
Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing Protocol

Roie Melamed
CS Department, Technion

Idit Keidar
EE Department, Technion

Yoav Barel
EE Department, Technion

Abstract

Mobile ad-hoc networks (MANETs) are failure-prone
environments; it is common for mobile wireless nodes
to intermittently disconnect from the network, e.g., due
to signal blockage. This paper focuses on withstand-
ing such failures in large MANETs: we present Octo-
pus, a fault-tolerant and efficient position-based rout-
ing protocol. Fault-tolerance is achieved by employing
redundancy, i.e., storing the location of each node at
many other nodes, and by keeping frequently refreshed
soft state. At the same time, Octopus achieves a low
location update overhead by employing a novel aggre-
gation technique, whereby a single packet updates the
location of many nodes at many other nodes. Octopus
is highly scalable: for a fixed node density, the number
of location update packets sent does not grow with the
network size. And when the density increases, the over-
head drops. Thorough empirical evaluation using the
ns2 simulator with up to 675 mobile nodes shows that
Octopus achieves excellent fault-tolerance at a modest
overhead: when all nodes intermittently disconnect and
reconnect, Octopus achieves the same high reliability as
when all nodes are constantly up.

1 Introduction

Mobile ad-hoc networks (MANETs) consist of mo-
bile wireless nodes that communicate with each other
without relying on any infrastructure. Therefore, rout-
ing in MANETs is performed by the mobile nodes them-
selves. Such nodes often intermittently disconnect from
the network due to signal blockage [4, 10]. Thus, an im-
portant challenge that ad-hoc routing protocols should
address is coping with such failures (disconnections)
without incurring high overhead. Our goal is to pro-
vide fault-tolerance, i.e., high routing reliability when
many nodes frequently disconnect and reconnect, with-
out sacrificing efficiency in routing in large MANETs
consisting of hundreds of mobile nodes.

We consider position-based routing protocols, in
which each node can determine its physical location.
Such protocols scale better than non-position-based

ones [11]. Typically, the location of each node is stored
at some other nodes, which act as location servers for
that node [9, 11]. When a node wishes to send packets
to another node, it first issues a location query in order to
discover the target’s location, and then forwards packets
to this location. In position-based protocols, reliability
is measured as the success rate of location queries [9].

Position-based protocols differ from each other
mainly in how many location servers store each node’s
location [11]. E.g., in DREAM [3], each node acts as
a location server for all nodes, and in LAR [8], each
node is a location server for its one-hop neighbors only.
It has been argued that neither of these extreme ap-
proaches is appropriate for large networks, since they
both use flooding to disseminate either position infor-
mation (DREAM) or location queries (LAR) [9]. Li et
al. [9] have proposed the Grid Location Service (GLS),
which stores each node’s location at small number of
nodes. They have shown that this approach, called all-
for-some [11], achieves good tradeoff between reliabil-
ity and load: each node updates its location at small
number of nodes without flooding the network, and loca-
tion queries incur a reasonable overhead. Li et al. have
further shown that in a small network, GLS tolerates in-
termittent node disconnections well [9]. However, as
we show in Section 5.3, in large networks, GLS’s fault-
tolerance greatly degrades. For example, in a grid of
2.3km by 2.3km, with an average of 400 nodes con-
nected to the network at a given time, when half the
nodes intermittently disconnect and reconnect, GLS’s
query success rate is only 65%; when all the nodes in-
termittently disconnect and reconnect, it drops to 53%.

There is inherent tradeoff between fault-tolerance and
load in GLS and other all-for-some protocols, e.g., [7],
since fault-tolerance is achieved by constantly updating
the location of each node at multiple location servers,
which are typically far from each other (in order to allow
for quick location discovery). Thus, each node updates
each of its location servers separately, causing the load
to increase with the level of redundancy. Moreover, a
location update packet is typically relayed several times
before it reaches the appropriate location server, and the

number of relays increases with the network area [9]. In
order to reduce the location update overhead, in most
all-for-some routing protocols, e.g., [9, 7], remote loca-
tion servers are updated less frequently than close ones.
In Section 5.3, we show that in large networks this ap-
proach greatly degrades the fault-tolerance as routing of-
ten uses stale information.

In order to achieve a better tradeoff between load
and fault-tolerance we introduce a new location update
technique called synchronized aggregation. In this tech-
nique, each location update packet includes the loca-
tion of several nodes and updates many location servers.
Moreover, updates are synchronized in the sense that
only one node initiates the propagation of an aggregate
update from a given region, and hence no duplicate up-
dates are sent. It is worth noting that such a synchro-
nized aggregation technique is not feasible in existing
all-for-some protocols, e.g, [9, 7], in which the loca-
tions of nearby nodes are stored at non-adjacent location
servers.

In Section 4, we present Octopus, a simple and ef-
ficient all-for-some routing protocol that employs syn-
chronized aggregation in order to achieve high fault-
tolerance without incurring a high load. Octopus divides
the network area into horizontal and vertical strips, and
stores the location of each node at all the nodes residing
in its horizontal and vertical strips. This approach nat-
urally supports synchronized aggregation: all the nodes
in the same strip can learn each other’s locations through
the propagation of exactly two location update packets
along the strip. Moreover, since synchronized aggrega-
tion dramatically reduces the location update overhead,
Octopus can update all the location servers at the same
high frequency.

On the one hand, Octopus enforces higher redun-
dancy and more freshness of location information than
GLS, and hence achieves much better fault-tolerance.
On the other hand, by aggregating node locations, Oc-
topus incurs lower overhead than GLS in typical scenar-
ios.

