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Abstract

Mobile ad-hoc networks (MANETs) are failure-prone environments; it is common for mobile wireless
nodes to intermittently disconnect from the network, e.g., due to signal blockage. This paper focuses on
withstanding such failures in large MANETs: we present Octopus, a fault-tolerant and efficient position-
based routing protocol. Fault-tolerance is achieved by employing redundancy, i.e., storing the location of
each node at many other nodes, and by keeping frequently refreshed soft state. At the same time, Octopus
achieves a low location update overhead by employing a novel aggregation technique, whereby a single
packet updates the location of many nodes at many other nodes. Octopus is highly scalable: for a fixed
node density, the number of location update packets sent does not grow with the network size. And when
the density increases, the overhead drops. Thorough empirical evaluation using the ns2 simulator with up
to 675 mobile nodes shows that Octopus achieves excellent fault-tolerance at a modest overhead: when
all nodes intermittently disconnect and reconnect, Octopus achieves the same high reliability as when all
nodes are constantly up.
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1 Introduction

Mobile ad-hoc networks (MANETs) consist of mo-
bile wireless nodes that communicate with each other
without relying on any infrastructure. Therefore,
routing in MANETs is performed by the mobile nodes
themselves. Such nodes often intermittently discon-
nect from the network due to signal blockage [6, 19].
Thus, an important challenge that ad-hoc routing
protocols should address is coping with such failures
(or disconnections) without incurring high overhead.
Our goal is to provide fault-tolerance, i.e., high rout-
ing reliability when many nodes frequently discon-
nect and reconnect, without sacrificing efficiency in
routing in large MANETs consisting of hundreds of
mobile nodes.

We consider position-based routing protocols, in
which each node can determine its physical location.
Such protocols scale better than non-position-based
ones [21]. Typically, the location of each node is
stored at some other nodes, which act as location
servers for that node [21, 12]. When a node wishes to
send packets to another node, it first issues a location
query in order to discover the target’s location, and
then forwards packets to this location. In position-
based protocols, reliability is measured as the success
rate of location queries [18].

Position-based protocols differ from each other
mainly in how many location servers store each node’s
location [21]. E.g., in DREAM [5], each node acts as
a location server for all nodes, and in LAR [16], each
node is a location server for its one-hop neighbors
only. It has been argued [18] that neither of these ex-
treme approaches is appropriate for large networks,
since they both use flooding to disseminate either
position information (DREAM) or location queries
(LAR). Li et al. [18] have proposed the Grid Loca-
tion Service (GLS), which stores each node’s location
at small number of nodes. They have shown that
this approach, called all-for-some [21], achieves good
tradeoff between reliability and load: each node up-
dates its location at small number of nodes without
flooding the network, and location queries incur a
reasonable overhead. Li et al. have further shown
that in a small network, GLS tolerates intermittent
node disconnections well [18]. However, as we show in
Section 6.4, in large networks, GLS’s fault-tolerance
greatly degrades. For example, in a grid of 2.3km
by 2.3km, with an average of 400 nodes connected to
the network at a given time, when half the nodes in-
termittently disconnect and reconnect, GLS’s query
success rate is only 65%; when all the nodes intermit-

tently disconnect and reconnect, it drops to 53%.

There is an inherent tradeoff between fault-
tolerance and load in all-for-some protocols, since
fault-tolerance is achieved by constantly updating the
location of each node at multiple location servers,
which in typical all-for-some protocols [18, 14] are far
from each other (in order to allow for quick location
discovery). Thus, each node updates each of its loca-
tion servers separately, causing the load to increase
with the level of redundancy. Moreover, a location
update packet is typically relayed several times be-
fore it reaches the appropriate location server, and
the average number of relays increases with the net-
work area. In order to reduce the location update
overhead, in most all-for-some routing protocols, e.g.,
[18, 14], remote location servers are updated less fre-
quently than close ones. In Section 6.4, we show that
in large networks this approach greatly degrades the
fault-tolerance as routing often uses stale informa-
tion.

In order to achieve a better tradeoff between load
and fault-tolerance, we introduce a new location up-
date technique called synchronized aggregation. In
this technique, each location update packet includes
the locations of several nodes and updates many loca-
tion servers. Moreover, updates are synchronized in
the sense that only one node initiates the propagation
of an aggregate update from a given region, and hence
no duplicate updates are sent. It is worth noting that
such a synchronized aggregation technique is not fea-
sible in existing all-for-some protocols, e.g, [18, 14],
in which the locations of nearby nodes are stored at
non-adjacent location servers.

In Section 4, we present Octopus, a simple and effi-
cient all-for-some routing protocol that employs syn-
chronized aggregation in order to achieve high fault-
tolerance without incurring a high load. Octopus di-
vides the network area into horizontal and vertical
strips, and stores the location of each node at all the
nodes residing in its horizontal and vertical strips.
This approach naturally supports synchronized ag-
gregation: all the nodes in the same strip can learn
each other’s locations through the propagation of ex-
actly two location update packets along the strip.
Note that this location update technique does not re-
quire nodes to synchronize their clocks: by knowing
its immediate neighbors’ locations, a node can deter-
mine whether it needs to initiate a strip update. The
propagation of a strip update packet does not require
synchronization at all. Since synchronized aggrega-
tion dramatically reduces the location update over-
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head, Octopus can update all the location servers at
the same high frequency- at a low cost.

On the one hand, Octopus enforces higher re-
dundancy and more freshness of location informa-
tion than previously suggested all-for-some proto-
cols [18, 14], and hence achieves much better fault-
tolerance. On the other hand, by aggregating node
locations and synchronizing their propagation, Oc-
topus incurs lower overhead than these protocols in
typical scenarios.

Octopus has a third important advantage over
most previous all-for-some protocols, e.g., [18, 14]:
In Octopus, the area in which nodes reside does not
need to be pre-known or fixed; it can change at run
time. This feature is crucial for rescue missions and
battle field environments, in which the borders of the
network are not known in advance and are constantly
changing.

Finally, the redundancy of location information in
Octopus has a fourth advantage: nodes use informa-
tion they have about strip neighbors in order to im-
prove the forwarding reliability. Hence, we eliminate
the need to maintain designated information (for ex-
ample, two-hop neighbor lists as in [18]) for improving
the forwarding reliability.

In Section 5, we analyze Octopus’s scalability: we
prove that under a fixed node density, the number
of location update packets per node per seconds is
constant, and the byte complexity grows as O(

√
N)

with the number of nodes N . We also analyze the
probability for update and query propagation failures
in Octopus’s horizontal and vertical strips, and show
that under reasonable density assumptions, the prob-
ability for holes is very small.

In Section 6, we evaluate Octopus’s performance
using extensive ns2 simulations with up to 675 mo-
bile nodes. Our results show that Octopus achieves
high routing reliability, low overhead, good scalabil-
ity, and excellent fault-tolerance. For example, in
a grid of 2.3km by 2.3km with nodes that all in-
termittently disconnect and reconnect, and an aver-
age of 400 connected nodes at a given time, Octopus
achieves a query success rate of 95%, which is identi-
cal to the success rate when all nodes are constantly
up. We also compare Octopus to GLS, the position-
based protocol that achieved the best reliability-load
tradeoff thus far. Our results indicate that in the
absence of failures, Octopus achieves slightly better
reliability than GLS, at lower overhead (both pack-
ets and bytes). In failure-prone settings, Octopus’s
reliability is greatly superior to that of GLS.

