−1
in , wt−1

in 〉 is added to
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the weighted value of node j (line 28), and the same weighted value is subtracted from receivedij
(line 29). If step t is a pull send at node i, then the estimate sum remains unchanged (line 24).
If step t is a pull receive, it is similar to a push send (line 31). In all cases, the estimate sum
according to Equation 3 is unchanged.

None of these events implies a change to the read sum, therefore, given that the invariant holds
at t− 1, and since neither the read sum nor the estimate sum changed, it also holds at t.

Dynamic Values

When the value read by node i changes, the node updates its estimate in a manner that changes
the estimate sum by the correct distance.

Lemma 2 (Read value change). If the invariant I holds at time t− 1, and step t is change, then
the invariant holds at time t.

Proof. Recall we denote the previous read of node i by rt−1
i and its new read at step t by rti . After

the change of the read value, the new read average is At = At−1 − 1
nr

t−1
i + 1

nr
t
i , and the weighted

value
〈

estt−1
i +

rti−r
t−1
i

wi
, wi

〉
replaces the weighted value of node i (line 33). Therefore, we see that

the new estimate sum is equal to the new read sum at t:

〈Et, n〉 = 〈Et−1, n〉 	
〈
estt−1

i , wt−1
i

〉
⊕
〈

estt−1
i +

rti − r
t−1
i

wt−1
i

, wt−1
i

〉
=

= 〈Et−1 +
rti − r

t−1
i

n
, n〉 = 〈At−1 +

rti − r
t−1
i

n
, n〉 = 〈At, n〉

Dynamic Topology

When a link is added, the node adding it just starts to keep track of the messages passed on the
link. When a link is removed, the node retroactively cancels the messages that passed through this
link, as if it never existed. In both cases, the read average and the estimate average are unchanged.

Lemma 3 (Topology change). If the invariant I holds at time t − 1, and step t is addNeighbor

or removeNeighbor, then the invariant holds at time t.

Proof. The addNeighbor function does not effect the read sum or the estimate sum. When a
link (i, j) failure is discovered by i, the weighted value sentt−1

i (j) is added to the estimate of
node i (line 40) and the variable sentti(j) is nullified (line 42). Additionally, the weighted value
receivedt−1

i (j) is subtracted from node i’s estimate (line 40), and the variable receivedti(j) is nullified
(line 43). The changes to the node’s estimate compensate the nullification of its two summary
variables for link (i, j), so the estimate sum at t is the same as at t− 1. The removal of a link does
not change the read sum, so it is equal to its value at t − 1 as well, and since they were equal at
t− 1, the invariant holds at t.
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Dynamic Node Set

When a node is added, its state is added to the system. When it is removed, its state is removed.

Lemma 4 (Churn). If the invariant I holds at time t− 1, and step t is init or remove, then the
invariant holds at time t.

Proof. An addition of a node i with initial estimate rti adds 〈rti , 1〉 to both the read average and
the estimate average (line 8), so they are both equal at step t.

Node i’s failure subtracts 〈rt−1
i , 1〉 from the read sum, and effects the state of node i (only). It

removes the node’s weighted value, and all of its received and sent variables. However, notice that
node i’s weighted value can be partitioned:

〈estt−1
i , wt−1

i 〉 = 〈rt−1
i , 1〉 ⊕

⊕
j∈neighborst−1

i

receivedt−1
i (j) 	

⊕
j∈neighborst−1

i

sentt−1
i (j) ,

so removing 〈estt−1
i , wt−1

i 〉, receivedt−1
i (j) and sentt−1

i (j) from the system is equivalent to subtracting
〈rt−1

i , 1〉 from the previous estimate sum, so Et = Et−1 − 〈rt−1
i , 1〉. Therefore, the new read sum

equals the new estimate sum and the invariant holds as required.

