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ABSTRACT
An effective way to reduce the number of aborts in software
transactional memory (STM) is to keep multiple versions
of transactional objects. In this paper, we study inherent
properties of STMs that use multiple versions to guarantee
successful commits of all read-only transactions.

We first show that these STMs cannot be disjoint-access
parallel. We then consider the problem of garbage collect-
ing old object versions, and show that no STM can be opti-
mal in the number of previous versions kept. Moreover, we
show that garbage collecting useless versions is impossible in
STMs that implement invisible reads. Finally, we present an
STM algorithm using visible reads that efficiently garbage
collects useless object versions.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance, Theory

Keywords
Transactional memory

1. INTRODUCTION
Transactional memory [12, 19] is a popular paradigm for

concurrent computing in modern multi-core architectures.
Most current transactional memory implementations are soft-
ware toolkits, or STM s for short. STMs speculatively allow
multiple transactions to proceed concurrently, before know-
ing all possible data dependencies between them. This opti-
mistic approach inevitably leads to aborting transactions in
some cases, such as when data dependencies introduce in-
consistencies. When many transactions contend on the same
data objects, aborts may become frequent, causing a devas-
tating effect on performance [2, 16]. Therefore, reducing the
number of aborts is an important challenge for STMs.
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While some aborts are unavoidable, existing STMs tend to
be over-conservative, and also abort transactions that could
have been committed without violating consistency. Such
unnecessary aborts often stem from coarse-grained incon-
sistency detection. Consider the scenario depicted in Fig-
ure 1. We depict transactional histories in the style of [18].
An object oi’s state in time is represented as a horizontal
line, with time proceeding left to right. Transactions are
drawn as polylines, with circles representing accesses to ob-
jects. Filled circles indicate writes, and empty circles indi-
cate reads. A commit is indicated by the letter C, and an
abort by the letter A. A read operation returning an old
value of an object is indicated by a dotted arc line. The
initial value of object oi is denoted by o0

i , and the value
written to oi by the j’th write is denoted by oj

i . In the sce-
nario depicted in Figure 1 transaction T2 reads an object o1,
then another transaction T3 updates objects o1 and o2, and
commits. Assume that T2 now tries to read o2. Reading
the value o2

2 written by T3 would violate correctness, since
T2 does not read the value o1

2 written by T3. In a single-
versioned STM, illustrated in Figure 1(a), T2 must abort.
However, a multi-versioned STM may keep both versions o1

2

and o2
2 of o2, and may return o1

2 to T2, as illustrated in Fig-
ure 1(b). This allows T2 to successfully commit, in spite of
its conflict with T3.
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(a) Single-versioned TM, T2 aborts.
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(b) Multi-versioned TM, T2 commits.

Figure 1: Keeping multiple versions avoids aborts,
which are inevitable in STMs with only one object
version.

We call aborts that can be avoided, such as T2’s abort in
Figure 1(a), spurious. We can capture the amount of spu-
rious aborts that we allow using the notion of permissive-
ness. Some previously defined permissiveness conditions,
such as single-version permissiveness [8], are too weak, and



still allow many spurious aborts. Other permissiveness con-
ditions, such as online π-permissiveness [13], prevent all spu-
rious aborts, but require complex algorithms to implement
(see Section 2 for details). In Section 4, we define the new
notion of multi-versioned (MV) permissiveness. It ensures
that read-only transactions never abort, and permits update
transactions to abort only when they conflict with other up-
date transactions. This property can be achieved by practi-
cal algorithms. In fact, the algorithms in [17, 3, 2] would all
satisfy MV-permissiveness if they kept enough object ver-
sions.

A key challenge when maintaining multiple versions is
knowing when to garbage collect (GC) old object versions.
On the one hand, an STM needs to keep versions that might
be needed in the future. On the other hand, keeping un-
needed versions wastes memory. In Section 5, we show that
this problem is inherent. We prove that no STM algorithm
can be space optimal, i.e., ensure that it always maintains
the minimum number of object versions possible. We then
define an achievable GC property called useless prefix (UP)
GC, based on maintaining object versions only when they
may be needed by some existing read-only transactions.