2 Related Work

Existing ad-hoc routing approaches can be roughly
divided into two categories: topology-based and
position-based [21]. Topology-based protocols do not
assume that each node can determine its position.
Such protocols usually employ global flooding to dis-
tribute either topology information (e.g., DSDV [24])
or queries (e.g., AODV [25], DSR [15], TORA [23],
and ZRP [13]), and hence suffer from limited scala-
bility [21, 18].

By assuming that each node can determine its lo-
cation, position-based protocols achieve better effi-
ciency and scalability than topology-based ones [21].
Position-based protocols can be classified according
to how many nodes act as location servers and how
many locations each of them holds [21]. In the all-for-
all approach used by DREAM [5], every node acts as
a location server for all nodes. This approach is fault-
tolerant, and is practical in small networks. However,
it has been argued that the overhead of this approach
is prohibitive in large networks, since location up-
dates are flooded [18, 11].

In the some-for-some [12] and some-for-all ap-
proaches [12, 30], some dedicated nodes act as lo-
cation servers for some or all other nodes. These
approaches are appropriate for failure-free networks,
or for settings in which there are reliable servers.
However, such approaches are problematic in failure-
prone networks, since they are vulnerable to the
movement or failure of a single dedicated location
server (as explained in [18]).

Octopus employs the all-for-some approach, in
which each node acts as a location server for some
other nodes. Li et al. [18] have shown that this
approach can achieve a good tradeoff between reli-
ability and load, and can scale well up to at least
600 nodes. All-for-some-based protocols include
GLS [18], GRSS [14], Homezone [10, 26], and [27].
Of these, GLS and GRSS are the only ones that
were extensively evaluated in simulations with mo-
bile nodes. Moreover, only GLS was evaluated in set-
tings in which nodes intermittently disconnect from
the network, and this study was only conducted in a
small network.

Stojmenovic et al. [27] suggest a routing scheme
in which each node periodically propagates its po-
sition in the north and south directions, and loca-
tion queries are sent in the east and west directions.
Similar approaches were also suggested for efficient
content location [29], match-making in sensor net-
works [4], and as a general scheme for implementing
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ad-hoc services [22]. However, unlike Octopus, none
of these previous works aggregate updates, and they
thus miss Octopus’s important performance advan-
tage; individually updating so many nodes is bound
to induce a prohibitively high overhead [3, 20]. More-
over, of these works, only [29] was evaluated with mo-
bile nodes, and none was evaluated in fault-prone set-
tings. Another difference between Octopus and [27]
is that Octopus employs more redundancy by storing
node locations at both their horizontal and vertical
strips. This additional redundancy yields a quadratic
decrease in the probability for query failures. Fi-
nally, [27] does not make additional use of the stored
location information in order to improve the reliabil-
ity of forwarding. In fact, we are not aware of any
previous ad-hoc routing protocol that exploits loca-
tion information for more effective forwarding.

The most thoroughly studied position-based pro-
tocol thus far, GLS [18], partitions the world into
a hierarchy of grids with squares of doubling edge
sizes. In each level of the hierarchy, the location of
each node is stored at three location servers, for a to-
tal of O(log N) location servers under uniformity and
fixed density assumptions. Under the same assump-
tions, Octopus stores the location of each node at
O(
√

N) location servers (see Section 5). In contrast
to Octopus, in GLS remote location servers are up-
dated less frequently than close ones. Thanks to the
use of more location servers and fresher information,
Octopus achieves much higher fault-tolerance than
GLS. Thanks to aggregation, Octopus achieves this
while incurring lower overhead. Moreover, Octopus
is a simpler protocol than GLS.

Although Octopus requires more memory than
GLS for storing location information, Octopus’s
memory requirements are quite reasonable: in our
largest experiment, with 675 nodes, location infor-
mation consumes less than 1KB of memory at each
node. Note that in wireless networks, reducing the
number of transmissions is most crucial, and 1KB of
memory overhead is a small price to pay for the sig-
nificant reduction in message overhead that Octopus
achieves.

In almost all the previous location-based routing
protocols, each location update packet includes the
location of a single node and updates a single lo-
cation server. The only exception we are familiar
with is GRSS [14]. However, in contrast to Oc-
topus, in GRSS location updates are not synchro-
nized, i.e., several nodes in the same region can ini-
tiate a location update simultaneously, thus causing

many duplicate packets to be sent. Consequently, as
shown in [14], GRSS often fails to achieve lower over-
head than GLS. Moreover, as opposed to Octopus,
in which each location update packet contains iden-
tities of O(

√
N) nodes (assuming the system model

described in Section 3), in GRSS, a location update
packet can contain O(N) node identities. In order
to reduce the packet size, GRSS uses Bloom filters.
However, this technique may lead to incorrect routing
due to false positives [14].

In LAR [16], each node knows only the locations
of its immediate neighbors. Stojmenovic et al. [28]
improve LAR by using a selective flooding algorithm
that eliminates loops, and hence reduces global flood-
ing without impacting success rate. This approach is
efficient when the number of location queries is low.
However, when location queries are frequent, this ap-
proach is not practical, as location queries may be
globally flooded [18].

Finally, some ad-hoc protocols, e.g., Span [7] and
GAF [33], focus on reducing energy consumption by
allowing nodes to sleep for extensive periods, leav-
ing a minimal set of nodes awake to perform routing.
Such an approach employs no redundancy, and hence
is inherently not fault-tolerant. The fault-tolerance
of this approach is improved by algorithms, e.g., Wu
and Li [32] and Dai and Wu [8], that organize the
nodes into a richly-connected approximate dominat-
ing set1. Such algorithms are efficient in a failure-free
low mobility network. However, in a dynamic failure-
prone network, these algorithms can incur high over-
head, since they constantly need to update and re-
calculate the approximate dominating set when the
underlying graph changes [32]. In addition, these
algorithms perform badly in the worst case (O(N)-
approximation) [9].

3 System Model

The network consists of a collection of mobile nodes
moving in a rectangular space. The set of nodes can
change over time as nodes connect and disconnect.
The coordinates of the space can also change over
time. Each node can determine its own position, e.g.,
using GPS. Each node can broadcast packets to all its
neighbors within a certain radius r called the radio
range. Packets can be lost due to MAC-level colli-
sions or barriers.

1A set is dominating if all the nodes in the MANET are
either in the set or neighbors of nodes in the set.
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In our simulations, we use the MAC layer provided
by the ns2 simulator, which simulates packet loss in
typical MANETs. As in other protocols [18, 14], a
certain minimal node density throughout the grid is
required in order to ensure reliability. Thus, we as-
sume that the number of nodes grows proportion-
ally with the area of the network. As in [18, 14], we
assume that nodes are uniformly distributed in the
space.

Octopus divides the space into horizontal and verti-
cal strips. The strip width, w, is constant and known
to all nodes. Knowing w, the zero longitude and lat-
itude, and its current location, each node can deter-
mine which horizontal and vertical strips it resides in
at a given time. For example, in Fig. 1, node S re-
sides in the highlighted horizontal and vertical strips,
and its radio range neighbors are circled. Each strip
has a unique identifier (of type StripID), identifying
its location relative to the global zero coordinates.

