
Brief Announcement: Fast Concurrent Data Sketches
Arik Rinberg

arikrinberg@campus.technion.ac.il
Technion

Alexander Spiegelman
spiegelmans@vmware.com

VMware Research

Edward Bortnikov
ebortnik@verizonmedia.com

Yahoo Research

Eshcar Hillel
eshcar@verizonmedia.com

Yahoo Research

Idit Keidar
idish@ee.technion.ac.il

Technion

Hadar Serviansky
hadar.serviansky@weizmann.ac.il

Weizmann Institute

ABSTRACT
Data sketches are approximate succinct summaries of long data
streams. They are widely used for processing massive amounts of
data and answering statistical queries about it. Existing libraries
producing sketches are very fast, but do not allow parallelism for
creating sketches using multiple threads or querying them while
they are being built. We present a generic approach to parallelising
data sketches efficiently and allowing them to be queried in real
time, while bounding the error that such parallelism introduces.
Utilising relaxed semantics and the notion of strong linearisability
we prove our algorithm’s correctness and analyse the error it in-
duces in two specific sketches. Our implementation achieves high
scalability while keeping the error small. We have contributed one
of our concurrent sketches to the open-source data sketches library.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; • Computer
systems organization → Parallel architectures; Real-time sys-
tems.

KEYWORDS
concurrency, synchronization, persistence, design, analysis of dis-
tributed algorithms
ACM Reference Format:
Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit
Keidar, and Hadar Serviansky. 2019. Brief Announcement: Fast Concurrent
Data Sketches. In 2019 ACM Symposium on Principles of Distributed Com-
puting (PODC ’19), July 29–August 2, 2019, Toronto, ON, Canada. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3293611.3331567

1 INTRODUCTION
Data sketching algorithms, or sketches for short [6], have become
an indispensable tool for high-speed computations over massive
datasets in recent years. Their applications include a variety of
analytics and machine learning use cases, e.g., data aggregation [2,
4], graph mining [5], anomaly (e.g., intrusion) detection [20], real-
time data analytics [8], and online classification [16].

Sketches are designed for stream settings in which each data
item is only processed once. A sketch data structure is essentially
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6217-7/19/07.
https://doi.org/10.1145/3293611.3331567

a succinct (sublinear) summary of a stream that approximates a
specific query (unique element count, quantile values, etc.). The
approximation is typically very accurate – the error drops fast with
the number of processed elements [6].

Practical implementations of sketch algorithms have recently
emerged in toolkits [19] and data analytics platforms (e.g., Power-
Drill [12], Druid [8], Hillview [17], and Presto [1]). However, these
implementations are not thread-safe, allowing neither parallel data
ingestion nor concurrent queries and updates; concurrent use is
prone to exceptions and gross estimation errors. Applications using
these libraries are therefore required to explicitly protect all sketch
API calls by locks [9, 13].

In our full paper [15], we present a generic approach to paral-
lelising data sketches efficiently, while bounding the error that such
a parallelisation might introduce. Our goal is to enable simultane-
ous queries and updates to a sketch from an arbitrary number of
threads. Our solution is carefully designed to do so without slowing
down operations as a result of synchronisation. This is particu-
larly challenging because sketch libraries are extremely fast, often
processing tens of millions of updates per second.

We capitalise on thewell-known sketchmergeability property [6],
which enables computing a sketch over a stream bymerging sketches
over substreams. Previous works have exploited this property for
distributed stream processing (e.g., [7, 12]), devising solutions with
a sequential bottleneck at the merge phase and where queries can-
not be served before all updates complete. In contrast, our method
is based on shared memory, with parallel updates of small thread-
local sketches, and continuous background propagation of local
results to a common, queryable sketch.

We instantiate our generic algorithm with two popular sketches
from the open-source Java DataSketches library [19]: (1) a KMV
Θ sketch [4], which estimates the number of unique elements in
a stream; and (2) a Quantiles sketch [2] estimating the stream el-
ement with a given rank. Our design is generic and applicable to
additional sketches. Figure 1 compares the ingestion throughput
of our concurrent Θ sketch to that of a lock-protected sequential
sketch, on multi-core hardware. As expected, the trivial solution
does not scale whereas our algorithm scales linearly.

Concurrency induces an error, and one of the main challenges
we address is analysing this additional error. To begin with, we
need to specify a correctness criterion for the concurrent sketch.
We do so using a flavour of relaxed consistency due to Henzinger et
al. [11] that allows operations to “overtake” some other operations.
Thus, a query may return a result that reflects all but a bounded
number of the updates that precede it.While relaxed semantics were
previously used for deterministic data structures like stacks [11]

https://doi.org/10.1145/3293611.3331567
https://doi.org/10.1145/3293611.3331567


Figure 1: Scalability of DataSketches’ Θ sketch protected by
a lock vs. our concurrent implementation.

and priority queues [3, 14], we believe that they are a natural fit
for data sketches. This is because sketches are typically used to
summarise streams that arise from multiple real-world sources and
are collected over a network with variable delays, and so even if the
sketch ensures strict semantics, queries might miss some real-world
events that occur before them. Additionally, sketches are inherently
approximate. Relaxing their semantics therefore “makes sense”, as
long as it does not excessively increase the expected error.

But this raises a new difficulty: relaxed consistency is defined wrt
a deterministic specification, whereas sketches are randomised. We
therefore first de-randomise the sketch’s behaviour by delegating
the random coin flips to an oracle. We can then relax the result-
ing sequential specification. Next, because our concurrent sketch is
used within randomised algorithms, it is not enough to prove its lin-
earisability. Rather, we prove that our generic concurrent algorithm
instantiated with sequential sketch S satisfies strong linearisabil-
ity [10] wrt a relaxed sequential specification of the de-randomised
S .

