
Distributed Clustering for Robust Aggregation in Large Networks

Ittay Eyal Idit Keidar Raphael Rom
Department of Electrical Engineering, The Technion — Israel Institute of Technology

Abstract

We present a scalable protocol for robust data aggrega-
tion in a large, error-prone network. The protocol aggre-
gates the multidimensional distribution of any number of
data samples (sensor reads) and removes data errors using
constant size synopses, by clustering samples and detecting
outliers. Initial simulations show that the protocol achieves
robustness to both crashes and data errors.

1 Introduction

In years to come, we can expect to see sensor networks
with thousands of light-weight nodes monitoring conditions
like seismic activity or temperature [1, 14]. In addition,
large-scale networked services are now being increasingly
deployed in computation clouds and Internet-based overlay
networks. Such networks need constant monitoring in order
to detect failures and other anomalous situations, e.g., poor
load balance.

The sizes of these networks, together with processing
and bandwidth limitations, prohibit a centralized solution
in which the monitored data is accumulated at a single loca-
tion. Instead, there is a need for more succinct data aggre-
gation. When the monitored data is a scalar value, such as
the average temperature, it can indeed be summarized suc-
cinctly. The standard solution is to form a spanning tree,
where the leaves obtain samples (data reads) and the data
is aggregated to the root [10, 12]. Each node maintains a
synopsis of the data — in this example, the estimated mean
and the number of samples in its subtree. The synopsis in
each internal node is created by merging the synopses of
its children. Unfortunately, this solution is extremely sen-
sitive to topology changes and node failures; maintaining a
spanning tree in a dynamic environment is costly, and more-
over, topology changes may lead to problems such as dou-
ble counting and data loss [8].

To overcome these problems, gossip solutions that cal-
culate means and sums have been suggested [9, 11]. As
with a spanning tree, each node holds a synopsis of sam-
ples. But unlike the spanning tree solution, nodes exchange
information with random neighbors, and continuously im-
prove the accuracy of their synopses. This approach is ro-

bust to crashes and topology changes.
Nevertheless, there is another significant source of errors

that may arise in aggregation and is not handled by these so-
lutions: sensors may produce incorrect samples due to hard-
ware malfunctions, software bugs, or sensing errors (e.g.,
an animal sitting on a temperature sensor). Such errors may
cause substantial changes in the aggregation result. For ex-
ample, a single buggy temperature read of 1000◦C may out-
weigh thousands of correct ones. In a system with a large
number of sensors, the probability of such errors cannot be
neglected.

A second limitation of most existing synopsis-based so-
lutions is that they are restricted to scalar values such as
means and sums. Yet certain problems, like detecting
anomalies, require learning a more detailed picture of the
data distribution. For example, a security seismic penetra-
tion detection system has to discover where there are irregu-
lar shakes, such as a moving truck, but ignore a shake com-
mon to all sensors like a mild earthquake. Another example
is a DDoS attack on machines in a grid computer network
like PlanetLab, where load probes may show that one third
of the computers are working at full load and the rest are
idle. Knowing the average load of 33% is useless. Instead,
we would like to learn that there are two clusters of load
values, with averages of 1% and 99%. Moreover, if the
overloaded nodes are running the same (exploited) operat-
ing system, we would wish to learn this as well.

Recently, algorithms that estimate the distribution of
samples have been proposed [6, 13]. However, these algo-
rithms are limited to one-dimensional data, and thus cannot
correlate high CPU load with other factors such as operat-
ing system version. Similarly, in sensor networks, the geo-
graphical distribution of the information is of essence, and
single-dimensional data cannot convey the location of a fire
or a penetration.

In this paper, we suggest an approach to overcome both
of these limitations. We present a protocol that aggregates
the multidimensional distribution of the samples by cluster-
ing them. This enables both the removal of data errors and
the aggregation of elaborate data. The key to data error ro-
bustness is outlier detection, i.e., finding out which samples
do not belong to the common data distribution. Outliers are
not necessarily isolated; for example, a source of noise may

interfere with the readings of multiple sensors. We formally
define the model and the problem in Section 2.