D

A

C

S
B

Figure 1: Node S’s neighbors and strips. A, B,C, and
D are end nodes in the highlighted strips.

4 Octopus

Octopus is composed of three sub-protocols: location
update, location discovery, and forwarding. The lo-
cation update protocol maintains each node’s loca-
tion at its designated location servers, as well as at
its radio range neighbors. When a node wishes to
send packets to another node, it first issues a loca-
tion query to the location discovery protocol in or-
der to discover the target’s location, and then uses
the forwarding protocol to forward packets to this
location. Sections 4.1, 4.2, and 4.3 present Octo-

pus’s location update, location discovery, and for-
warding sub-protocols, respectively. The types and
data structures used in the three sub-protocols are
presented in Fig. 2.

Types:
NodeID – a node identifier.
StripID – a strip identifier.
Direction – in {north= 0, south= 1, west= 2, east= 3}
Node – 〈NodeID id, Real x, Real y, Time time, StripID hid,

StripID vid, Real p x, Real p y, Time p time〉
Data structures
Node this – this node.
Set of Node neighbors, strip[4], recent locations.

Figure 2: Octopus’s types and data structures.

In all three sub-protocols, we use limited retrans-
missions in order to partially overcome packet loss:
Whenever a node A sends a packet to a node B, and
B is expected to send a packet in return (e.g., to prop-
agate/forward the packet further or respond to a lo-
cation query), node A waits to hear the appropriate
packet from B. If A does not hear B’s packet within
a retransmissions timeout, then A chooses another
node C, distinct from B, and re-sends the packet to
C. Up to two retransmission attempts are made per
packet.

4.1 Location Update

Octopus synchronizes location updates by having
them initiated only by each strip’s end nodes. A north
(south) end node is a node that has no neighbors
in direction north (respectively, south) in its verti-
cal strip, and a west (east) end node is a one that
has no neighbors to the west (respectively, east) in
its horizontal strip. For example, in Fig. 1, A,B, C,
and D are end nodes in S’s strips. Periodically, an
end node initiates a strip update packet, which prop-
agates along the strip towards the end node at the
other side of the strip.

The location update protocol maintains two data
structures at each node: neighbors – radio range
neighbors, and strip[i] for i ∈ {north, south, west,
east} – nodes residing in direction i in the node’s
strip. Each element in these sets is of type Node.
As shown in Fig. 2, this type is a tuple including
the following fields: id – the node’s identifier, x, y –
the node’s last reported coordinates, time – the time
of the last received coordinates report, hid, vid – the
node’s horizontal and vertical StripIDs, p x, p y – the
node’s previous coordinates, and p time – the time of
the previous received coordinates report.

4



The neighbors set is updated upon receiving a short
HELLO packet from another node. This packet is
broadcast by every node every hello timeout seconds,
and it contains the broadcasting node’s identity and
physical coordinates. If a node does not hear from
some neighbor n for 2hello timeout seconds, it re-
moves n from neighbors.

The pseudo-code for maintaining strip[*] is pre-
sented in Fig. 3. The locations of all the nodes
in a given strip are propagated through the strip
via the periodic diffusion of STRIP UPDATE pack-
ets initiated by the end nodes of the strip every
strip update timeout. An end node broadcasting a
STRIP UPDATE packet to direction d includes in the
packet all its neighbors that are in the same strip. A
STRIP UPDATE packet also includes the strip iden-
tifier, the packet direction, and a target node, which
will forward this packet further. The target is chosen
to be the farthest node in the propagation direction.

loop forever
foreach Direction d do

if (I have no neighbors in direction d) then
strip[d] ← ∅
StripID sid ← get strip id (d)
propagate packet(sid, opposite direction to d)

sleep (strip update timeout)

Event handler:
upon receive 〈STRIP UPDATE, sid, d, set, next〉 do

if (sid = this.vid ∨ this.hid) then
strip[opposite direction to d] ← set

/* If I am the packet target */
if (this = next) then

propagate packet (sid, d)

Procedures:
set of Node get nodes in strip (sid)

return {this} ∪ {n ∈ neighbors|n.hid = sid ∨ n.vid = sid}

StripID get strip id (d)
if d ∈ {north, south} then

return this.vid
return this.hid

void propagate packet (sid, d)
set of Node set ← strip[opposite direction to d]

∪ get nodes in strip(sid)
Node next ← farthest node in direction d in set
/* If propagation is not complete */
if (this 6= next) then

bcast 〈STRIP UPDATE, sid, d, set, next〉

Figure 3: The strip update protocol.

Upon receiving a STRIP UPDATE packet, a node
updates the appropriate entry in strip[*]. If the node
is designated as the packet target and is not the
strip’s end-node, then it appends to the packet all

its neighbors that reside in the packet’s strip, chooses
a new target, and broadcasts the packet. The propa-
gation of a STRIP UPDATE packet completes when
it reaches an end node, i.e., when the farthest node
in direction d is the current node (this = next). For
example, in Fig. 1, a STRIP UPDATE packet with
direction south begins at node C and propagates to
the south-most node of the strip, D.

Forwarding holes

We define a forwarding hole to be a situation in which
a node X cannot forward a STRIP UPDATE packet
to direction d in a strip s although there is another
node in s that is in direction d of X. For exam-
ple, in Fig. 1, there is a forwarding hole south of
node B. In a typical scenario, the probability for
a forwarding hole is small (less than 0.02, see Sec-
tion 5.2). Moreover, as we describe in Section 4.2,
storing each node’s location at both the horizontal
and vertical strips quadratically decreases the prob-
ability for query failures due to forwarding holes. Fi-
nally, we also implemented several mechanisms based
on face routing [17] for bypassing a forwarding hole.
However, these mechanisms achieve only a negligible
increase in Octopus’s reliability, since the probabil-
ity for a forwarding hole is negligible as explained
above. Hence, we present and evaluate Octopus with-
out these mechanisms.

Although the probability for a routing failure due
to forwarding holes is small, we have implemented a
simple bypass mechanism in order to overcome such
failures: in this mechanism, a node that cannot for-
ward a STRIP UPDATE packet to direction d in a
strip s forwards the packet to a node that is in di-
rection d of it and resides in an adjacent strip to s.
Empirically, the additional reliability achieved by this
bypass mechanism is negligible (less than 2%), since
Octopus already achieves high reliability without it.
Therefore, for simplicity reasons, we present and eval-
uate Octopus without the bypass mechanism.

Correctness

We now identify circumstances under which Octo-
pus’s location update protocol achieves 100% relia-
bility, i.e., correctly stores node locations at all of
their designated location servers. We note, however,
that in the presence of failures, movements, packet
loss, and uneven node distribution, these ideal cir-
cumstances are not always achieved. Nevertheless, in
Section 6, we show that in typical scenarios with fre-
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quent failures and movements, Octopus’s reliability
is close to 95%.

Lemma 1. In a run in which there are no node
movements or failures and no packet loss, if the strip
width w ≤

√
3

2 r and the bound on packet delay is less
than hello timeout, then in every segment of a strip
in which there are no forwarding holes, every node
eventually knows the identities and locations of all
the nodes that reside in this segment.