We conclude by proving Theorem 1, showing by induction that the read average equals the
estimate average at all times:

Theorem 1. In a run of the system, the read average equals the estimate average at all times

Proof. Since the correctness of the invariant implies the correctness of the claim, we prove that
the invariant holds at all times. Initially, at t = 0, the invariant holds, since for any node i, the
component of the read sum is identical to that of the estimate sum: 〈rti , 1〉 = 〈estti, 1〉. At each
step t, assuming the invariant holds at t − 1, one of the 7 possible events occur, and according to
Lemmas 1–4 the invariant holds at t as well.

5.2 Liveness

We show that after GST the estimate at all nodes converges to the read average.
We first note that we can track the propagation from a node i as of time t. To do that, we

partition the weighted value of a node k at time t′ > t into two components: prop, the propagation of
i’s weighted value at t to k at t′, and agg, the aggregation from all nodes but i. We define the values
of the components by recursion. The weighted value of a node k at time t′ ≥ t is partitioned to
the propagated component 〈estti, w

t′
k,prop〉, and the aggregated component 〈estt

′
k,agg, w

t′
k,agg〉. Though

these definitions depend on i and t, we fix i and t and omit them, to make the expressions more
clean:

〈estt
′
k , w

t′
k 〉 = 〈estt

′
k,agg, w

t′
k,agg〉+ 〈estti, w

t′
k,prop〉 .

This partitioning is defined for all nodes and for all times starting at t. The prop component is
called the component of estti at node k at time t′.

Initially, at t, at all nodes k 6= i, agg is the weighted value 〈esttk, w
t
k〉, and prop is 〈0, 0〉. At

node i, agg is 〈0, 0〉 and prop is 〈estti, w
t
i〉. If the operation at t′ is a push send at node k, then

〈estt
′
k , w

t′
k 〉 = 〈estt

′
k,agg, w

t′
k,agg〉+ 〈estti, w

t′
k,prop〉 =

= 〈estt
′−1
k,agg, w

t′−1
k,agg/2〉+ 〈estti, w

t′−1
k,prop/2〉 = 〈estt

′−1
k , wt′−1

k /2〉 ,
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and the message sent is partitioned 〈estt
′−1
k,agg, w

t′−1
k,agg/2〉 + 〈estti, w

t′−1
k,prop/2〉. If the operation at t′ is

a push receive at node k of a message 〈vin, win〉 partitioned to 〈win,agg , estin,agg〉 and 〈estti, win,agg〉
components, then

〈estt
′
k , w

t′
k 〉 = 〈estt

′
k,agg, w

t′
k,agg〉+ 〈estti, w

t′
k,prop〉 =

= 〈estt
′−1
k,agg, w

t′−1
k,agg〉+ 〈win,agg , estin,agg〉+ 〈estti, w

t′−1
k,prop〉+ 〈estti, win,prop〉 =

= 〈estt
′−1
k , wt′−1

k 〉+ 〈vin, win〉 .

We define the ratio of the estti component at a node k to be the ratio between its weight and

the total weight at the node, i.e.,
wk,prop

wk,prop+wk,agg
=

wk,prop

wk
. We proceed to prove that for any time t

larger than GST, eventually all nodes have a component of estti with a ratio that is bounded from
below.

Lemma 5. For any time t > GST and node i, there exists a time t′ > t after which every node j

has an estti component with ratio larger than
( q
n

)n/q
.

Proof. Denote by Ms the set of nodes with an estti component. Denote by wMs the sum of weights
in the nodes in Ms, and in push messages sent from nodes in Ms′ with s′ ≤ s and not yet received.
We show by induction that at any s > t, at all nodes with an estti component, the ratio of the estti

component is at least
(

q
wMs

)wMs/q
. Recall that q < wMs , hence q

wMs
< 1.

At time t the only node with an estti component is i with a ratio of 1.0, and the invariant holds.
Consider the system at time s, assuming the invariant holds at s − 1. We show that after any of
the possible events at s− 1, the invariant still holds. Note that pull events have no direct effect —
they only trigger the push of line 31.

1. push send: No effect on the invariant. The ratio at the sender stays the same, and wM is
unchanged.

2. push receive from j 6∈M by k 6∈M : No effect on the invariant since no nodes in M are con-
cerned.