The challenge is to identify these outliers in a distributed
manner, where each node has partial information. It seems
that we are facing a catch-22 situation [7] — in order to
identify an outlier, a node needs a synopsis of the good sam-
ples (excluding outliers), but in order to calculate this syn-
opsis, it must know which samples are outliers and ignore
them. No member of the system has enough information to
resolve this.

Section 3 presents our new protocol, which uses constant
size synopses to represent any number of samples (Some
details are deferred to Appendix A). The key to overcom-
ing the catch-22 is the observation that the more samples
are available, the easier it becomes to recognize the good
distribution and separate the outliers. At first, each node
has only a few samples and is unable to identify outliers,
but the synopsis also loses only a small amount of informa-
tion. In later stages, when a node has enough information
to identify outliers, it performs a more aggressive compres-
sion (clustering) of the bulk of the data, while keeping iso-
lated outliers intact. Synopses are propagated using gossip,
thus achieving both crash robustness and scalability. After
the protocol has converged, each node has a synopsis that
(inaccurately) describes the distribution of all the samples
collected throughout the entire system. From this synopsis,
nodes may either filter out the outliers, or analyze their data,
depending on the application.

In Section 4 we present initial and promising simulation
results of our protocol. We show its success in distributively
identifying outliers, using very small synopses, as well as
its robustness. We plan to conduct further simulations to
understand the protocol’s behavior in many different input
scenarios and topologies, and to further analyze its prop-
erties; we discuss our conclusions and future directions in
Section 5.

Related Work

Kempe et al. [9] introduce an approach for computing
aggregates such as sums and means using gossip, and prove
that it converges in logarithmic time. They further show
how to compute quantiles by invoking multiple rounds of
this protocol. However, they do not deal with data errors,
outlier detection, or clustering. Our protocol generalizes
their basic approach so as to compute non-scalar aggregates
such as clusters and outliers, (which cannot be derived from
quantiles), using a single round.

Nath et al. [12] present a generic framework for robust
aggregation using synopses. Synopses are aggregated us-
ing some merge function, which is order- and duplicate-
insensitive, and hence allows for unstructured diffusion pat-
terns such as those that arise in gossip. Their merge func-
tion is based on [5], and is also used in [11]. However, these

works only consider scalar aggregation and do not deal with
data errors. We generalize this approach by exhibiting a
merge function for aggregating clusters.

Haridasan and van Renesse [6] estimate one dimensional
distributions in sensor networks by estimating histograms.
Our protocol achieves competitive accuracy, as demon-
strated in Section 4.2. Sacha et al. [13] provide more ac-
curate results by using iterations to improve the histograms,
achieving a better estimation. Our protocol uses only a sin-
gle iteration to provide good accuracy. Unlike both of these
works, we provide multidimensional distribution estimation
and show that we can detect outliers and remove data errors.

Jain et al. [8] provide an approach to quantify errors
in scalar aggregated data caused by topology changes and
crash failures, but not data errors.

Branch et al. [2] identify outliers by their distances from
their neighbors, in a data stream collected by a small num-
ber of nodes. This protocol detects isolated outliers, but nei-
ther detects outlier clusters nor aggregates the data of non-
outlying samples. The protocol performs multiple rounds
before converging, and was only evaluated with 53 nodes,
hence its scalability is unclear. We intend to compare this
protocol to ours, in large networks, for the special case of
detecting isolated outliers.

Clustering has been extensively studied for centrally
available data sets, e.g., databases. To improve perfor-
mance, parallelization is sometimes used. Parallel cluster-
ing differs from distributed clustering in that all the data is
available to all threads, and communication is cheap.

2 Problem and Model
A set v1, . . . vn of nodes is connected by a set of edges.

Each node i obtains a multiset Si of samples from Rd for
some d. The multiset S of all the samples obtained is the
union of two multisets — a multiset G of good samples,
created by a distribution fG(x), and a multiset B of bad
samples, created arbitrarily.

The nodes strive to compute some target function of the
good distribution and of the bad samples, h(fG, B). Nodes
have limited bandwidth and are unable to accumulate all of
S. Instead, they diffuse synopses; a node holding a syn-
opsis syn calculates distillSyn(syn), which is an estimate of
h(fG, B).