Octopus has a third important advantage over most
previous all-for-some protocols, e.g., [9, 7]: In Octo-
pus, the area in which nodes reside does not need to be
pre-known or fixed; it can change at run time. This fea-
ture is crucial for rescue missions and battle field envi-
ronments, in which the borders of the network are not
known in advance and are constantly changing.

Finally, the redundancy of location information in
Octopus has a fourth advantage: nodes use information
they have about strip neighbors in order to improve the
forwarding reliability. Hence, we eliminate the need to
maintain designated information (for example, two-hop
neighbor lists as in [9]) for improving the forwarding

reliability.
In Section 5, we evaluate Octopus’s performance us-

ing extensive ns2 simulations with up to 675 mobile
nodes. Our results show that Octopus achieves high
routing reliability, low overhead, good scalability, and
excellent fault-tolerance. For example, in a grid of
2.3km by 2.3km with nodes that all intermittently dis-
connect and reconnect, and an average of 400 connected
nodes at a given time, Octopus achieves a query success
rate of 95%, which is identical to the success rate when
all nodes are constantly up. We also compare Octopus to
GLS, the position-based protocol that achieved the best
reliability-load tradeoff thus far. Our results indicate that
in the absence of failures, Octopus achieves slightly bet-
ter reliability than GLS, at lower overhead (both packets
and bytes). In failure-prone settings, Octopus’s reliabil-
ity is greatly superior to that of GLS.

In the full paper [12], we prove Octopus’s correct-
ness, and we also analyze Octopus’s scalability: we
prove that under a fixed node density, the number of lo-
cation update packets per node per second is constant,
and the byte complexity grows as O(

√
N) with the num-

ber of nodes N . We also analyze the probability for
forwarding holes in Octopus’s horizontal and vertical
strips, and show that under reasonable density assump-
tions, the probability for holes is very small.

2 Related Work

We now compare Octopus to other position-based
routing protocols. In DREAM [3], every node acts as
a location server for all nodes. This approach is fault-
tolerant, and is practical in small networks. However,
it has been argued that the overhead of this approach
is prohibitive in large networks, since location updates
are flooded [9]. In LAR [8], each node knows only the
locations of its immediate neighbors. This approach is
efficient when the number of location queries is low.
However, when location queries are frequent, this ap-
proach is not practical, as location queries are globally
flooded [9]. In [6, 15], some dedicated nodes act as lo-
cation servers for some or all other nodes. This approach
is appropriate for failure-free networks, or for settings in
which there are reliable servers. However, such an ap-
proach is problematic in failure-prone networks, since
it is vulnerable to the movement or failure of a single
dedicated location server (as explained in [9]).

Li et al. [9] have shown that by having each node
act as a location server for some other nodes, one can
achieve a good tradeoff between reliability and load,
and good scalability up to at least 600 nodes. A simi-
lar approach is taken in GRSS [7], Homezone [5, 13],
and [14]. Of these, GLS and GRSS are the only ones

2

that were extensively evaluated in simulations with mo-
bile nodes. Moreover, only GLS was evaluated in set-
tings in which nodes intermittently disconnect from the
network, and this study was only conducted in a small
network.

Stojmenovic et al. [14] suggest a routing scheme in
which each node periodically propagates its position
in the north and south directions, and location queries
are sent in the east and west directions. However, un-
like Octopus, Stojmenovic et al. do not aggregate up-
dates, and they thus miss Octopus’s important perfor-
mance advantage; individually updating so many nodes
is bound to induce a prohibitively high overhead. More-
over, Stojmenovic et al. evaluated their protocol in static
failure-free settings only. Another difference between
Octopus and [14] is that Octopus employs more redun-
dancy by storing node locations at both their horizontal
and vertical strips. This additional redundancy yields a
quadratic decrease in the probability for query failures.
Finally, [14] does not make additional use of the stored
location information in order to improve the reliability
of forwarding. In fact, we are not aware of any previous
ad-hoc routing protocol that exploits location informa-
tion for more effective forwarding.

The most thoroughly studied position-based proto-
col thus far, GLS [9], partitions the world into a hier-
archy of grids with squares of doubling edge sizes. In
each level of the hierarchy, the location of each node is
stored at three location servers, for a total of O(log N)
location servers under uniformity and fixed density as-
sumptions (see Section 3). Under the same assumptions,
Octopus stores the location of each node at O(

√
N)

location servers. In contrast to Octopus, in GLS re-
mote location servers are updated less frequently than
close ones. Thanks to the use of more location servers
and fresher information, Octopus achieves much higher
fault-tolerance than GLS. Thanks to aggregation, Octo-
pus achieves this while incurring lower overhead. More-
over, Octopus is a simpler protocol than GLS.

Although Octopus requires more memory than GLS
for storing location information, Octopus’s memory re-
quirements are quite reasonable: in our largest exper-
iment, with 675 nodes, location information consumes
less than 1KB of memory at each node. Note that
in wireless networks, reducing the number of transmis-
sions is most crucial, and 1KB of memory overhead is
a small price to pay for the significant reduction in mes-
sage overhead that Octopus achieves.

In almost all the previous location-based routing pro-
tocols, each location update packet includes the location
of a single node and updates a single location server. The
only exception we are familiar with is GRSS [7]. How-
ever, in contrast to Octopus, in GRSS location updates

are not synchronized, i.e., several nodes in the same re-
gion can initiate a location update simultaneously caus-
ing to many duplicate packets to be sent. Consequently,
as shown in [7], GRSS often fails to achieve lower over-
head than GLS. Moreover, as opposed to Octopus, in
which each location update packet contains identities of
O(

√
N) nodes (assuming the system model described in

Section 3), in GRSS, a location update packet can con-
tain O(N) node identities. In order to reduce the packet
size, GRSS uses Bloom filters. However, this technique
may lead to incorrect routing due to false positives [7].