Satisfying MV-permissiveness (and UP GC) imposes costs
on an STM. A key contribution of our paper is a systematic
study of such necessary and sufficient costs. In Section 6, we
show that an MV-permissive STM cannot be weakly disjoint-
access parallel (DAP). Roughly speaking, this means that
in order to ensure that read-only transactions never abort,
it is necessary for transactions to communicate with each
other, even when they do not access the same transactional
objects. We also show that if an STM is MV-permissive
and satisfies UP GC, then read-only transactions must leave
some trace of themselves in shared memory, even after they
have committed. Note that this implies the STM cannot use
invisible reads [6], an important technique for optimizing
read-only transactions. We also note that if the UP GC
requirement is omitted, then it is possible to implement an
STM using invisible reads, as done in our companion paper
[16], assuming there exists a garbage collection thread that
sees the private (“invisible”) memory of all transactions, such
as the Java GC.

Finally, to complete our exploration of the design space
of MV-permissiveness and garbage collection, we present in
Section 7 a non-DAP algorithm using visible reads, satisfy-
ing MV-permissiveness and UP GC. Our results are sum-
marized in Table 1.

2. RELATED WORK
Permissiveness. The notion of permissiveness was first

introduced by Guerraoui et al. [8]. Informally, an STM sat-
isfies π-permissiveness for a correctness criterion π, if every
history that does not violate π is accepted by the STM.
However, Guerraoui et al. focused on a model with single-
versioned objects, which is insufficient for avoiding many
spurious aborts.

Another permissiveness condition, online π-permissiveness,
was presented in our earlier paper [13]. Online permissive-
ness does not allow aborting transactions if there is a way to
continue the run without violating π [10]. This condition is
strong enough to avoid all spurious aborts, but is too com-
plex to achieve with practical algorithms, and also requires
keeping a large number of object versions. In fact, object
versions overwritten by a write-only transaction T cannot be

garbage collected until all transactions that started before
T ’s commit terminate.

Garbage collection. Any practical multi-versioned STM
has to address the problem of removing old object versions.
Some earlier STMs, such as LSA [17] and Versioned Boxes [3],
keep a fixed number of old object versions. This approach
is neither necessary nor sufficient: certain object versions
kept by these algorithms may be GCed without causing ad-
ditional aborts, while the algorithms sometimes do not keep
enough object versions to ensure all read-only transactions
commit.

Another approach for garbage collection was presented in
our selective multi-versioning (SMV) STM [16]. SMV keeps
a variable number of old versions, which reduces memory
usage while ensuring read-only transactions can always com-
mit. Nevertheless, SMV does not satisfy UP GC, and hence
keeps more object versions than the algorithm we present
in Section 7. In addition, our new algorithm is more effi-
cient for read-only transactions. The tradeoff is that update
transactions are more costly.

Impossibility of DAP. An important technique for op-
timizing STM performance is disjoint-access parallelism. As
described earlier, this means that transactions that do not
access the same objects should also not access the same
memory locations, thereby avoiding memory contention. Ka-
palka and Guerraoui [9] show that a single-versioned, ob-
struction free [11] STM cannot be strictly DAP. However,
their proof does not apply in the multi-versioned setting we
consider.

Attiya et al. [1] show that there is no STM implementing
DAP that uses invisible reads, in which read-only transac-
tions always terminate. In Section 6.1, we show that no
MV-permissive STM can be DAP. As stated earlier, MV-
permissiveness ensures all read-only transactions commit,
and update transactions abort only when they conflict with
other update transactions. Thus, our results show that the
requirement of invisible reads in [1] can be replaced by pre-
cluding update transactions from aborting when they con-
flict with read-only transactions.

3. SYSTEM MODEL
Transactions. A transaction consists of a sequence of

transactional operations, where each operation is comprised
of an invocation step and a subsequent matching response
step, collectively called transactional steps. The system con-
tains a set of transactional objects. Each transactional op-
erations either accesses a transactional object, or tries to
commit or abort the transaction. More precisely, let T be a
transaction, o be a transactional object, and v be a value.
Then a transactional operation is one of the following. (1)
An invocation step read(T, o), followed by a response step
that either gives the current value of o, or responds A(T ),
meaning that the transaction is aborted. (2) An invocation
write(T, o, v), followed by a response either acknowledging
the write, or responding A(T ). (3) An invocation Abort(T ),
followed by response A(T ). (4) An invocation Commit(T ),
followed either by response C(T ), meaning T committed, or
A(T ).