Since h() may be any function, the protocol strives to
create a synopsis that estimates both fG andB as accurately
as possible. The quality of the synopsis therefore consists
of: (1) the accuracy of the estimated fG, according to some
distance metric; and (2) the accuracy of the estimated B.
Since samples in B are, in general, indistinguishable from
ones created by fG, we replace B in (2) by outliers, defined
as follows:

Definition 1 (Outliers) Given a multiset of samples S, a
distribution fG, and some threshold fmin, the outliers are

the samples in S with probability density smaller than fmin,
according to fG.

Note that it is possible, though by definition not prob-
able, that samples in G, created by the good distribution,
would be defined as outliers. It is also possible that samples
from B would not be defined as outliers.

3 The Protocol

We present a general aggregation framework based on
ideas from [12, 9] in Section 3.1. We instantiate it with a
cluster aggregation protocol in Section 3.2, and describe a
clustering based on Gaussian mixtures in Section 3.3.

3.1 Synopsis Aggregation Framework

To use our generic synopsis aggregation framework, one
specifies four functions — makeSyn, halfSyn, mergeSyn,
and distillSyn. Each synopsis encapsulates both some sum-
mary of the samples it describes and a mass.

Initially, a node i obtains samples Si and calls
makeSyn(Si) to summarize them in a synopsis syn with
mass |Si|. The function halfSyn(syn) returns a synopsis with
the same summary as syn, but with half the mass. (Though
mass division may be generalized, for clarity of presenta-
tion, we restrict ourselves to halving).

Synopses are disseminated using gossip. Algorithm 1
describes a gossip step. In each step, a node divides its
synopsis syn into two halves, keeping one and sending the
other to a random neighbor. When receiving synopses, a
node calls mergeSyn to merge them with its own, producing
a new synopsis whose mass is the sum of the masses of the
merged ones.

Algorithm 1 Gossip step

half← halfSyn(syn)
send half to a random neighbor
{neighborSyni} ← all synopses received
syn← mergeSyn(half, {neighborSyni})

The synopses in this framework maintain a conservation
of mass, i.e., the total mass in the system is invariant and
equals the number of samples taken. Moreover, each sam-
ple’s mass is conserved, divided among the nodes. At each
node, the mass of each sample converges to 1

|S| of the total
mass in the node’s synopsis.

After any step, a node can produce an estimate of the
function h(fG, B) by calling distillSyn(syn).

3.2 Clusters Synopsis

We instantiate the above framework with synopses that
represent the distribution of samples as clusters. A single
sample s ∈ Rd is 1 unit of mass at s. A set of samples or

parts thereof may be grouped into a cluster, whose mass is
the sum of the masses grouped into it, and whose mean is at
the center of mass.

A parameter k bounds the number of clusters in a syn-
opsis; it must be larger than the number of isolated outliers
that ought to be detected. If k is sufficiently larger than the
number of samples each node obtains, then in early stages,
all clusters are singletons. Once a node has learned about
more than k samples, it can infer which are isolated enough
to be considered outliers. These continue to be maintained
as singletons, while other samples are clustered. Thus, a
synopsis can be roughly divided into:

1. a set of singletons representing outliers; and

2. a set of clusters, which provide a compressed descrip-
tion of the rest of the samples.

The framework’s functions are as follows:

makeSyn(Si) creates |Si| clusters, each containing one
sample, and if |Si| exceeds k, the result is merged us-
ing mergeSyn (below).

halfSyn(syn) halves the masses of all the clusters in syn.
mergeSyn(syn1, · · · , synm) creates a new set of up to k

clusters from the clusters in syn1, · · · , synm. This
step employs lossy compression.

The protocol diffuses partial cluster masses among the
nodes. These masses originate from the samples. The pro-
tocol converges to a point where each sample has an equal
portion of its mass at each node [9], and each node has an
estimate of the distribution whose inaccuracy is the product
of the lossy compression of mergeSyn.

3.3 Gaussian Mixture Aggregation

We now present a clustering where the clusters are Gaus-
sians and the synopsis is a Gaussian mixture:

Definition 2 (Gaussian Mixture) A Gaussian Mixture
(GM) is a multivariate distribution represented as a
weighted sum of Gaussians {Gi}ki=1, each described as a
tuple Gi = 〈mi, µi, σi〉 such that:

• mi ∈ R is the mass of Gaussian i

• µi ∈ Rd is the mean of Gaussian i.