3 System Model

The network consists of a collection of mobile nodes
moving in a rectangular space. The set of nodes can
change over time as nodes connect and disconnect. The
coordinates of the space can also change over time. We
assume that nodes are uniformly distributed in the space.
Each node can determine its own position, e.g., using
GPS. Each node can broadcast packets to all its neigh-
bors within a certain radius r called the radio range.
Packets can be lost due to MAC-level collisions or barri-
ers. In our simulations, we use the MAC layer provided
by the ns2 simulator, which simulates packet loss in typ-
ical MANETs. As in other protocols, a certain minimal
node density throughout the grid is required in order to
ensure reliability. Thus, we assume that the number of
nodes grows proportionally with the area of the network.

Octopus divides the space into horizontal and vertical
strips. The strip width, w, is constant and known to all
nodes. Knowing w, the zero longitude and latitude, and
its current location, each node can determine which hori-
zontal and vertical strips it resides in at a given time. For
example, in Fig. 1, node S resides in the highlighted hor-
izontal and vertical strips, and its radio range neighbors
are circled. Each strip has a unique identifier (of type
StripID), identifying its location relative to the global
zero coordinates.

D

A

B

C

S

E

Figure 1. Node S’s neighbors and strips. A,B,C, and

D are end nodes in the highlighted strips.

3

4 Octopus

Octopus is composed of three sub-protocols: loca-
tion update, location discovery, and forwarding. The
location update protocol maintains each node’s location
at its designated location servers, as well as at its radio
range neighbors. When a node wishes to send packets to
another node, it first issues a location query to the loca-
tion discovery protocol in order to discover the target’s
location, and then uses the forwarding protocol to for-
ward packets to this location. Sections 4.1, 4.2, and 4.3
present Octopus’s location update, location discovery,
and forwarding sub-protocols, respectively.

We use limited retransmissions in order to partially
overcome packet loss: Whenever a node A sends a
packet to a node B, and B is expected to send a packet
in return (e.g., to propagate/forward the packet further
or respond to a location query), node A waits to hear
the appropriate packet from B. If A does not hear B’s
packet within a retransmissions timeout, then A chooses
another node C, as if B does not exist, and re-sends the
packet to C. Up to two retransmissions per packet are
sent.

4.1 Location Update

The location update protocol is initiated by each
strip’s end nodes. A north (south) end node is a node that
has no neighbors in direction north (respectively, south)
in its vertical strip, and a west (east) end node is a one
that has no neighbors to the west (respectively, east) in
its horizontal strip. For example, in Fig. 1, A,B,C, and
D are end nodes in S’s strips.

The location update protocol maintains two data
structures at each node: neighbors – radio range neigh-
bors, and strip[i] for i ∈ {north, south, west, east} –
nodes residing in direction i in the node’s strip. Each el-
ement in these sets is of type Node. As shown in Fig. 2,
this type is a tuple including the following fields: id –
the node’s identifier, x, y – the node’s last reported co-
ordinates, time – the time of the last received coordi-
nates report, hid, vid – the node’s horizontal and vertical
StripIDs, and p x, p y – the node’s previous coordinates.

Types:
NodeID – a node identifier.
StripID – a strip identifier.
Direction – in {north= 0, south= 1, west= 2, east= 3}
Node – 〈NodeID id, Real x, Real y, Time time,

StripID hid, StripID vid, Real p x, Real p y〉
Data structures
Node this – this node.
Set of Node neighbors, strip[4], target locations.

Figure 2. Types and data structures.

The neighbors set is updated upon receiving a short

HELLO packet from another node. This packet is broad-
cast by every node every hello timeout seconds, and it
contains the broadcasting node’s identity and physical
coordinates. If a node does not hear from some neigh-
bor n for 2hello timeout seconds, it removes n from
neighbors.

The pseudo-code for maintaining strip[*] is pre-
sented in Fig. 3. The locations of all the nodes in a
given strip are propagated through the strip via the peri-
odic diffusion of STRIP UPDATE packets initiated by
the end nodes of the strip every strip update timeout.
An end node broadcasting a STRIP UPDATE packet to
direction d includes in the packet all its neighbors that
are in the same strip. A STRIP UPDATE packet also
includes the strip identifier, the packet direction, and a
target node, which will forward this packet further.

loop forever
foreach Direction d do

if (I have no neighbors in direction d) then
StripID sid← get strip id (d)
set of Node set← get nodes in strip (sid)
bcast 〈STRIP UPDATE, sid, opposite direction to d,

set, farthest node in set〉
sleep (strip update timeout)

Event handler:
upon receive 〈STRIP UPDATE, sid, d, set, t〉 do

if (sid = this.vid ∨ this.hid) then
strip[opposite direction to d]← set

/* If I am the packet target */
if (this = t) then

set of Node set′ ← get nodes in strip (sid)
Node next← farthest node

in direction d in set′ ∪ {this}
/* If I need to forward the packet */
if (this �= next) then

bcast 〈STRIP UPDATE, sid, d, set ∪ set′, next〉

Procedures:
set of nodes get nodes in strip (sid)

return {n ∈ neighbors|n.hid = sid ∨ n.vid = sid}

StripID get strip id (d)
if d ∈ {north, south} then

return this.vid
return this.hid

Figure 3. The strip update protocol.

Upon receiving a STRIP UPDATE packet, a node
updates the appropriate entry in strip[*]. If the node
is designated as the packet target and is not the strip’s
end-node, then it appends to the packet all its neigh-
bors that reside in the packet’s strip, chooses a new tar-
get, and broadcasts the packet. The propagation of a
STRIP UPDATE packet completes when it reaches an
end node, i.e., when the farthest node in direction d is
the current node (this = next). For example, in Fig. 1,
a STRIP UPDATE packet with direction south begins at
node C and propagates to the south-most node of the
strip, D.