Proof. We first note that all the nodes’ neighbors’
sets are accurate, i.e., include exactly all the nodes
within their radio range, since there is no packet loss,
the bound on packet delay is less than hello timeout,
and a node is removed from the current node’s neigh-
bors set only if the current node does not hear from
this node for 2hello timeout seconds. Therefore, af-
ter at most 2hello timeout seconds, only an end node
initiates a propagation of a STRIP UPDATE packet.
Note also that in a segment of a strip with no holes,
a propagation of a STRIP UPDATE packet from one
end node is guaranteed to eventually reach the other
end node of the segment, since there is no packet loss
or failures.

Consider a segment of strip s with no holes.
Assume that the segment’s end node A sends a
STRIP UPDATE packet m1 to node B, and then
B sends a STRIP UPDATE packet m2 to node C.
Without loss of generality, assume that s is a horizon-
tal strip. Consider a node N in s whose x coordinate
is between A’s and B’s, at distance ∆x from A’s x
coordinate. If ∆x ≤ r

2 , then N is in A’s radio range,
and hence it receives m1. Since w ≤

√
3

2 r and A’s
neighbors set is accurate, m1 contains all the nodes
in s within r

2 meters of A in the direction of m1, as all
these nodes are within A’s radio range (see Fig. 4).
Therefore, after receiving m1, N knows the identities
and locations of all the nodes between it and A. If
∆x > r

2 , then N receives m2 as it is in B’s radio
range (see Fig. 4). According to the protocol, since
A’s and B’s neighbors sets are accurate, m2 contains
all the nodes in s that are within A’s and B’s ra-
dio ranges. Thus, in both cases, after the broadcast
of m2, N knows the identities and locations of all
the nodes in s whose x coordinates are between N ’s
and A’s. Note that, since there are no movements or
failures, and since only end nodes initiate updates,
parallel propagations of different STRIP UPDATE
packets do no violate the protocol’s correctness, as
such packets contain the same information.

By induction, we get that after propagating a

BA

rr

r/2r/2

w

Figure 4: A strip of width w =
√

3r
2 .

STRIP UPDATE packet from A to Z, the end node
at the other end of the segment, each node knows the
identities and locations of all the nodes in the seg-
ment between it and A. Likewise, after propagating
a STRIP UPDATE packet from Z to A, each node
knows the identities and locations of all the nodes in
s between it and Z.

Although Lemma 1 requires w ≤
√

3r
2 to ensure

that nodes are not missed by a STRIP UPDATE
propagation, the simulations in Section 6.1 show that
increasing w from

√
3r
2 to r does not hurt the relia-

bility, since increasing w also reduces the probability
for forwarding holes (see Section 5.2), and hence may
increase the reliability.

4.2 Location Discovery

The location discovery protocol uses the information
stored in strip[*] and neighbors, as well as the set
recent locations, which is a cache of recently discov-
ered target locations. The cache entries expire after
strip update seconds. The location discovery protocol
is presented in Fig. 5.

The interface to the location discovery protocol
consists of the function locate, which upon success
results in addition of its target to recent locations. It
first searches the target in one of the locally main-
tained sets (strip[*], neighbors, and recent locations).
If the target’s location is not found in these sets,
the protocol broadcasts two QUERY packets to the
node’s north-most and south-most neighbors in its
square or in adjacent squares in its vertical strip. The
recipient of a QUERY packet continues the search in
the same manner, forwarding the packet in the same
direction if needed. Once a QUERY packet reaches a
node that knows the target, it broadcasts a REPLY
packet with its information about the target towards
the source. Every node that receives a REPLY packet
adds the located target to its recent locations. In rare
cases in which no REPLY packet is received within
discovery timeout seconds, the search is repeated in
the same manner in a west-east directions.
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locate (Node ID tid)
Node target ← search locally (tid)
if (target = null) then

search location (this, tid, north)
search location (this, tid, south)
sleep (discovery timeout)
if (target /∈ recent locations) then

search location (this, tid, west)
search location (this, tid, east)

Event handlers:
upon receive 〈QUERY, src, t id, d, next〉 do

if (next = this) then
Node target ← search locally (t id)
if (target = null) then

search location (src, t id, d)
else /* target found - send reply */

Direction d′ ← opposite direction to d
send reply (src, target, d′)

upon receive 〈REPLY, src, target, d, next〉 do
recent locations ← recent locations ∪ {target}
if (next = this) then

send reply (src, target, d)

Macro:

strip neighbors[d] , (neighbors ∩ strip[d]) ∪ {this}

Procedures:
Node search locally (target id)

if (∃n s.t. n ∈ neighbors ∪ strip[∗] ∪ recent locations
∧n.id = target id) then
return n

return null

search location (src, t id, d)
Node next ← farthest node in strip neighbors[d] in the

same square as this or in an adjacent square
if (next 6= this) then

bcast 〈QUERY, src, t id, d, next〉

send reply (src, target, d)
Node next ← closest node to src in strip neighbors[d]
if (next 6= this) then

bcast 〈REPLY, src, target, d, next〉

Figure 5: The location discovery protocol.

Fig. 6 depicts how node S discovers node T ’s loca-
tion. S broadcasts QUERY packets to the north and
south. The next hop of the north-going packet is I.
I fails to discover T ’s location locally, and forwards
the packet to its north-most neighbor J . T is in J ’s
strip[east]. Thus, J broadcasts a REPLY packet con-
taining T ’s location towards S. This packet reaches
I, which in return broadcasts the packet to S.

Correctness

As in the previous section, we identify circumstances
under which Octopus’s location discovery service
achieves 100% reliability.
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Figure 6: Successful query location.

Lemma 2. Consider a run with no node movements,
node disconnections, or packet loss, and assume that
w ≤

√
3

2 r and the bound on packet delay is less than
hello timeout. Consider a location query with nodes
S and T as the query’s source and target, respectively.
Let square a (b) be the intersection between S’s verti-
cal (horizontal, respectively) strip and T ’s horizontal
(vertical, respectively) strip (see Fig. 6). If there are
no forwarding holes between S and a and between T
and a, or there are no holes between S and b and be-
tween T and b, then S’s recent locations eventually
includes T ’s location.

Proof. Without loss of generality, assume that there
are no forwarding holes between S and a and be-
tween T and a. Since QUERY packets never skip
over squares (see search location in Fig. 5) and there
is no packet loss, a QUERY packet propagating along
the strip reaches to some node N that resides in a. By
Lemma 1, N knows T ’s location. Since N does not
move or fail, it initiates a REPLY packet. Since there
are no holes or packet loss, this packet propagates
back to S, and S includes T in its recent locations
set.

4.3 Data Forwarding

Fig. 7 describes the process of sending a data packet
m from the current node S to a target node T . First,
S calls to the function locate (see Fig 5) in a separate
thread. When S’s recent locations set contains T ’s
location, S forwards the data packet to T using the
interface forward of the forwarding protocol.