We then analyse the error of the two relaxed sketches under
random coin flips, with an adversarial scheduler that may delay
operations in a way that maximises the error. We show that our
concurrent Θ sketch’s error is coarsely bounded by twice that of
the corresponding sequential sketch. The error of the concurrent
Quantiles sketch approaches that of the sequential one as the stream
size tends to infinity.

Main contribution. In summary, our full paper [15] this paper
tackles an important practical problem, offers a general efficient
solution for it, and rigorously analyses this solution. While the
paper makes use of many known techniques, it combines them
in a novel way; we are not aware of any previous application of
relaxed consistency to randomised statistical algorithms. The main
technical challenges we address are (1) proving the relaxed con-
sistency of a high-performance generic algorithm that supports
real-time queries concurrently with updates; and (2) analysing the

error induced by this relaxation. We have contributed our parallel
Θ sketch implementation to the DataSketches library [18].

REFERENCES
[1] 2018. HyperLogLog in Presto: A significantly faster way to handle cardinality

estimation. https://code.fb.com/data-infrastructure/hyperloglog/.
[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei

Wei, and Ke Yi. 2012. Mergeable Summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’12).
ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/2213556.2213562

[3] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList: A
Scalable Relaxed Priority Queue. SIGPLAN Not. 50, 8 (Jan. 2015), 11–20. https:
//doi.org/10.1145/2858788.2688523

[4] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
2002. Counting Distinct Elements in a Data Stream. In Randomization and
Approximation Techniques in Computer Science, Jos’e D. P. Rolim and Salil Vadhan
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–10.

[5] Edith Cohen. 2014. All-distances Sketches, Revisited: HIP Estimators for Massive
Graphs Analysis. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS ’14). ACM, New York, NY, USA,
88–99. https://doi.org/10.1145/2594538.2594546

[6] Graham Cormode. 2017. Data Sketching. Queue 15, 2, Article 60 (April 2017),
19 pages. https://doi.org/10.1145/3084693.3104030

[7] Graham Cormode, S Muthukrishnan, and Ke Yi. 2011. Algorithms for distributed
functional monitoring. ACM Transactions on Algorithms (TALG) 7, 2 (2011), 21.

[8] Druid. [n. d.]. How We Scaled HyperLogLog: Three Real-World Optimiza-
tions. http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-
systems.html.

[9] Github. [n. d.]. ArrayIndexOutOfBoundsException during serialization. https://
github.com/DataSketches/sketches-core/issues/178#issuecomment-365673204..

[10] Wojciech Golab, Lisa Higham, and Philipp Woelfel. 2011. Linearizable implemen-
tations do not suffice for randomized distributed computation. In Proceedings of
the forty-third annual ACM symposium on Theory of computing. ACM, 373–382.

[11] Thomas A Henzinger, Christoph M Kirsch, Hannes Payer, Ali Sezgin, and Ana
Sokolova. 2013. Quantitative relaxation of concurrent data structures. In ACM
SIGPLAN Notices, Vol. 48. ACM, 317–328.

[12] Stefan Heule, Marc Nunkesser, and Alex Hall. 2013. HyperLogLog in Practice:
Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.
In Proceedings of the EDBT 2013 Conference. Genoa, Italy.

[13] Lee Rhodes. [n. d.]. SketchesArgumentException: Key not found and no empty
slot in table. https://groups.google.com/d/msg/sketches-user/S1PEAneLmhk/
dI8RbN6iBAAJ..

[14] Hamza Rihani, Peter Sanders, and Roman Dementiev. 2014. Multiqueues: Sim-
pler, faster, and better relaxed concurrent priority queues. arXiv preprint
arXiv:1411.1209 (2014).

[15] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Keidar,
and Hadar Serviansky. 2019. Fast Concurrent Data Sketches. arXiv preprint
arXiv:1902.10995 (2019).

[16] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. 2018. Sketching
Linear Classifiers over Data Streams. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA,
757–772. https://doi.org/10.1145/3183713.3196930

[17] VMware. [n. d.]. Hillview: A Big Data Spreadsheet. https://github.com/vmware/
hillview.

[18] Yahoo. [n. d.]. DataSketches: Concurrent Theta Sketch Implementa-
tion. https://github.com/DataSketches/sketches-core/blob/master/src/main/java/
com/yahoo/sketches/theta/ConcurrentDirectQuickSelectSketch.java.

[19] Yahoo! [n. d.]. DataSketches: sketches library from Yahoo! https://datasketches.
github.io/.

[20] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-
wide Measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’18). ACM, New York, NY,
USA, 561–575. https://doi.org/10.1145/3230543.3230544

https://code.fb.com/data-infrastructure/hyperloglog/
https://doi.org/10.1145/2213556.2213562
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2594538.2594546
https://doi.org/10.1145/3084693.3104030
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
https://github.com/DataSketches/sketches-core/issues/178##issuecomment-365673204
https://github.com/DataSketches/sketches-core/issues/178##issuecomment-365673204
https://groups.google.com/d/msg/sketches-user/S1PEAneLmhk/dI8RbN6iBAAJ
https://groups.google.com/d/msg/sketches-user/S1PEAneLmhk/dI8RbN6iBAAJ
https://doi.org/10.1145/3183713.3196930
https://github.com/vmware/hillview
https://github.com/vmware/hillview
https://github.com/DataSketches/sketches-core/blob/master/src/main/java/com/yahoo/sketches/theta/ConcurrentDirectQuickSelectSketch.java
https://github.com/DataSketches/sketches-core/blob/master/src/main/java/com/yahoo/sketches/theta/ConcurrentDirectQuickSelectSketch.java
https://datasketches.github.io/
https://datasketches.github.io/
https://doi.org/10.1145/3230543.3230544

	Abstract
	1 Introduction
	References