4

Forwarding holes

We define a forwarding hole to be a situation in which
a node X cannot forward a STRIP UPDATE packet to
direction d in a strip s although there is another node in
s that is in direction d of X . For example, in Fig. 1,
there is a forwarding hole north of node E. In a typical
scenario, the probability for a forwarding hole is small
(less than 0.02, see the full paper [12]). Moreover, as
we describe in Section 4.2, storing each node’s location
at both the horizontal and vertical strips quadratically
decreases the probability for query failures due to for-
warding holes.

Although the probability for a routing failure due to
forwarding holes is small, we have implemented a sim-
ple bypass mechanism in order to overcome such fail-
ures: in this mechanism, a node that cannot forward a
STRIP UPDATE packet to direction d in a strip s for-
wards the packet to a node that is in direction d of it
that resides in an adjacent strip to s. Empirically, the
additional reliability achieved by this mechanism is neg-
ligible (less than 2%), since the basic Octopus’s imple-
mentation already achieves high reliability. Therefore,
for simplicity reasons, we present and evaluate Octopus
without the bypass mechanism.

In the full paper [12], we prove the following lemma:
In a run in which there are no node movements or fail-
ures and no packet loss, if the strip width w ≤

√
3

2 r,
then in every segment of a strip in which there are no
forwarding holes, every node knows the identities and
locations of all the nodes that reside in this segment af-
ter the propagation of STRIP UPDATE packets in this
segment completes.

4.2 Location Discovery

The location discovery protocol uses the informa-
tion stored in strip[*] and neighbors, as well as the
set target locations, which is a cache of recently dis-
covered target locations. The cache entries expire after
strip update seconds. The code for this protocol is pre-
sented in Fig. 4.

The interface to the location discovery protocol con-
sists of the function locate, which first searches the tar-
get in one of the locally maintained sets (strip[*], neigh-
bors, and target locations). If the target’s location is not
found in these sets, the protocol broadcasts two QUERY
packets to the node’s north-most and south-most neigh-
bors in its square or in adjacent squares in its vertical
strip. The recipient of a QUERY packet continues the
search in the same manner, forwarding the packet in
the same direction if needed. Once a QUERY packet
reaches a node that knows the target, it broadcasts a
REPLY packet with its information about the target to-
wards the source. Every node that receives a REPLY

packet adds the located target to its target locations. In
rare cases in which no REPLY packet is received within
discovery timeout seconds, the search is repeated in the
same manner in a west-east directions.

locate (Node ID tid)
Node target← search locally (tid)
if (target = null) then

search location (this, tid, north)
search location (this, tid, south)
sleep (discovery timeout)
if (target /∈ target locations) then

search location (this, tid, west)
search location (this, tid, east)

Event handlers:
upon receive 〈QUERY, src, t id, d, next〉 do

if (next = this) then
search location (src, t id, d)

upon receive 〈REPLY, src, target, d, next〉 do
target locations← target locations ∪ {target}
if (next = this) then

send reply (src, target, d)

Macro:
strip neighbors[d] � (neighbors ∩ strip[d]) ∪ {this}

Procedures:
Node search locally (target id)

if (∃n s.t. n ∈ neighbors ∪ strip[∗] ∪ target locations
∧n.id = target id) then
return n

return null

search location (src, t id, d)
Node target← search locally (t id)
if (target = null) then

Node next← farthest node in strip neighbors[d]
in the same square as this
or in an adjacent square

if (next �= this) then
bcast 〈QUERY, src, t id, d, next〉

else if (src �= this) /* target found - send reply */
Direction d′ ← opposite direction to d
send reply (src, target, d′)

send reply (src, target, d)
Node next← closest node to src in strip neighbors[d]
if (next �= this) then

bcast 〈REPLY, src, target, d, next〉
Figure 4. The location discovery protocol.

In the full paper [12], we prove the following lemma:
Assume that there are no node movements, node discon-
nections, or packet loss, and that w ≤

√
3

2 r. Consider a
location query with nodes S and T as the query’s source
and target, respectively. Let square a (b) be the intersec-
tion between S’s vertical (horizontal, respectively) strip
and T ’s horizontal (vertical, respectively) strip. If there
are no forwarding holes between S and a and between
T and a, or there are no holes between S and b and be-
tween T and b, then S’s target locations eventually in-
cludes T ’s location.

5

4.3 Forwarding protocol

Upon a successful location discovery, the forwarding
protocol forwards data packets to the target’s estimated
location. This location is calculated according to the tar-
get’s last two reported coordinates, which are included
in the Node data structure sent in REPLY packets.

Octopus employs geographic forwarding [11] in or-
der to forward data packets to their destinations. The ba-
sic version of geographic forwarding works as follows:
each node has knowledge of its one-hop neighbors and
their locations. Each intermediate node forwards a data
packet to its neighbor that is geographically closest to
the packet’s destination. This protocol is efficient, but it
may fail if an intermediate node is a local maximum, i.e,
it is closer to the destination than all of its neighbors.

In case of a forwarding failure, Octopus chooses an
alternative target, target′, which is the closest node to
the packet destination from the sets strip[*] and for-
wards the packet to its neighbor that is geographically
closest to target′. We illustrate this recovery technique
in Fig. 5, where node S needs to forward a data packet to
node T . S is closer to T than all of its radio range neigh-
bors. S chooses node E (the closest node to T from S’s
strip[*]) as an alternative target, and forwards the packet
to A (S’s closest neighbor to E). Note that the packet’s
ultimate destination remains unchanged, and subsequent
forwarding steps follow the basic geographic forward-
ing if possible. In Section 5, we show that one-hop geo-
graphic forwarding using this recovery technique is very
effective, achieving the same reliability as two-hop geo-
graphic forwarding. The pseudo-code of the forwarding
protocol appears in Fig. 6.