Octopus employs geographic forwarding [21] in or-
der to forward data packets to their destinations. The
basic version of geographic forwarding works as fol-
lows: each node has knowledge of its one-hop neigh-
bors and their locations. Each intermediate node for-
wards a data packet to its neighbor that is geograph-
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send (m, T )
spawn thread to run locate(T )
wait until exists n ∈ recent locations s.t. n.id = T
forward (m, n)

forward (Packet p, Node target)
update coordinates (target)
Node next ← closest node to target in neighbors ∪ {this}
if (next = this) then

target′ ← closest node to target in strip[∗]
update coordinates (target′)
next ← closest node to target′ in neighbors

bcast 〈FORWARD, p, target, next〉

Event handler:
upon receive 〈FORWARD, p, target, next〉 do

if (target = this) then
deliver p

else if (next = this) then
forward (p, target)

Procedure:
update coordinates (t)

Update t.x, t.y, t.time according to the current time and t’s
direction of movement obtained from t’s last two reported
coordinations. Store old values in t.p x, t.p y, t.p time.

Figure 7: The forwarding protocol.

ically closest to the packet’s destination. This proto-
col is efficient, but it may fail if an intermediate node
is a local maximum, i.e, it is closer to the destination
than all of its neighbors.

In case of a forwarding failure, Octopus chooses an
alternative target, target′, which is the closest node
to the packet destination from the sets strip[*] and
forwards the packet to its neighbor that is geograph-
ically closest to target′. We illustrate this recovery
technique in Fig. 8, where node S needs to forward a
data packet to node T . S is closer to T than all of its
radio range neighbors. S chooses node E (the closest
node to T from S’s strip[*]) as an alternative target,
and forwards the packet to A (S’s closest neighbor
to E). Note that the packet’s ultimate destination
remains unchanged, and subsequent forwarding steps
follow the basic geographic forwarding if possible. In
Section 6, we show that this recovery technique is
very effective, achieving the same reliability as two-
hop geographic forwarding as used in [18] .

Since nodes continue to move while packets are
en route to them, it is important to constantly re-
estimate the target’s location. In each forwarding
step, the forwarding node forwards the data packet to
the target’s estimated location. This location is cal-
culated according to the target’s last two reported co-
ordinates, which are included in the Node data struc-
ture sent in REPLY and FORWARD packets.

T

S

AB

D

CE

Figure 8: Octopus’s forwarding protocol.

5 Analysis

In Section 5.1, we analyze Octopus’s scalability, and
in Section 5.2 we analyze the probability for forward-
ing holes.

5.1 Scalability

The following lemma shows that the message com-
plexity of Octopus’s location update protocol is con-
stant with respect to the network size.

Lemma 3. Assuming a fixed node density ρ, the per
node per second packet complexity of the location up-
date protocol does not grow with the network size.

Proof. Consider a STRIP UPDATE packet for-
warded by a node n that is within a distance r or more
of the end of the grid (that is, any internal node in
the grid). Assuming a fixed node density ρ, then the
expected distance between n and the packet’s next
destination depends only on ρ, and not on the net-
work size. This is because n forwards the message
to the farthest node in its neighborhood. Asymptot-
ically, when the grid is large, most of the nodes are
not close to the ends of the grid. Hence, we neglect
the effect of the location of the forwarding node on
the average propagation distance. Denote the aver-
age propagation distance by δ.

Second, we observe that the probability for a for-
warding hole at any particular point in the strip is
independent of the network size. Therefore, the av-
erage percentage of the strip in which there are no
forwarding holes is constant with respect to the net-
work size. Denote this portion by α.

In a single iteration of the strip update protocol,
the propagation of STRIP UPDATE packet(s) along
a strip with an edge length of e requires an aver-
age of αe

δ transmissions in each direction. Denote
σ = 1/strip update timeout. Then on average, 2αeσ

δ

8



STRIP UPDATE packets per strip are sent in a sec-
ond. In order to obtain the average per node message
complexity, we divide this number by the expected
number of nodes in a strip, which is ρew, and multi-
ply it by 2 since STRIP UPDATE packets are prop-
agated in both horizontal and vertical strips. There-
fore, on average, each node broadcasts 4αeσ

δρew = 4ασ
δρw

STRIP UPDATE packets per second, which is inde-
pendent of the network size.

In addition to STRIP UPDATE packets, the lo-
cation update protocol also sends HELLO packets.
Since each node broadcasts HELLO packets at a fixed
frequency, the total per node per second message
complexity incurred by the location update protocol
is constant with respect to the network size.

The next lemma shows that the byte complexity of
Octopus’s location update protocol with N nodes is
O(
√

N).

Lemma 4. Assuming a fixed node density, the per
node per second byte complexity incurred by the loca-
tion update protocol with N nodes is O(

√
N).

Proof. Recall that in our model, we assume that
N nodes are uniformly distributed in the network
area. Therefore, assuming a fixed node density, when
we increase N , the network edge size, e, increases
by O(

√
N), and therefore, the number of nodes in

each strip increases like O(
√

N). Thus, the number
of bytes in STRIP UPDATE packets increases like
O(
√

N). The size of a HELLO packet is constant.
From Lemma 3, we get that the number of packets

sent per node does not increase with N , and therefore
the overall per node byte complexity of the location
update protocol is O(

√
N).

5.2 Update/Query Propagation Reli-
ability

Forwarding holes in strips may hamper Octopus’s re-
liability, as they may prevent location updates from
propagating in the entire strip. We now analyze the
probability for forwarding holes. We show that un-
der reasonable density assumptions, this probability
is very small, which explains why Octopus achieves
excellent reliability in the simulations below.

A forwarding hole occurs when a node has no ra-
dio range neighbors in the strip in the direction the
packet is going, i.e., when there are no nodes in the in-
tersection between the forwarding node’s radio range
and the strip in the packet’s direction. For example,
in Fig. 9, a hole in N ’s east direction occurs if there

are no nodes in the area denoted by A. The size of
this area depends on w, r, and the node’s location
relative to the strip boundaries. Without loss of gen-
erality, let us examine a horizontal strip. Consider
a node whose y coordinate is at distance d from the
south boundary of the strip. Using the equation for
the area of a circular segment [31], we compute A as
follows:

As(d) = r2 cos−1
(d

r

)
− d

√
r2 − d2

A (d) =
Πr2 − (As(d) + As(w − d))

2

r

As(d)

w−d

d

N

As(w−d)

A

Figure 9: Node N has a forwarding hole in direction
east if area A is uninhabited.

For an asymptotic analysis, we use a Poisson node
distribution. Since the expected number of nodes in
an area of size A is ρA, we get that the probability
of no nodes residing in A is:

Prd = e−ρA(d)

Since this probability varies with d, in order to
compute the average probability for a forwarding hole
we need to average Prd for d’s in [0, w]. We observe
that Prd monotonically decreases when d grows from
0 to w/2 (as the area gets larger), and then sym-
metrically increases as d grows from w/2 to w. The
highest probability occurs when d = 0 or d = w. We
compute a coarse lower bound of the probability for
holes by considering two cases: first, when d is be-
tween w/4 and 3w/4, and second when d is not in
the middle half of the strip. We bound the probabil-
ity for the first case by looking at its minimum point,
where d = w/4, and we bound the second case by
looking at its minimum point, where d = 0. We get
the following:

Pr[hole] <
1
2
Prw/4 +

1
2
Pr0
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When we instantiate the formula above with ρ =
75, w = r = 0.25 (used in most of our simulations),
we get that Pr[hole] < 0.02. This explains why Oc-
topus achieves high query success rate in typical sce-
narios. With a strip width of 0.2 = 4r

5 <
√

3r
2 , which

ensures that location updates and queries are received
at all the nodes residing in segments of the strip they
propagate through, we get that Pr[hole] ≈ 0.0327.
Hence, we see that two opposing tendencies affect
the protocol’s reliability: increasing w beyond

√
3r
2

reduces the probability for a forwarding hole, and
hence increases the reliability, but it also increases
the probability that a location update or query will
not be received by all the nodes residing in segments
of the strip it propagates through. Our simulations in
Section 6.1 show that these two strip widths achieve
virtually the same reliability.