• σi ∈ Rd×d is the covariance matrix of Gaussian i.

Initially, makeSyn creates a singular Gaussian for each
sample. This Gaussian has a weight of 1, its mean is the
sample’s value and its covariance matrix is ε · Id, where ε
is very small and Id is the unit matrix of dimension d. The
function halfSyn halves the masses of all the clusters:

halfSyn({〈mi, µi, σi〉}ki=1) = {〈1
2
mi, µi, σi〉}ki=1

The function mergeSyn takes a set of Gaussian mixtures
and produces a k-GM , which is a Gaussian mixture with
up to k clusters. Ideally, mergeSyn should be performed by
means of MAP (Maximum A Posteriori) i.e., finding the k-
GM for which the superposition of the original mixtures
has the maximal likelihood. Since this problem is NP-hard,
we approximate it by implementing the Expectation Max-
imization (EM) algorithm [3]. More details are given in
Appendix A.

The function distillSyn estimates B as the outliers, i.e.,
low-weight clusters, and fG as the GM of the remaining
clusters. It can then calculate any function of the estimated
(fG, B).

4 Simulation Results

We present initial simulation results of our protocol. All
simulations use a fully connected topology. Each node ob-
tains 1 sample. The probability density threshold fmin is
set to 5 × 10−5. Like previous works [4, 6], we measure
progress in rounds, where in each round each node performs
one gossip step. Since gossip partners are chosen uniformly
at random, the number of nodes does not significantly im-
pact the accuracy of the results or the convergence time.
Our simulations all use 1,000 nodes.

4.1 Robustness

Data robustness We first evaluate our protocol’s ability
to overcome data errors. We use 950 samples from the stan-
dard normal distribution i.e., with a mean (0, 0) and a unit
covariance matrix I . Additional 50 samples are outliers dis-
tributed normally with covariance matrix 0.1 · I and mean
(0,∆), with ∆ ranging between 0 and 25. The samples’
distribution is illustrated in Figure 1a. For each value of
∆, the results are shown after the protocol has reached con-
vergence. The target function h(fG, B) is mean(fG). We
use k = 2, so that each node has at most 2 clusters at any
given time — hopefully one for good samples and one for
outliers. It turns out that the mass of single samples is often
divided between these clusters.

The results are shown in Figure 1b. The dotted line
shows the average ratio of mass belonging to outliers yet
incorrectly assigned to the good cluster. The other two lines
show the error in calculating the mean, where error is the av-
erage over all nodes of the distance between the estimated
mean and the true mean (0, 0). The solid line shows the
result of our algorithm, which removes outliers, while the
dashed line shows the result of regular aggregation, which
does not.

We see that when the outlier cluster is close to the main
one, the number of misses is large — the proximity of the
clusters makes their separation difficult. However, due to

the small distance, this mistake hardly influences the esti-
mation. As the outliers’ mean moves further from the true
mean, the identification of outliers becomes accurate and
their influence is nullified.

Main Cluster

Outliers

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

or

RobustError
Regular Error

0 5 10 15 20 25
0

20

40

60

80

100

∆

M
is

se
d

O
ut

lie
rs

 [%
]

Missed Outliers [%]

(b)

Figure 1: Effect of the separation of outliers on the cal-
culation of the mean: A 1000 samples are distributed in
two clusters (Figure 1a). As the outlier cluster moves away
from the good cluster, the regular aggregation error grows
linearly. However, once the distance is large enough, our
protocol can remove the outliers, and results in an accurate
estimation of the mean.

Note that even for large ∆’s there is always a certain
amount of outliers which are missed. These are samples
from the good distribution, relatively close to the main clus-
ter, yet with probability density lower than fmin. The pro-
tocol considers these to be good samples, though according
to Definition 1 they are not. Additionally, around ∆ = 5
the miss rate is dropped to its minimum, yet the robust error
does not. This is due to the fact that bad samples are lo-
cated close enough to the good mean so that their probabil-
ity density is higher than fmin. The protocol mistakes those
to belong to fG and allows them to influence the mean. That
being said, for all ∆’s the error remains small, confirming
the conventional wisdom that “clustering is either easy or
not interesting”.