T

S

AB

D

CE

Figure 5. Octopus’s forwarding protocol.

5 Evaluation

We now evaluate Octopus using simulations. Octo-
pus is implemented in ns2 [2] with CMU’s wireless ex-
tensions. Each node uses the IEEE 802.11 radio and
MAC model provided by the CMU extensions, with a
radio range r of 250 meters and a throughput of 1Mb

sec .
The nodes are initially placed uniformly at random in a

forward (Packet p, Node target)
Node next← closest node to target ∈ neighbors ∪ {this}
if (next = this) then

target′ ← closest node to target from strip[∗]
next← closest node to target′ from neighbors

bcast 〈FORWARD, p, target, next〉

Event handler:
upon receive 〈FORWARD, p, target, next〉 do

if (target = this) then
deliver p

else if (next = this) then
forward (p, target)

Figure 6. The forwarding protocol.

square universe. In most of our simulations, there are 75
nodes per square kilometer. (Li et al. [9] have experi-
mentally shown that such a node density is required in
order to achieve high forwarding reliability.) Each node
moves using the random waypoint model used in [9]: it
chooses a random destination and moves toward it with
a constant speed chosen uniformly between zero and
10 m

sec . When a node reaches its destination, it chooses
a new destination and begins moving toward it imme-
diately in the same speed. For each set of parameters,
we run five 300 seconds long simulations, and in each
simulation, each node initiates an average of one loca-
tion query a minute to random destinations, starting 30
seconds into the simulation, and ending at 270 seconds.
In all of our experiments, the results of all the five sim-
ulations were very close to each other. This consistency
described below is due to the large number of events in
each simulation.

In Section 5.1, we discuss our choice of the protocol’s
parameters. In Section 5.2, we examine Octopus’s scala-
bility as the number of nodes and network area increase.
In Section 5.3, we study Octopus’s fault-tolerance. In
Section 5.4 we evaluate the reliability of Octopus’s for-
warding sub-protocol and compare it with two-hop ge-
ographic forwarding. Finally, in Section 5.5, we com-
pare Octopus’s reliability, overhead, and fault-tolerance
to those of GLS.

5.1 The choice of parameters

Each node broadcasts a HELLO packet every 2 sec-
onds, as in GLS [9]. We chose this frequency in order
to allow a fair comparison between the two protocols.
Nevertheless, in experiments with update frequency of
up to one in five seconds, the results are virtually iden-
tical, due to the nature of movement in the random way
point model, which allows a node to predict a neighbor’s
location in the near future from the neighbor’s last two
reported coordinations.

We set the strip update timeout to 10 seconds. Em-
pirically, increasing this frequency, e.g., to one in 5 sec-
onds, results in a negligible increase in the protocol’s

6

75 / 1 300 / 2 675 / 3
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of nodes / Grid edge length (km)

OCTOPUS−250
OCTOPUS−200

(a) query success rate

75 / 1 300 / 2 675 / 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ac

ke
ts

 p
er

 n
od

e
pe

r
se

co
nd

Number of nodes / Grid edge length (km)

QUERY+REPLY
STRIP_UPDATE
HELLO

200

250

200

250

200

250

(b) packet overhead

75 / 1 300 / 2 675 / 3
0

10

20

30

40

50

60

70

80

90

100

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

MAC
QUERY+REPLY
STRIP_UPDATE
HELLO

200

250

200

250

200
250

(c) byte overhead

Figure 7. Octopus’s query success rates and overhead for different strip widths.

reliability. On the other hand, reducing this frequency to
one in 20 seconds decreases the reliability by 5%−10%.

The retransmissions timeout and discovery timeout
were set to 2 seconds each, as in other protocols, e.g.,
LAR [8]. This timeout value was chosen since, in all
our failure-free experiments, more than 95% of the suc-
cessful queries are received at the source within two sec-
onds from the time they are issued. We allow up to two
retransmissions per packet. Empirically, we observed
that increasing the number of retransmissions beyond
two has a negligible effect of the protocol’s reliability.

Finally, we examine the effect of the strip width on
the protocol’s reliability and overhead. In the full pa-
per [12], we prove that when w ≤

√
3

2 r, location up-
dates are guaranteed to cover all the nodes residing in
segments of the strip they propagate through. Increas-
ing w beyond this threshold may cause some nodes to
be missed by location updates passing next to them.
Nevertheless, increasing w does not necessarily ham-
per Octopus’s reliability. This is so because it reduces
the probability for forwarding holes, as it increases the
area of the intersection between nodes’ radio ranges and
their strips (see the full paper [12]), and thus reduces
the probability that no nodes reside in this area. When
r = 250m,

√
3

2 r = 216m. We experiment with strip
widths of 200 and 250 meters. Fig 7(a) shows the query
success rate as a function of the number of nodes and the
grid’s edge length for OCTOPUS-250 (where w = 250)
and OCTOPUS-200 (where w = 200). The 95% con-
fidence intervals for the results presented in this figure
are up to ±0.8% of the average value. In order to en-
sure a fair comparison, we examine grid edge lengths
that are divisible by both 250 and 200. We see that the
query success rate is very similar for both strip widths.
We conclude that under a density of 75 nodes per square
kilometer, setting w = r does not reduce the reliability
compared to choosing w ≤

√
3

2 r.