3. push receive from j ∈M by k 6∈M : Two things change: (1) wMs = wMs−1 +ws−1
k and (2) k

becomes a part of M . The first change decreases the lower bound, therefore the assumption
holds at s for all nodes in Ms−1. Denote by α the ratio at j when it sent the message.

According to the induction assumption, α ≥
(

q
wMs−1

)wMs−1
/q

. The new ratio at k is minimal

when the weight of the received message is minimal (i.e., q). Therefore, the ratio at k, which
is now also in M , is at least

α· q

ws−1
k

induction
assumption
≥

(
q

wMs−1

)wMs−1
/q q

ws−1
k

>

(
q

wMs−1 + ws−1
k

)wMs−1
+ws−1

k
q

=

(
q

wMs

)wMs/q

.

We conclude that the ratio at all the nodes in Ms is larger than the bound at s, therefore the
induction assumption holds.
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4. push receive from j 6∈M by k ∈M : Denote the weight of the message by win. Two things
change: (1) wMs = wMs−1 + win and (2) the ratio at k. The change of wM decreases the
bound, therefore the assumption holds at s for all nodes other than k. The relative weight at

k before receiving is at least
(

q
wMs−1

)wMs−1
/q

. Therefore, after receiving the message, it is at

least (
q

wMs−1

)wMs−1
/q

· q

q + win
>

(
q

wMs−1 + win

)wMs−1
+win

q

=

(
q

wMs

)wMs/q

.

We conclude that the ratio at all the nodes in Ms is larger than the bound at s, therefore the
induction assumption holds.

5. push receive from j ∈M by k ∈M : The ratio doesn’t go below the minimum between the
ratios in j and k, therefore the invariant’s correctness follows directly from the induction
assumption.

Once a node has an estti component, it will always have an estti component (no operation
removes it), and eventually it will succeed sending a push message to all of its neighbors (fairness).
Therefore, due to the connectivity of the network after GST, and according to the induction above,

eventually every node has an estti component with a ratio not smaller than
( q
n

)n/q
.

We proceed to prove the main result of this section.

Theorem 2 (Liveness). After GST, the estimate error at all nodes converges to zero.

Proof. We define a series of times t0, t1, t2, . . . recursively. The initial time is t0 = GST. For every
tp−1 we define tp to be the time at which each node k ∈ NGST has an estp−1

i component with ratio
at least

( q
n

)n
for each i ∈ NGST . Such a tp exists according to Lemma 5.

Denote by ep−1
max the largest estimate at a node at time tp−1, i.e., ep−1

max = maxi{estp−1
i }. Assume

without loss of generality that the average is zero. If all node estimates are the exact average, then
the estimate is zero at all nodes and it does not change. Otherwise, ep−1

max is strictly positive, and
there exists some node j whose estimate is negative. At tp, a node i has a component of est

tp−1

j

with weight at least
( q
n

)n/q
(Lemma 5). The weight of the rest of its components is smaller than

n, and their values are at most ep−1
max. Therefore, the estimate at i at tp is bounded:

est
tp
i <

(
n · ep−1

max +
( q
n

)n/q
· est

tp−1

j

)
· 1

n+
( q
n

)n/q est
tp−1
j <0

<
n

n+
( q
n

)n/q ep−1
max .

The estimate at i is similarly bounded from below with respect to the minimal value at tp−1. The
maximal error (absolute distance from average) at tp is therefore bounded by n

n+( q
n)

n/q the maximal

error at tp−1. We conclude that the maximal error decreases at least exponentially with p, and
therefore the estimates converge to the average.
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5.3 Performance

We say the the suffix of a run is uniform synchronous if (1) the choice of which node runs and
choice of which neighbor it chooses for data exchange is uniformly random, and (2) the latency of
all operations and links is 0, so the only thing that takes time in the system is the time between
the periodic send functions.