Crash robustness We next examine how crash failures
impact the results obtained by our protocol. Figure 2 shows
that the outlier removal mechanism is indifferent to crashes
of nodes. The source data is similar to the one above, with
∆ = 10. After each round, each node crashes with proba-
bility 0.05. We show the average node estimation error of
the mean in each round. As we have seen above, our proto-
col achieves a lower error then the regular one.

4.2 1D Distribution Aggregation

We begin the presentation of distribution aggregation by
studying the case of one dimensional classical distributions.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Round

A
ve

ra
ge

 E
rr

or

No crashes, robust
No crashes, regular
With crashes, robust
With crashes, regular

Figure 2: Effect of crashes on the accuracy of the mean.

We compare our results to those obtained in [6], for the data
distributions used therein: uniform, exponential (λ = 1.5),
Pareto (k = 5, xm = 1) and bimodal (composed of two
normal distributions with parameters µ1 = 5, σ1 = 1 and
µ2 = 8, σ2 = 0.5). As they used 50 bin histograms, we
use 50 clusters. We measure the accuracy of the estima-
tion according to the Kolmogorov-Smirnov (K-S) test —
the largest difference between the correct and the estimated
cumulative distribution functions over all nodes. Table 1
compares the K-S test results our protocol achieves (“Gaus-
sian Clusters” column) to the ones achieved in [6] (“His-
togram” column). Both algorithms produce good test re-
sults in the area of 0.07. Figure 3 shows the estimated and
true distributions our protocol aggregates for the uniform
case.

Table 1: K-S Test for One Dimensional Distributions

Distribution Histogram[6] Gaussian Clusters
Uniform 0.064 0.029
Exponential 0.069 0.072
Pareto 0.067 0.095
Bimodal 0.077 0.057

4.3 Rich Data Aggregation

Preliminary simulations show promising results of the
aggregation of multidimensional distributions. Figure 4
demonstrates one such simulation. Samples are created ac-
cording to a distribution fG and are aggregated using our
protocol with k = 7. This distribution might describe tem-
perature readings on a fence by the woods, whose right side
is close to a fire outbreak. Each sample is comprised of the
sensor’s location x and the recorded temperature y.

Figure 4a depicts the original distribution containing 3
Gaussian clusters in the two dimensional space. The el-
lipses are equidensity contours of normal distributions. Fig-
ure 4b shows the samples generated and Figure 4c shows the

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Exponential Distribution − PDF

x

P
ro

ba
bi

lit
y

D
en

si
ty

Original
Estimated

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1
Exponential Distribution − CDF

x

P
ro

ba
bi

lit
y

D
en

si
ty

Original
Estimated

Figure 3: PDF and CDF of estimated distribution vs. origi-
nal distribution.

estimated fG after aggregation. Five clusters were created,
of which two are of isolated samples.

We intend to perform further simulations and quantify
the accuracy of the result in different scenarios.

(a) Distribution fG (b) Samples (c) Result

Figure 4: Aggregation of rich data using k = 7. ‘Result’ is
the synopsis at an arbitrary node after convergence.

5 Conclusion and Future Directions
We presented a new scalable and crash robust protocol

for multidimensional distribution aggregation in large net-
works. The protocol removes outliers, achieving robustness
to data errors. By using clusters, the complete distribution
of samples can be aggregated (inaccurately), with very low
bandwidth.

While our initial results are promising, many issues are
yet to be explored. Most notably, we would like to inves-
tigate the convergence properties of our algorithm: What
output it converges to and how fast, for various distributions
and k’s. In particular, we would like to experiment with
topologies that typically arise in sensor networks, e.g., unit-
disk graphs, and with real life data traces of environmental
samples such as precipitation or temperature. In these con-
texts, we would also like to compare our protocol to others,
e.g., [2].

Beyond additional empirical tests, it would be valuable
to formally prove that the protocol always eventually stabi-
lizes, and moreover, to prove an upper bound on the result-
ing error and the rate in which this error diminishes.