At the same time, increasing w reduces the num-
ber of STRIP UPDATE packets sent, since there are
fewer strips. Although the size of each STRIP UPDATE

packet increases as there are more nodes in each
strip, the total number of node locations sent in all
STRIP UPDATE packets does not change. Since each
transmitted packet also includes a MAC header, sending
the same information in fewer packets reduces the total
number of bytes sent by the protocol. Indeed, Fig. 7(b)
and Fig. 7(c) show that increasing the strip width from
200m to 250m reduces the per node packet and byte
complexities of Octopus. Henceforth, we fix the strip
width at 250m. The 95% confidence intervals for the
results presented in Fig. 7(b) and Fig. 7(c) are up to
±0.01 packets and ±0.1 bytes of the average value, re-
spectively.

5.2 Scalability

We now examine Octopus’s scalability. We first ex-
amine the effect of increasing the node density, and then
focus on the impact of increasing the network size while
maintaining a fixed node density.

5.2.1 The effect of node density

We now examine what happens when the node density
increases from 75 to 100 nodes per square kilometer.
Fig. 8(a) shows that the query success rate remains sim-
ilar. This occurs because of two opposing tendencies:
On one hand, increasing the density reduces the proba-
bility for forwarding holes, and thus improves reliabil-
ity. On the other hand, as the node density increases,
the probability for MAC-level collisions increases, and
therefore more packets are lost, which reduces the relia-
bility. The 95% confidence intervals for the results pre-
sented in Fig. 8(a) are up to ±1% of the average value.

In Fig. 8(b) and Fig. 8(c), we see that increasing the
density reduces Octopus’s per node message and byte
complexity. The message complexity is reduced since
the number of STRIP UPDATE packets sent in each
strip does not grow, while these packets are divided
among more nodes. Although the number of node lo-
cations sent in each STRIP UPDATE increases, sending

7

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of Nodes / Grid edge length (km)

OCTOPUS−100
OCTOPUS−75

(a) query success rate

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ac

ke
ts

 p
er

 n
od

e
pe

r
se

co
nd

Grid edge length / Grid edge length (km)

QUERY+REPLY
STRIP_UPDATE
HELLO

75

100

75
100

75

100

75

100

(b) packet overhead

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

10

20

30

40

50

60

70

80

90

100

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

MAC
QUERY+REPLY
STRIP_UPDATE
HELLO

75 100

75 100

75 100

75
100

(c) byte overhead

Figure 8. Octopus’s query success rates and overhead for different node densities.

fewer packets per node reduces the MAC overhead, and
the overall per node byte complexity is therefore also re-
duced. The 95% confidence intervals for the results pre-
sented in Fig. 8(b) and Fig. 8(c) are up to ±0.01 packets
and ±0.1 bytes of the average value, respectively.

5.2.2 Increasing the network size

As the network area increases, the probability for for-
warding holes in the update/query path increases, and
therefore, the reliability inevitably degrades. We ob-
serve that regardless of strip width or density, this degra-
dation is very gradual.

We further observe that the number of location update
packets sent by Octopus is constant, matching the anal-
ysis in the full paper [12]. The overall overhead gradu-
ally increases with the network size and the number of
nodes. The moderate increase in the per query overhead
stems from the increased failure probability of the first
discovery attempt (in the north-south directions), which
leads to more cases in which locations are also searched
in the east-west directions. Nevertheless, this increase
is gradual, because the failure probability is low even
in large grids. We note that similar phenomena occur
in other all-for-some protocols [9, 7, 5, 13], where the
probability for query failures also increases with the net-
work area. This, in turn, increases the overhead due to
query retries or trying alternative location servers.

5.3 Fault-tolerance

Octopus’s main design goal was to provide high fault-
tolerance in the presence of intermittently disconnect-
ing nodes. We now examine whether this design goal is
met. To this end, we introduce unstable nodes, which al-
ternate between being connected and disconnected [9].
Each time an unstable node awakens, it remains con-
nected for a time interval chosen uniformly at random
in the range [0, 120] seconds. And when it disconnects,
it remains disconnected for a time interval chosen uni-
formly at random in the range [0, 60] seconds. Thus, at

any given time, an average of 2
3 of the unstable nodes

are connected. We experiment with a varying percent-
age p of unstable nodes. The remaining nodes are con-
nected throughout the simulation. We experiment in a
fairly large grid of 2.3km by 2.3km. In order to isolate
the effect of node disconnections without impacting the
density, we fix the average number of connected nodes
at a given time at 400. That is, we run 400

1−p+ 2
3 p

nodes

(e.g., 480 nodes when p = 0.5). Note that although the
average density of live nodes at any given time is not re-
duced, it is still challenging to achieve high reliability,
since part of the global state is lost with each node dis-
connect, whereas new nodes connect without any loca-
tion information. Therefore, protocols that employ low
redundancy, e.g., GLS, fail to achieve high routing reli-
ability in the face of disconnects (see Fig 9).

Clearly, location queries for nodes that are discon-
nected during the location query or shortly beforehand
or afterwards are bound to fail. Likewise, nodes that
disconnect shortly after issuing a location query will in-
evitably not receive the query response. We therefore
only take into account queries whose target is connected
during the interval [t−10, t+10] seconds, where t is the
query issue time, and whose query source is connected
during the interval [t, t + 10] (the same approach was
taken in [9]). Note that we only require the source and
query target to remain connected– all other nodes, in-
cluding the target’s location servers and the nodes along
the search path, can disconnect at any time.

Fig. 9 shows the query success rate as a function of
the percentage of unstable nodes. The 95% confidence
intervals for the results presented in this figure are up
to ±1.4%. We see that Octopus achieves perfect fault-
tolerance: its reliability does not degrade at all as we in-
crease the percentage of unstable nodes. This impressive
fault-tolerance is achieved thanks to the high level of re-
dundancy in Octopus, and the freshness of the redun-
dant information: Consider a source S issuing a query
for a target T . The query succeeds when it reaches a
location server in the intersection of S and T ’s strips.