We now analyze the convergence rate in uniform synchronous settings. We assume that the
network is fully connected (actually this can be relaxed to require a network with good connectivity),
the nodes operation frequency is similar, and the neighbor choice is uniform random. We further
assume that the network is large enough and well connected, and that the communication pattern
is “random enough” so the values are also roughly independent. We show that after GST, in these
settings, the MSE converges at an exponential ratio.

Normal-like distribution

The value at each node is the result of adding values from its neighbors. After running long enough,
we can assume, as explained above, that this is a sum of independent and identically distributed
random variables. As such, the distribution of the node estimates should be normal, according to
the central limit theorem. The assumption was confirmed by simulation, using the Jarque-Bera
normality test [12].

Exchange gossip

To analyze the algorithm, we begin with the special case of exchange gossip, where in each step two
nodes perform push send to each other. With this timing, the weights at all nodes always remain
1.

Let us consider the progress of LiMoSense in these settings. In each step, two nodes send their
estimates to each other, and then replace them with their average. Assume the distribution at time
t is standard normal, i.e., with mean µ = 1 and variance σ2 = 1. At the next step, two values are
chosen according to a normal distribution and are merged. We calculate the expected variance after
one step of the algorithm at time t′. For all x, y, we multiply the probability density of choosing
these values by the resulting variance after their merger. This new variance is the variance of the
normal distribution before the merger, i.e., 1, from which we subtract the effect of the two values,
each with weight 1/n, and then add the average twice, i.e., with weight 2/n. The computation is
given in equation 4, showing the expected variance after a step is 1− 1

n .

∞∫
−∞

dx

∞∫
−∞

dy
1

2π
e
−x2−y2

2︸ ︷︷ ︸
Probability density
of choosing x and

y

(
1− 1

n
x2 − 1

n
y2 +

2

n

(
x+ y

2

)2
)

︸ ︷︷ ︸
Variance in next step for the given x,

y

= 1− 1

n
(4)

We have conducted simulations to verify the predicted convergence rate of LiMoSense. We
simulated a fully connected network of 100 sensors. The samples were taken from a standard
normal distribution. Figure 1 shows mean square error of the nodes and the value predicted by
the analysis. The simulation value is averaged over 100 instances of the simulation. The result
perfectly fits the behavior predicted by Equation 4.
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Figure 1: Simulation and theory (Equation 4) of exchange LiMoSense convergence rate in a static
fully connected network of 100 nodes, with read values drawn from the standard normal distribution.
We see that the algorithm converges exactly as predicted by Equation 4.

Push gossip

A similar computation is given in Equation 5 for push gossip. In this case, the value at x remains
unchanged, with half the weight, and the value at y is replaced by the weighted average with the
value received from x, with the aggregated weight. The expected new variance in this case is 1− 2

3n ,
slightly smaller than in the exchange case. Simulation shows that a small correction factor of about
0.9 is required, possibly due to the asymmetric distribution of weights.

∞∫
−∞

dx

∞∫
−∞

dy


1

2π
e
−x2−y2

2︸ ︷︷ ︸
Probability density
of choosing x and

y

·

1− 1

n
x2 − 1

n
y2 +

1

2n
x2 +

3

2n

(
1
2x+ y

3/2

)2


︸ ︷︷ ︸
Variance in next step for the given x,

y


= 1 − 2

3n
(5)

6 Simulation

In this section, we describe simulations we have conducted to evaluate LiMoSense under various
dynamic scenarios. Our goal is to asses how fast the algorithm reacts to changes, and succeeds
to provide accurate information. We compare LiMoSense to a periodically-restarting Push-Sum
algorithm. We explain our methodology and metrics in Section 6.1

We first study how the algorithm copes with different types of data read changes - a gradual
“creeping” change of all values, occurring, e.g., when temperature is gradually rising (Section 6.2),
an abrupt value change captured by a “step function” (Section 6.3), and a temporary glitch or
“impulse” (Section 6.4). We then study the algorithm’s robustness to node and link failures (Sec-
tion 6.5).
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6.1 Methodology

We performed the simulations using a custom made python event driven simulation that simulated
the underlying network and the nodes’ operation. Unless specified otherwise, all simulations are of
a network of 100 nodes in a fully connected network. We have seen that in well connected networks,
the convergence behavior is similar to that of a fully connected network. The simulation proceeds
in steps, where in each step, the topology and read values may change according to the simulated
scenario, and one node performs a pull or push action. Scheduling is uniform synchronous, i.e., the
node performing the action is chosen uniformly at random.