Finally, our protocol currently performs one-shot aggre-
gation, and does not adapt to sensor readings that change
on-the-fly, i.e., data streams. It would be interesting to ex-
tend the protocol to work with changing inputs.

A GM Synopsis Merger

We define the operation mergeSyn that merges a set of
Gaussians mixtures producing a k-GM , a Gaussian mixture
with up to k clusters.

We first define the notion of a Gaussian merger.

Definition 3 (Gaussian Merger) Consider two Gaussians
defined by their masses, means and covariance matrices
Ga = 〈ma, µa, σa〉 and Gb = 〈mb, µb, σb〉. Their merger,
Gm = 〈mm, µm, σm〉 denoted Ga ◦Gb is [15]:

mm =ma +mb

µm =
ma

wm
µa +

mb

mm
µb

Vm =
ma

mm
Va +

mb

mm
Vb+

+
ma

mm

mb

mm
· (µa − µb) · (µa − µb)T

It is possible to show that the Gaussian merger operation
is both commutative and associative, so we define the merge
operation of a multiset of Gaussian clusters as follows:

merge({Gi}ni=1) = G1 ◦G2 ◦ · · · ◦Gn

Our goal is to cluster a Gaussian mixture GMold, which
is a union of GMs from a set of synopses, to a k-GM .

We use the following notation:
• GMold: The original Gaussian mixture, a set of

weighted Gaussians.

• GMnew: The new set of up to k Gaussians defined by
their parameters.

• V : The d dimensional space in which the distributions
are defined.

• fX(v): The probability density at point v of distribu-
tion X . If X is a mass distribution such as a Gaussian
mixture, it is normalized s.t. it constitutes a PDF.

We define likelihood, as used for the MAP estimation:

Definition 4 (likelihood) The likelihood that the samples
concisely described by GMold are the result of the proba-
bility distribution described by GMnew is:

L =
∑

c∈GMnew

∑
g∈GMold

(∫
v∈V

mcfc(v) ·mgfg(v)dv
)

The mergeSyn operation employs the Expectation
Maximization algorithm [3] to approximate MAP — group
and merge the given clusters to a k-GM for which the orig-
inal clustering has the maximal likelihood.

References
[1] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie,

W. Kaiser, and H. Marcy. Wireless integrated network
sensors: Low power systems on a chip. In ESSCIRC,
pages 9–16, sep 1998.

[2] J. W. Branch, B. K. Szymanski, C. Giannella,
R. Wolff, and H. Kargupta. In-network outlier detec-
tion in wireless sensor networks. In ICDCS, 2006.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the em al-
gorithm. J. Royal Stat. Soc., 39(1):1–38, 1977.

[4] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. In DSN, pages 443–452, 2001.

[5] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst.
Sci., 31(2):182–209, 1985.

[6] M. Haridasan and R. van Renesse. Gossip-based dis-
tribution estimation in peer-to-peer networks. In In-
ternational Workshop on Peer-to-Peer Systems (IPTPS
08), February 2008.

[7] J. Heller. Catch-22. Simon & Schuster, 1961.
[8] N. Jain, P. Mahajan, D. Kit, P. Yalagandula, M. Dahlin,

and Y. Zhang. Network imprecision: A new consis-
tency metric for scalable monitoring. In OSDI, pages
87–102, 2008.

[9] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS,
pages 482–491, 2003.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-hoc
sensor networks. In OSDI, 2002.

[11] D. Mosk-Aoyama and D. Shah. Computing separable
functions via gossip. In PODC, 2006.

[12] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Ander-
son. Synopsis diffusion for robust aggregation in sen-
sor networks. In SenSys, pages 250–262, 2004.

[13] J. Sacha, J. Napper, C. Stratan, and G. Pierre. Reliable
distribution estimation in decentralised environments.
Submitted for Publication, 2009.

[14] B. Warneke, M. Last, B. Liebowitz, and K. Pister.
Smart dust: communicating with a cubic-millimeter
computer. Computer, 34(1):44–51, Jan 2001.

[15] W. Xu, J. Duchateau, K. Demuynck, and I. Dologlou.
A new approach to merging gaussian densities in large
vocabulary continuous speech recognition. In IEEE
Benelux Signal Processing Symposium, 1998.