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Fraction of unstable nodes

OCTOPUS
GLS−100

Figure 9. Query success rate as a function of the per-

centage of the unstable nodes.

There are at least two such squares (one in S’s horizon-
tal strip, and one in its vertical strip). Every 10 seconds,
T ’s location is stored at all the nodes residing in these
two squares (since strip update timeout is 10 seconds).
Assuming there are no forwarding holes, as long as one
of the nodes in these squares remains connected during
the 10 seconds interval, the query should be successful.
When the node density is 75, the average population of
these two squares is 9.375 nodes. Even when all the
nodes in the network are unstable, the probability of all
these nodes failing within 10 seconds is negligible. Note
also that the probability for holes does not increase when
nodes are unstable, since the average density is fixed.

5.4 Data forwarding

In order to evaluate the reliability of Octopus’s for-
warding sub-protocol, we run simulations in which data
traffic is sent. Our simulation scenario follows the one
in [9]. Each node’s radio bandwidth is 2Mb

sec . In each
simulation, data traffic is generated by a number of con-
stant bit rate connections equal to half the number of
nodes; no node is a source in more than one connection;
no node is a destination in more than three connections.
Each source sends four 128-byte data packets each sec-
ond for 20 seconds. Each simulation lasts for 300 sec-
onds, and data packets are sent at random times between
30 and 270 seconds into the simulation. All other pa-
rameters are as in the simulations described above. We
vary the number of nodes and the grid’s edge length,
while maintaining a node density of roughly 75 nodes
per square kilometer.

We compare the reliability of Octopus’s forwarding
sub-protocol with that of two-hop geographic forward-
ing, which is employed, e.g., by GLS. For both proto-
cols, target locations are discovered using Octopus’s lo-
cation discovery sub-protocol. Fig. 10 shows that the
forwarding reliability of the two protocols is virtually

0 75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.2

0.4

0.6

0.8

1

F
or

w
ar

di
ng

 s
uc

ce
ss

 r
at

e

Number of nodes / Grid edge length (km)

OCTOPUS
TWO−HOP

Figure 10. Data forwarding reliability.

identical. The 95% confidence intervals for the results
presented in this figure are up to ±1%. We conclude that
the high redundancy of Octopus’s location information
is an adequate substitute for storing dedicated informa-
tion for increasing forwarding reliability. Note that the
additional overhead for maintaining the two-hop neigh-
bor lists needed for two-hop forwarding is substantial,
and it grows with the node density.

5.4.1 Fault tolerance

In Section 5.3, we have evaluated Octopus’s query suc-
cess rate in a failure-prone setting, in which nodes in-
termittently disconnect and reconnect. We now evalu-
ate Octopus’s overall routing reliability in the same set-
ting. We repeat the experiments of Section 5.3 with
a single exception: a successful query location is fol-
lowed by a sending of one 128-byte data packet from the
source to the target. Octopus forwards data packets us-
ing its previously described forwarding protocol. Fig. 11
shows the overall data forwarding reliability as a func-
tion of the percentage of unstable nodes. The 95% confi-
dence intervals for the results presented in this figure are
up to ±1.4%. Note that the overall routing reliability
achieved by Octopus is very close to its query success
rate, since the forwarding reliability in this failure-prone
setting is virtually identically to the forwarding reliabil-
ity achieved in failure-free settings. This is due to the
fact that forwarding reliability is mainly dominated by
the probability for holes, which does not increase when
nodes are unstable, since the average density is fixed. In
addition, forwarding failures due to node disconnections
are usually overcome using retransmissions to alterna-
tive nodes.

5.5 Comparison with GLS

We now compare the reliability, overhead, and fault-
tolerance of Octopus to those of GLS. We use the ns2

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

F
or

w
ar

di
ng

 s
uc

ce
ss

 r
at

e

Fraction of stable nodes

OCTOPUS
GLS−100

Figure 11. Data forwarding success rate as a function

of the percentage of the unstable nodes.

implementation of GLS from MIT [1]. We use the grid
sizes and densities from [9], with one exception: in the
smallest grid (1km by 1km) we place 75 nodes instead
of 100 in order to maintain a similar node density of
roughly 75 nodes per square kilometer in all grid sizes.
Note that these scenarios are not optimized for Octopus,
since most of the grid edge sizes are not multiples of
Octopus’s strip width (250m).

Fig. 12 shows the query success rate for Octopus and
GLS simulations. The 95% confidence intervals for the
results presented in this figure are up to ±0.8%. GLS-
100 and GLS-200 are GLS simulations with a location
update threshold of 100m and 200m, respectively. In
GLS-d, a node updates its order-i location servers af-
ter each movement of 2i−2d meters. We see that with
either threshold, Octopus achieves similar reliability to
GLS in a small network, and better reliability than GLS
in medium and large networks. Octopus’s advantage is
most notable in the largest grid, where Octopus’s reli-
ability is roughly 4% and 7% higher than GLS-100’s
and GLS-200’s, respectively. The reliability gap be-
tween Octopus and GLS increases with the grid size
because of the lower freshness of location information
stored at GLS’s remote location servers. Whereas in Oc-
topus, a node updates all its location servers at the same
high frequency (every 10 seconds), in GLS, the average
frequency at which a node updates its location servers
grows with the grid size. For example, in the 2.9km by
2.9km grid, a GLS-100 node updates its order-4 location
servers only after moving 400 meters, and its order-5 lo-
cation servers after a movement of 800 meters. Thus,
a node moving at the average speed (5 m

sec) updates its
order-4 (order-5) location servers only every 80 (respec-
tively, 160) seconds.