6 Evaluation

We now evaluate Octopus using simulations. Octo-
pus is implemented in ns2 [2] with CMU’s wireless
extensions. Each node uses the IEEE 802.11 radio
and MAC model provided by the CMU extensions,
with a radio range r of 250 meters and a throughput
of 1Mb

sec . The nodes are initially placed uniformly at
random in a square universe. In most of our simula-
tions, there are 75 nodes per square kilometer. (Li et
al. [18] have experimentally shown that such a node
density is required in order to achieve high forward-
ing reliability.) Each node moves using the random
waypoint model used in [18]: it chooses a random des-
tination and moves toward it with a constant speed
chosen uniformly between zero and 10 m

sec . When a
node reaches its destination, it chooses a new desti-
nation and immediately begins moving toward it at
the same speed. For each set of parameters, we run
five 300 seconds long simulations, and in each simu-
lation, each node initiates an average of one location
query a minute to random destinations, starting 30
seconds into the simulation, and ending at 270 sec-
onds. In all of our experiments, the results of all the
five simulations were very close to each other. This
consistency is due to the large number of events in
each simulation.

In Section 6.1, we discuss our choice of the pro-
tocol’s parameters. In Section 6.2, we examine Oc-
topus’s scalability as the number of nodes and net-
work area increase. In Section 6.3 we evaluate the
reliability of Octopus’s forwarding sub-protocol and
compare it with two-hop geographic forwarding. In

Section 6.4, we study Octopus’s fault-tolerance. Fi-
nally, in Section 6.5, we compare Octopus’s reliability,
overhead, and fault-tolerance to those of GLS.

6.1 The Choice of Parameters

In the simulations reported below, each node broad-
casts a HELLO packet every 2 seconds, as was done
in GLS [18]. We chose this frequency in order to allow
a fair comparison between the two protocols. Never-
theless, we also ran experiments with a hello timeout
of up to five seconds, and the results were virtually
identical. This occurs due to the nature of movement
in the random way point model, which allows a node
to predict a neighbor’s location in the near future
from the neighbor’s last two reported coordinations.

We set the strip update timeout to 10 seconds. Em-
pirically, reducing this value, e.g., to 5 seconds, re-
sults in a negligible increase in the protocol’s reliabil-
ity. On the other hand, increasing this timeout to 20
seconds, decreases the reliability by 5%−10%.

The retransmissions timeout and discovery timeout
were set to 2 seconds each, as in other protocols, e.g.,
LAR [16]. This timeout value was chosen since, in all
our failure-free experiments, more than 95% of the
successful queries are received at the source within
two seconds from the time they are issued. We allow
up to two retransmissions per packet. Empirically,
we observed that increasing the number of retrans-
missions beyond two has a negligible effect of the
protocol’s reliability.

Finally, we examine the effect of the strip width
on the protocol’s reliability and overhead. In Sec-
tion 4.1, we proved that when w ≤

√
3

2 r, location
updates are guaranteed to cover all the nodes resid-
ing in segments of the strip they propagate through.
Increasing w beyond this threshold may cause some
nodes to be missed by location updates passing next
to them. Nevertheless, increasing w does not neces-
sarily hamper Octopus’s reliability. This is so because
it reduces the probability for forwarding holes, as it
increases the area of the intersection between nodes’
radio ranges and their strips (see Section 5.2), and
thus reduces the probability that no nodes reside in
this area. When r = 250m,

√
3

2 r = 216m. We exper-
iment with strip widths of 200 and 250 meters. In
order to ensure a fair comparison, we examine grid
edge lengths that are divisible by both 250 and 200.
Fig. 10 shows the query success rate as a function of
the number of nodes and the grid’s edge length for
OCTOPUS-250 (where w = 250) and OCTOPUS-
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Figure 10: Octopus’s query success rates for different
strip widths.

200 (where w = 200). The 95% confidence inter-
vals for the results presented in this figure are very
tight: up to ±0.8% of the average value. We see that
the query success rate is very similar for both strip
widths. We conclude that under a density of 75 nodes
per square kilometer, setting w = r does not reduce
the reliability compared to choosing w ≤

√
3

2 r.

At the same time, increasing w reduces the
number of STRIP UPDATE packets sent, since
there are fewer strips. Although the size of each
STRIP UPDATE packet increases as there are more
nodes in each strip, the total number of node loca-
tions sent in all STRIP UPDATE packets does not
change. Since each transmitted packet also includes a
MAC header, sending the same information in fewer
packets reduces the total number of bytes sent by
the protocol. Indeed, Fig. 11(a) and Fig. 11(b) show
that increasing the strip width from 200m to 250m
reduces the per node packet and byte complexities of
Octopus. Fig. 11(a) shows for each setting the av-
erage number of packets of each type and Fig. 11(b)
shows the average number of protocol bytes in each
packet type as well as (in white) the average num-
ber of bytes in MAC headers. The 95% confidence
intervals for the results presented in Fig. 11(a) and
Fig. 11(b) are up to ±0.01 packets and ±0.1 bytes of
the average value, respectively, indicating that the re-
sults are accurate. Henceforth, we fix the strip width
at 250m.
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Figure 11: Octopus’s overhead for different strip
widths.

6.2 Scalability

We now examine Octopus’s scalability. We first ex-
amine the impact of increasing the network size while
maintaining a fixed node density, and then focus on
the effect of increasing the node density.

6.2.1 Increasing the network size

As the network area increases, the probability for for-
warding holes in the update/query path increases,
and therefore, the reliability inevitably degrades. We
observe that regardless of strip width or density, this
degradation is very gradual (see Fig. 10).

Figure 11 examines the increase of Octopus’s over-
head as the network size and the number of nodes

11



grow. Fig. 11(a) shows that the number of location
update packets sent by Octopus is constant, match-
ing the analysis in Section 5.1. The overall packet
overhead gradually increases with the network size
and the number of nodes. The moderate increase in
the per query overhead stems from the increased fail-
ure probability of the first discovery attempt (in the
north-south directions), which leads to more cases
in which locations are also searched in the east-west
directions. Nevertheless, this increase is gradual, be-
cause the failure probability is low even in large grids.
We note that similar phenomena occur in other all-
for-some protocols [18, 14, 10, 26], where the prob-
ability for query failures also increases with the net-
work area. This, in turn, increases the overhead due
to query retries or trying alternative location servers.

Fig. 11(b) examines the increase in Octopus’s byte
overhead as the network size and the number of nodes
grow. We note that the byte (and packet) over-
head incurred by broadcasting HELLO packets is
constant with respect to the networks size. Although
most of the broadcasted packets are of type HELLO,
their byte overhead is small, since these packets are
very small. As expected, the number of bytes in
STRIP UPDATE packets increases with the network
size (see Section 5.1). As explained above, the num-
ber of QUERY and REPLY packets also increases
with the network size (see Fig.11(a)), and hence the
number of bytes in these two types of packets also in-
creases with the network size. However, this increase
is negligible, as these packets are very small.

