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ABSTRACT
Data sketches are approximate succinct summaries of long data
streams. They are widely used for processing massive amounts of
data and answering statistical queries about it. Existing libraries
producing sketches are very fast, but do not allow parallelism for
creating sketches using multiple threads or querying them while
they are being built. We present a generic approach to parallelising
data sketches efficiently and allowing them to be queried in real
time, while bounding the error that such parallelism introduces.
Utilising relaxed semantics and the notion of strong linearisability
we prove our algorithm’s correctness and analyse the error it in-
duces in two specific sketches. Our implementation achieves high
scalability while keeping the error small. We have contributed one
of our concurrent sketches to the open-source data sketches library.
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1 INTRODUCTION
Data sketching algorithms, or sketches for short [6], have become
an indispensable tool for high-speed computations over massive
datasets in recent years. Their applications include a variety of
analytics and machine learning use cases, e.g., data aggregation [2,
4], graph mining [5], anomaly (e.g., intrusion) detection [20], real-
time data analytics [8], and online classification [16].

Sketches are designed for stream settings in which each data
item is only processed once. A sketch data structure is essentially
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a succinct (sublinear) summary of a stream that approximates a
specific query (unique element count, quantile values, etc.). The
approximation is typically very accurate – the error drops fast with
the number of processed elements [6].

Practical implementations of sketch algorithms have recently
emerged in toolkits [19] and data analytics platforms (e.g., Power-
Drill [12], Druid [8], Hillview [17], and Presto [1]). However, these
implementations are not thread-safe, allowing neither parallel data
ingestion nor concurrent queries and updates; concurrent use is
prone to exceptions and gross estimation errors. Applications using
these libraries are therefore required to explicitly protect all sketch
API calls by locks [9, 13].

In our full paper [15], we present a generic approach to paral-
lelising data sketches efficiently, while bounding the error that such
a parallelisation might introduce. Our goal is to enable simultane-
ous queries and updates to a sketch from an arbitrary number of
threads. Our solution is carefully designed to do so without slowing
down operations as a result of synchronisation. This is particu-
larly challenging because sketch libraries are extremely fast, often
processing tens of millions of updates per second.

We capitalise on thewell-known sketchmergeability property [6],
which enables computing a sketch over a stream bymerging sketches
over substreams. Previous works have exploited this property for
distributed stream processing (e.g., [7, 12]), devising solutions with
a sequential bottleneck at the merge phase and where queries can-
not be served before all updates complete. In contrast, our method
is based on shared memory, with parallel updates of small thread-
local sketches, and continuous background propagation of local
results to a common, queryable sketch.

We instantiate our generic algorithm with two popular sketches
from the open-source Java DataSketches library [19]: (1) a KMV
Θ sketch [4], which estimates the number of unique elements in
a stream; and (2) a Quantiles sketch [2] estimating the stream el-
ement with a given rank. Our design is generic and applicable to
additional sketches. Figure 1 compares the ingestion throughput
of our concurrent Θ sketch to that of a lock-protected sequential
sketch, on multi-core hardware. As expected, the trivial solution
does not scale whereas our algorithm scales linearly.

Concurrency induces an error, and one of the main challenges
we address is analysing this additional error. To begin with, we
need to specify a correctness criterion for the concurrent sketch.
We do so using a flavour of relaxed consistency due to Henzinger et
al. [11] that allows operations to “overtake” some other operations.
Thus, a query may return a result that reflects all but a bounded
number of the updates that precede it.While relaxed semantics were
previously used for deterministic data structures like stacks [11]
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Figure 1: Scalability of DataSketches’ Θ sketch protected by
a lock vs. our concurrent implementation.

and priority queues [3, 14], we believe that they are a natural fit
for data sketches. This is because sketches are typically used to
summarise streams that arise from multiple real-world sources and
are collected over a network with variable delays, and so even if the
sketch ensures strict semantics, queries might miss some real-world
events that occur before them. Additionally, sketches are inherently
approximate. Relaxing their semantics therefore “makes sense”, as
long as it does not excessively increase the expected error.

But this raises a new difficulty: relaxed consistency is defined wrt
a deterministic specification, whereas sketches are randomised. We
therefore first de-randomise the sketch’s behaviour by delegating
the random coin flips to an oracle. We can then relax the result-
ing sequential specification. Next, because our concurrent sketch is
used within randomised algorithms, it is not enough to prove its lin-
earisability. Rather, we prove that our generic concurrent algorithm
instantiated with sequential sketch S satisfies strong linearisabil-
ity [10] wrt a relaxed sequential specification of the de-randomised
S .

We then analyse the error of the two relaxed sketches under
random coin flips, with an adversarial scheduler that may delay
operations in a way that maximises the error. We show that our
concurrent Θ sketch’s error is coarsely bounded by twice that of
the corresponding sequential sketch. The error of the concurrent
Quantiles sketch approaches that of the sequential one as the stream
size tends to infinity.

Main contribution. In summary, our full paper [15] this paper
tackles an important practical problem, offers a general efficient
solution for it, and rigorously analyses this solution. While the
paper makes use of many known techniques, it combines them
in a novel way; we are not aware of any previous application of
relaxed consistency to randomised statistical algorithms. The main
technical challenges we address are (1) proving the relaxed con-
sistency of a high-performance generic algorithm that supports
real-time queries concurrently with updates; and (2) analysing the

error induced by this relaxation. We have contributed our parallel
Θ sketch implementation to the DataSketches library [18].
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