Fig. 13(a) and Fig. 13(b) compare Octopus’s over-
head to that of GLS. The 95% confidence intervals for
the results presented in Fig. 13(a) and Fig. 13(b) are up
to ±0.01 packets and 0.1 bytes, respectively. Thanks to

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−100
GLS−200

Figure 12. Octopus versus GLS: query success rates.

aggregation, Octopus sends a smaller number of packets
than GLS. Furthermore, as opposed to Octopus, in GLS,
the message complexity incurred by the location update
protocol grows with the grid size, as on average each
location update packet is relayed more times. Although
Octopus’s location update packets are larger than GLS’s,
by sending fewer packets, Octopus reduces the number
of bytes sent in MAC-level headers. Therefore, overall,
Octopus’s byte complexity is smaller than GLS’s (see
Fig. 13(b)).

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.5

1

1.5

2

2.5

P
ac

ke
ts

 p
er

 n
od

e
pe

r
se

co
nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200
GLS−100

a) packet overhead

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

20

40

60

80

100

120

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200
GLS−100
MAC

b) byte overhead

Figure 13. Octopus versus GLS: packet and byte over-

head.

10

Octopus’s greatest advantage over GLS is its fault-
tolerance. In Fig. 9 and Fig. 11, we contrast Octopus’s
fault-tolerance against that of the more reliable version
of GLS, GLS-100. As explained in Section 5.3, we ex-
periment with an average of 400 connected nodes at a
time, on a 2.3km by 2.3km grid. Whereas Octopus’s re-
liability does not degrade when the percentage of unsta-
ble nodes increases, GLS’s reliability greatly degrades
with the number of unstable nodes. GLS is less fault-
tolerant than Octopus for two reasons: first, GLS em-
ploys less redundancy, and second, in GLS it takes re-
connecting nodes a long time to update their remote lo-
cation servers.

Finally, we consider simulations with data traffic.
In Section 5.4, we showed that the reliability of Octo-
pus’s forwarding sub-protocol is similar to the reliability
achieved by the two-hop geographic forwarding proto-
col employed by GLS. We now measure the total (data
and protocol) packet overhead incurred by both proto-
cols in the simulation scenario of Section 5.4. Fig. 14
shows the average per node per second number of pack-
ets sent by Octopus and the more efficient version of
GLS, GLS-200. The 95% confidence intervals for the
results presented this figure are up to ±0.01 packets. We
do not measure the byte overhead, because it is domi-
nated by the data traffic. As the figure shows, Octopus
sends fewer packets than GLS.

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.5

1

1.5

2

2.5

3

D
at

a
an

d
pr

ot
oc

ol
 p

ac
ke

ts
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200

Figure 14. Octopus versus GLS: data and protocol

packet overhead.

6 Conclusions

We have presented Octopus, a simple fault-tolerant
and efficient routing protocol for large MANETs. We
have proven Octopus’s scalability: the number of loca-
tion update packets does not increase with the network
size, and the number of bytes in such packets grows like
O(

√
N). Our extensive simulations have illustrated Oc-

topus’s perfect fault-tolerance: in a large grid with hun-
dreds of nodes that intermittently disconnect and recon-
nect, Octopus achieves the same high reliability as when

all nodes are constantly up. Nevertheless, Octopus in-
curs less overhead than previous efficient position-based
routing protocols. This is achieved thanks to the use of
aggregation.

References

[1] Grid modules for ns2.
http://www.pdos.lcs.mit.edu/grid

[2] The network simulator - ns-2. www.isi.edu/nsnam/ns/.

[3] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Wood-
ward. A distance routing effect algorithm for mobil-
ity (DREAM). In ACM/IEEE MobiCom, Dallas, Texas,
1998.

[4] C. Basile, M.-O. Killijian, and D. Powell. A survey of
dependability issues in mobile wireless networks. Tech-
nical report, LAAS CNRS, France, February 2003.

[5] S. Giordano and M. Hamdi. Mobility management: The
virtual home region, Technical report, October 1999.

[6] Z. J. Haas and B. Liang. Ad hoc mobility management
with uniform quorum systems. IEEE/ACM Trans. on
Networking, vol. 7, no. 2, pp. 228–240, Apr 1999.

[7] P. H. Hsiao. Geographical region summary service for
geographical routing. Mobile Computing and Commu-
nications Review, vol. 5, no. 4, 2001.

[8] Y.-B. Ko and N. H. Vaidya. Location-aided routing
(LAR) in mobile ad hoc networks. In Mobile Comput-
ing and Networking, pages 66–75, 1998.

[9] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Mor-
ris. A scalable location service for geographic ad-hoc
routing. In Proceedings of the 6th ACM International
Conference on Mobile Computing and Networking (Mo-
biCom ’00), pages 120–130, Aug. 2000.

[10] Q. Li and D. Rus. Communication in disconnected ad
hoc networks using message relay. Parallel Distrib.
Comput., 63:75–86, 2003.

[11] M. Mauve, J. Widmer, and H. Hartenstein. A survey on
position-based routing in mobile ad hoc networks, 2001.

[12] R. Melamed, I. Keidar, and Y. Barel. Oc-
topus: A fault-tolerant and efficient ad-hoc
routing protocol. TR, department of Elec-
trical Engineering, Technion, April 2005.
http://www.ee.technion.ac.il/people/idish/ftp/octopus-
tr.ps.

[13] I. Stojmenovic. Home agent based location update and
destination search schemes in ad hoc wireless networks,
Technical report, September 1999.

[14] I. Stojmenovic and P. Pena. A scalable quorum based lo-
cation update scheme for routing in ad hoc wireless net-
works. TR 99-09, SITE, University of Ottawa, 1999.

[15] P. Tsuchiya. The landmark hierarchy : A new hierarchy
for routing in very large networks. In ACM Sigcomm,
1988.

11