6.2.2 The effect of node density

We now examine what happens when the node den-
sity increases from 75 to 100 nodes per square kilo-
meter. Fig. 12 shows that the query success rate re-
mains similar. This occurs because of two opposing
tendencies: On the one hand, increasing the density
reduces the probability for forwarding holes, and thus
improves reliability. On the other hand, as the node
density increases, the probability for MAC-level colli-
sions increases, and therefore, more packets are lost,
which reduces the reliability. The 95% confidence in-
tervals for the results presented in Fig. 12 are up to
±1% of the average value.

In Fig. 13(a) and Fig. 13(b), we see that increas-
ing the density reduces Octopus’s per node message
and byte complexity. The message complexity is re-
duced since the number of STRIP UPDATE packets
sent in each strip does not grow, while these packets
are divided among more nodes. Although the num-
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Figure 12: Octopus’s query success rates for different
node densities.

ber of node locations sent in each STRIP UPDATE
increases, sending fewer packets per node reduces the
MAC overhead, and the overall per node byte com-
plexity is therefore also reduced. The 95% confidence
intervals for the results presented in Fig. 13(a) and
Fig. 13(b) are up to ±0.01 packets and ±0.1 bytes of
the average value, respectively.

6.3 Data Forwarding

In order to evaluate the reliability of Octopus’s for-
warding sub-protocol, we run simulations in which
data traffic is sent. Our simulation scenario follows
the one in [18]. Each node’s radio bandwidth is 2Mb

sec .
In each simulation, data traffic is generated by a num-
ber of constant bit rate connections equal to half the
number of nodes; no node is a source in more than
one connection; no node is a destination in more than
three connections. Each source sends four 128-byte
data packets each second for 20 seconds. Each simu-
lation lasts for 300 seconds, and data packets are sent
at random times between 30 and 270 seconds into the
simulation. All other parameters are as in the simula-
tions described above. We vary the number of nodes
and the grid’s edge length, while maintaining a node
density of roughly 75 nodes per square kilometer.

We compare the reliability of Octopus’s forward-
ing sub-protocol with that of two-hop geographic for-
warding, which is employed, e.g., by GLS. For both
protocols, target locations are discovered using Octo-
pus’s location discovery sub-protocol. Fig. 14 shows
that the forwarding reliability of the two protocols is
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Figure 13: Octopus’s overhead for different node den-
sities.

virtually identical. The 95% confidence intervals for
the results presented in this figure are up to ±1%. We
conclude that the high redundancy of Octopus’s loca-
tion information is an adequate substitute for storing
dedicated information for increasing forwarding reli-
ability. Note that the additional overhead for main-
taining the two-hop neighbor lists needed for two-hop
forwarding is substantial, and it grows with the node
density.

6.4 Fault-Tolerance

Octopus’s main design goal was to provide high fault-
tolerance in the presence of intermittently disconnect-
ing nodes. We now examine whether this design goal
is met. To this end, we introduce unstable nodes,
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Figure 14: Octopus’s data forwarding reliability.

which alternate between being connected and discon-
nected [18]. Each time an unstable node awakens,
it remains connected for a time interval chosen uni-
formly at random in the range [0, 120] seconds. And
when it disconnects, it remains disconnected for a
time interval chosen uniformly at random in the range
[0, 60] seconds. Thus, at any given time, an average
of 2

3 of the unstable nodes are connected. We exper-
iment with a varying percentage p of unstable nodes.
The remaining nodes are connected throughout the
simulation. We experiment in a fairly large grid of
2.3km by 2.3km. In order to isolate the effect of node
disconnections without impacting the density, we fix
the average number of connected nodes at a given
time at 400. That is, we run 400

1−p+ 2
3 p

nodes (e.g., 480
nodes when p = 0.5). Note that although the average
density of live nodes at any given time is not reduced,
it is still challenging to achieve high reliability, since
part of the global state is lost with each node discon-
nect, whereas new nodes connect without any loca-
tion information. Therefore, protocols that employ
low redundancy, e.g., GLS, fail to achieve high rout-
ing reliability in the face of disconnects (see Fig 19).

Clearly, location queries for nodes that are discon-
nected during the location query or shortly before-
hand or afterwards are bound to fail. Likewise, nodes
that disconnect shortly after issuing a location query
will inevitably not receive the query response. We
therefore only take into account queries whose tar-
get is connected during the interval [t − 10, t + 10]
seconds, where t is the query issue time, and whose
query source is connected during the interval [t, t+10]
(the same approach was taken in [18]). Note that we
only require the source and query target to remain
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connected– all other nodes, including the target’s lo-
cation servers and the nodes along the search path,
can disconnect at any time. A successful query loca-
tion is followed by the transmission of one 128-byte
data packet from the source to the target.

Fig. 15 shows the query success rate and the over-
all data forwarding reliability as a function of the
percentage of unstable nodes. The 95% confidence
intervals for the results presented in this figure are
up to ±1.4%. We see that Octopus achieves per-
fect fault-tolerance: its query and forwarding success
rates do not degrade at all as we increase the percent-
age of unstable nodes. This impressive fault-tolerance
is achieved thanks to the high level of redundancy in
Octopus, and the freshness of the redundant infor-
mation: Consider a source S issuing a query for a
target T . The query succeeds when it reaches a lo-
cation server in the intersection of S and T ’s strips.
There are at least two such squares (one in S’s hor-
izontal strip, and one in its vertical strip). Every 10
seconds, T ’s location is stored at all the nodes resid-
ing in these two squares (since strip update timeout
is 10 seconds). Assuming there are no forwarding
holes, as long as one of the nodes in these squares re-
mains connected during the 10 seconds interval, the
query should be successful. When the node density
is 75, the average population of these two squares is
9.375 nodes. Even when all the nodes in the network
are unstable, the probability of all these nodes failing
within 10 seconds is negligible. Note also that the
probability for holes does not increase when nodes
are unstable, since the average node density is fixed.
Therefore, Octopus’s forwarding reliability does not
degrade as we increase the percentage of unstable
nodes. This is due to the fact that forwarding fail-
ures mainly occur due to holes. In addition, forward-
ing failures due to node disconnections are usually
overcome using retransmissions to alternative nodes.

6.5 Comparison with GLS

We now compare the reliability, overhead, and fault-
tolerance of Octopus to those of GLS. We use the ns2
implementation of GLS from MIT [1]. In these ex-
periments, we use the grid sizes and densities from
GLS’s original evaluation [18], with one exception:
in the smallest grid (1km by 1km) we place 75 nodes
instead of 100 in order to maintain a similar node
density of roughly 75 nodes per square kilometer in
all grid sizes. Note that these scenarios are not opti-
mized for Octopus, since most of the grid edge sizes
are not multiples of Octopus’s strip width (250m).
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Figure 15: Octopus’s fault-tolerance: query success
rate and data forwarding reliability are virtually un-
affected by the percentage of the unstable nodes.
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Figure 16: Octopus versus GLS: query success rates.