Unless specified otherwise, each scenario is simulated 1000 times. In all simulations, we track
the algorithms’ output and accuracy over time. In all of our graphs, the X axis represents steps in
the execution. We depict the following three metrics for each scenario:

(a) base station. We assume that a base station collects the estimated read average from some
arbitrary node. We show the median of the values obtained in the runs at each step.

(b) ε-inaccuracy. For a chosen ε, we depict the percentage of nodes whose estimate is off by more
than ε after each step. The average of the runs is depicted.

(c) MSE. We depict the average square distance between the estimates at all nodes and the read
average at each step. The average of all runs is depicted.

We compare LiMoSense to a Push-Sum algorithm that re-starts at a constant frequency —
every 5000 steps unless specified otherwise. In base station results, we also show the read average,
i.e., the value the algorithms are trying to estimate.

6.2 Creeping Change

This simulation investigates the behavior of the algorithm when the values read by the sensors
slowly increase. This may happen if the sensors are measuring rainfall that is slowly increasing.
Every 10 steps, a random set of 5 of the nodes read values larger by 0.01 than their previous
reads. The initial values are taken from the standard normal distribution. The results are shown
in Figure 2.

In Figure 2a we see that the average is increasing at a constant rate, and the LiMoSense base
station closely follows. The restarting Push-Sum, however, tries to update its value only at constant
intervals, making it impossible for it to follow the read average. Due to its significant error, the
time it takes for updating is so long that it never actually reaches the read average line.

In Figure 2b we see that after its initially convergence, the LiMoSense algorithm has most of
the nodes maintain a good estimate of the read average. Less than 10% of the nodes have estimates
worse than 0.1, whereas the restarting Push-Sum algorithm has no nodes in this neighborhood
most of the time, and most of the nodes in the neighborhood for short intervals.

Finally, in Figure 2c we see that the LiMoSense algorithm maintains a small MSE, with some
noise, whereas the restarting Push-Sum algorithm’s error quickly converges after restart, until the
creeping change takes over and dominates the MSE causing a steady increase until the next restart.
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Figure 2: Creeping value change Every 10 steps, 5 random reads increase by 0.01. We see
that LiMoSense promptly tracks the creeping change. It provides accurate estimates to 95% of the
nodes, with an MSE of about 10−3 throughout the run. In contrast, Periodic Push-Sum is accurate
only following restarts.

6.3 Step Function

This simulation investigates the behavior of the algorithm when the values read by some sensors
are shifted. This may occur due to a fire outbreak in a limited area, as close-by temperature nodes
suddenly read high values.

At step 2500, a random set of 10 nodes read values larger by 10 than their previous reads. The
initial values are taken from the standard normal distribution. The results are shown in Figure 3.

Figure 3a shows how the LiMoSense algorithm updates immediately after the shift, whereas the
periodic Push-Sum algorithm updates at its first restart only. Figure 3b shows the ratio of erroneous
sensors with error larger than 0.01 quickly dropping after — right after the read average change
for LiMoSense, and at restart for the periodic Push-Sum. Figure 3c shows the MSE decrease, as
predicted in Section 5.3. Both LiMoSense and periodic Push-Sum converge at the same rate, but
start a different times.

6.4 Impulse Function

This simulation investigates the behavior of the algorithm when the reads of some sensors are
shifted for a limited time, and then return to their previous values. This may happen due to
sensing errors, causing the nodes to read irrelevant data. As an example, one may consider the
case of a heavy vehicle driving by seismic sensors used to detect earthquakes. The close-by sensors
would read high seismic activity for a short period of time.

At steps 2500 and 6000, a random set of 10 nodes read values larger by 10 than their previous
reads, and after 100 of each time they return to their values before the shift. The initial values are
taken from the standard normal distribution. The results are shown in Figure 4.

The LiMoSense algorithm’s reaction is independent on the impulse time — a short period of
noise raises the estimate at the base station as the impulse value propagates from the sensors that
read the impulse. Then, once the impulse is canceled, this value decreases. The estimate with
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Figure 3: Response to a step function At step 2500, 10 random reads increase by 10. We
see that LiMoSense immediately reacts, quickly propagating the new values. In contrast, Periodic
Push-Sum starts its new convergence only after its restart.

respect to the read average is shown in Figure 4a, and the ratio of correct sensors is in Figure 4b.
The impulse essentially restarts the MSE convergence, as shown in Figure 4c — After an impulse
ends, the error returns to its starting point and starts convergence anew.

The response of the periodic Push-Sum depends on the time of impulse. If the impulse occurs
between restarts (as in step 2500), the algorithm is completely oblivious to it. All three figures
4a–4c show that apart from the impulse time, convergence continues as if it never happened. If,
however, a restart occurs during the impulse (as in step 6000), then the impulse is sampled and
the algorithm converges to this new value. This convergence is similar to the reaction to the step
function of Section 6.3, only in this case it promptly becomes stale as the impulse ends. Figure 4a
shows the error quickly propagating to the base station. Since the algorithm has the estimates
converge to the read average during impulse, the ratio of inaccurate nodes is 1.0 once the impulse
ends, and the MSE stabilizes at a large value as all nodes converge to the wrong estimate.

6.5 Robustness

To investigate the effect of link and node failures, we construct the following scenario. The sensors
are spread in the unit square, and they have a transmission range of 0.7 distance units. The
neighbors of a sensor are the sensors in its range. The system is run for 3000 steps, at which point,
due to battery decay, the transmission range of 10 sensors decreases by 0.99. Due to this decay, the
nodes’ links with some of their neighbors fail, and they employ their removeNeighbor functions.
We see the effect of this link removal in Figure 5. In Figure 5a the effect can hardly be seen, but
a temporary decrease of the accurate nodes can be seen in Figure 5b, and in Figure 5c we see the
MSE rising sharply. The failure of links does not effect the periodic Push-Sum algorithm, which
continues to converge.

In step 5000, a node fails, removing its read value from the read average. Upon node failure,
all its neighbors call their removeNeighbor functions. Figure 5a shows the extreme noise at the
base station caused by the failure, and in Figure 5b we see the ratio of accurate nodes decreasing
sharply before converging again. We see in Figure 5c that the node removal effectively requires
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Figure 4: Response to impulse At steps 2500 and 6000, 10 random values increase by 10 for
100 steps. Both impulses cause temporary disturbances in the output of LiMoSense. Periodic Push-
Sum is oblivious to the first impulse, since it does not react to changes. The restart of Push-Sum
occurs during the second impulse, causing it to converge to the value measured then.

the MSE convergence to restart. However, Periodic Push-Sum has no mechanism for reacting to
the change until its next restart. Since the average changes, until that time, the percentage of
inaccurate nodes sharply rises to 1.0, and the MSE reaches a static value, as the estimates at the
nodes converge to the wrong average. Since in every run a different node crashes, and the median
of the removed value is 0, the node crash does not effect the median periodic Push-Sum value at
the base station in Figure 5a.
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Figure 5: Failure robustness In a disc graph topology, the radio range of 10 nodes decays in
step 3000, resulting in about 7 lost links in the system. Then, in step 5000, a node crashes. Each
failure causes a temporary disturbance in the output of LiMoSense. Periodic Push-Sum is oblivious
to the link failure. It recovers from the node failure only after the next restart.
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7 Conclusion

We presented LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor networks.
LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-changing sensor
reads. It overcomes message loss, node failures and recoveries, and dynamic network topology
changes. We have proven correctness of LiMoSense; and illustrated by simulation its ability to
quickly react to network and value changes and provide accurate information.
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