Fig. 16 shows the query success rates of Octopus
and GLS. The 95% confidence intervals for the re-
sults presented in this figure are up to ±0.8%. GLS-
100 and GLS-200 are GLS simulations with a location
update threshold of 100m and 200m, respectively. In
GLS-d, a node updates its order-i location servers af-
ter each movement of 2i−2d meters. We see that with
either threshold, Octopus achieves similar reliability
to GLS in a small network, and better reliability than
GLS in medium and large networks. Octopus’s ad-
vantage is most notable in the largest grid, where Oc-
topus’s reliability is roughly 4% and 7% higher than
GLS-100’s and GLS-200’s, respectively. The reliabil-
ity gap between Octopus and GLS increases with the
grid size because of the lower freshness of location
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(a) packet overhead
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Figure 17: Octopus versus GLS: overhead.

information stored at GLS’s remote location servers.
Whereas in Octopus, a node updates all its location
servers at the same high frequency (every 10 seconds),
in GLS, the average frequency at which a node up-
dates its location servers grows with the grid size.
For example, in the 2.9km by 2.9km grid, a GLS-100
node updates its order-4 location servers only after
moving 400 meters, and its order-5 location servers
after a movement of 800 meters. Thus, a node mov-
ing at the average speed (5 m

sec ) updates its order-4
(order-5) location servers only every 80 (respectively,
160) seconds.

Fig. 17 compares Octopus’s overhead to that of
GLS. The 95% confidence intervals for the results pre-
sented in Fig. 17(a) and Fig. 17(b) are up to ±0.01
packets and 0.1 bytes, respectively. We observe that
thanks to aggregation, Octopus sends a smaller num-

ber of packets than GLS. Moreover, as the network
size grows, GLS’s packet overhead increases drasti-
cally, while Octopus’s packet overhead increases very
moderately. This occurs since, as opposed to Octo-
pus, GLS does not employ aggregation, and hence the
number of location servers each node needs to update
grows with the network size. In addition, the aver-
age distance between a node and its location servers
also grows with the network size. Although Octopus’s
location update packets are larger than GLS’s, by
sending fewer packets, Octopus reduces the number
of bytes sent in MAC-level headers. Therefore, over-
all, Octopus’s byte complexity is smaller than GLS’s
(see Fig. 17(b)). Although GLS’s overhead appears
to grow more moderately in large networks, this is
simply because its reliability drops more sharply in
such settings: e.g., in a 2.9km by 2.9km grid, GLS’s
reliability drops to only 85%, and therefore many lo-
cation update and query packets do not reach their
destinations, and are hence relayed less times than
needed.

Next, we consider simulations with data traffic. In
Section 6.3, we showed that the reliability of Octo-
pus’s forwarding sub-protocol is similar to the relia-
bility achieved by the two-hop geographic forwarding
protocol employed by GLS. We now compare their
overhead. We measure the total (data and protocol)
packet overhead incurred by both protocols in the
simulation scenario of Section 6.3. Fig. 18 shows the
average per node per second number of packets sent
by Octopus and the more efficient version of GLS,
GLS-200. The 95% confidence intervals for the re-
sults presented this figure are up to ±0.01 packets.
We do not measure the byte overhead, because it is
dominated by the data traffic. As the figure shows,
Octopus sends fewer packets than GLS. In addition,
Octopus’s overhead grows more moderately with the
network size than GLS’s overhead.

Finally, Octopus’s greatest advantage over GLS is
its fault-tolerance. In Fig. 19, we contrast Octopus’s
fault-tolerance against that of the more reliable ver-
sion of GLS, GLS-100. The 95% confidence intervals
for the results presented in both of these figures are
up to ±1.4%. As explained in Section 6.4, we exper-
iment with an average of 400 connected nodes at a
time, on a 2.3km by 2.3km grid. Whereas Octopus’s
reliability does not degrade when the percentage of
unstable nodes increases, GLS’s reliability greatly de-
grades with the number of unstable nodes: when 50%
of the nodes are unstable, GLS’s query success rate
goes down to less than 65%, and when all the nodes
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Figure 18: Octopus versus GLS: data and protocol
packets sent.
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Figure 19: Octopus versus GLS: fault-tolerance.

are unstable, it drops to less than 53%. GLS is less
fault-tolerant than Octopus for two reasons: first,
GLS employs less redundancy, and second, in GLS, it
takes reconnecting nodes a long time to update their
remote location servers.

7 Discussion

In this paper, we have shown that, by employing syn-
chronized aggregation, Octopus can enforce higher re-
dundancy and more freshness of location information
than previously suggested all-for-some protocols, and
hence achieves much better fault-tolerance. In addi-
tion, in Section 6.5, we have shown that in a dynamic
or failure-prone setting, Octopus incurs lower over-
head than an all-for-some protocol that does not em-

ploy aggregation. However, Octopus can incur higher
overhead than such a protocol in a setting in which
the number of location queries, location updates, and
failures is low. Therefore, an aggregation-based pro-
tocol such as Octopus is suitable for a MANET in
which nodes either intermittently disconnect from the
network or they constantly move, but it is not suit-
able for a failure-free static or semi-static network
such as a sensor network.

We also note that, as opposed to all-for-some pro-
tocols that do not employ aggregation, e.g., GLS [18],
Homezone [10, 26], and [27], in Octopus, the size of
a location update packet is not fixed and grows log-
arithmically with the number of nodes in the system
(assuming the system model described in Section 3).
However, even in a large setting with 675 nodes, the
size of a location update packet is no more than a few
hundred bytes, which is substantially smaller than
the IEEE 802.11’s MTU value of 2304 bytes. As
we have shown in Section 6.5, thanks to aggregating
node locations, Octopus sends a substantially smaller
number of packets than GLS, and hence Octopus re-
duces the number of bytes sent in MAC-level headers.
Therefore, the overall number of bytes sent by Octo-
pus is smaller than the overall number of bytes sent
by GLS.

8 Conclusions

We have presented Octopus, a simple, fault-tolerant,
and efficient routing protocol for large MANETs,
which supports movement of the area in which nodes
are located. We have proven Octopus’s scalability:
in Octopus, as opposed to other ad-hoc routing pro-
tocols, e.g., [18, 14], the number of location update
packets does not increase with the network size. The
number of bytes in such packets grows like O(

√
N)

with the number of nodes N (and the network size).
Empirically, this constitutes a smaller increase in
the overhead than exhibited by previous protocols,
e.g., [18, 14].

We have conducted thorough empirical evaluation
of Octopus using the ns2 simulator with up to 675
mobile nodes. Our extensive simulations have shown
Octopus to be scalable, efficient, and have illustrated
Octopus’s perfect fault-tolerance: in a large grid with
hundreds of nodes that intermittently disconnect and
reconnect, Octopus achieves the same high reliabil-
ity as when all nodes are constantly up. At the
same time, Octopus incurs less overhead than pre-
vious efficient position-based routing protocols. This
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is achieved thanks to the use of synchronized aggrega-
tion. While we employed aggregation only in the con-
text of location discovery, we believe that similar ag-
gregation can be used to improve the fault-tolerance
of various additional protocols and to reduce their
overhead, e.g., by aggregating queries or information
about various searchable resources in resource loca-
tion services [3].

Finally, we have introduced a recovery technique
that overcomes forwarding failures by using informa-
tion stored at the location servers. We have shown
that the basic geographic forwarding protocol com-
bined with this recovery technique achieves similar
reliability to two-hop geographic forwarding, while
incurring substantially less overhead.
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