We say the read set, resp. write set of a transaction is
the set of transactional objects read, resp. written to by T .
We say T is read-only if its write set is empty. An update
transaction is any transaction that is not read-only. We
say two transactions conflict if they both access a common



MV-Permissiveness (Sec. 4)

Space Optimality Impossible (Sec. 5.1)
DAP Impossible (Sec. 6.1)

UP GC (Sec. 5.2)
Impossible when read-only transactions leave no trace after commit. (Sec. 6.2)

Possible with non-DAP algorithm using visible reads. (Sec. 7)

Table 1: Summary of our results.

transactional object, and at least one of the accesses is a
write. We assume that the steps in a transaction are not
known ahead of time, but it is known a priori whether a
transaction is a read-only or update transaction. Detection
of read-only behavior can be done at compile time or using
programmer annotations.

A transactional history H is a sequence of transactional
steps, interleaved in an arbitrary order. A transaction is live
in H if it is neither committed nor aborted, it is complete
otherwise. We let complete(H) denote the set of completed
transactions in H .

Serializations. Two transactional histories H and H ′

are equivalent if they contain the same transactions, and
every transaction performs the same sequence of invocations
and receives the same responses in both histories. The real-
time order of a transactional history H , written �H , is a
partial order on the transactions in H . Given transactions
T, T ′ in H , we define T �H T ′ when the response step for
Commit(T ) occurs before the first step of T ′. T, T ′ are
concurrent if neither T �H T ′, nor T ′ �H T .

A transactional history S is sequential if it has no con-
current transactions. S is legal if it respects the sequential
specification of each transactional object accessed in S. H is
strictly serializable [14] if complete(H) is equivalent to some
legal sequential history S, and �S is a refinement of �H .
Note that strict serializability is strictly weaker than the
commonly used correctness condition of opacity [10]. Our
lower bounds hold for algorithms satisfying strict serializ-
ability. It can be shown that our algorithm satisfies opacity,
though for simplicity, we only consider strict serializability
herein.

STM. A software transactional memory (STM) is an al-
gorithm for running transactions. In this paper, we assume
the algorithm consists of a set of threads. The threads com-
municate with each other using shared memory, and each
thread also has private memory which it alone can access.
Each transaction is run by a thread, and each thread runs
at most one transaction at a time. To run a transaction
T , a thread runs each of T ’s transactional operations, as
follows. (1) Take as input an invocation step of T . (2) Per-
form a sequence of private and shared memory steps, which
are determined by the input and the memory. (3) Return as
output a response step to T . We write thr(T ) for the thread
running T .

We call the memory objects accessed by the threads base
objects. Note that these are conceptually distinct from the
transactional objects accessed by the transactions. We also
call the steps performed by the threads base steps. We as-
sume that all the base steps for running a transactional step
appear to execute atomically. In practice, this atomicity can
be achieved using locks, or by lock-free algorithms [7].

The STM guarantees that each operation invocation even-
tually gets a response, even if all other threads do not invoke
new transactional operations. This limits the STM’s behav-

ior upon operation invocation, so that it may either return
an operation response, or abort a transaction, but cannot
wait for other transactions to invoke new transactional op-
erations. Note that our model does allow waiting for con-
current transactional operations to complete, such as the
use of locks in TL2 [4]. In other words, the STM provides
lock-freedom at the level of transactional operations.

A configuration of an STM consists of the states of the
shared memory, private memory, and threads. An execu-
tion of an STM is an alternating sequence of configurations
and base steps, starting with a configuration in which the
memory and threads are all in their initial states. Two ex-
ecutions are indistinguishable to a thread if it performs the
same sequence of state changes in both executions. Given
a configuration C and a transaction T , we let the configu-
ration external to T in C consist of the state of the shared
memory and the states and private memories of all threads
other than thr(T ) in C.

Given a set of transactions T and an execution α, the
execution interval of T in α, written interval(α, T ), is the
smallest subsequence of α containing all the base steps for
the transactions in T .

DAP. We define the notion of weak disjoint-access paral-
lelism, following [1]. Let T1, T2 be transactions, and let α
be an execution. Let T be the set of all transactions whose
execution interval overlaps with the execution interval of
{T1, T2} in α. Let X be the set of transactional objects ac-
cessed by T . Let G(T1, T2, α) be an undirected graph with
vertex set X, and an edge between vertices x1, x2 ∈ X when-
ever there is a transaction T ∈ T accessing both x1 and x2.
We say T1, T2 are disjoint-access in α if there is no path
between T1 and T2 in G(T1, T2, α). Given two sets of base
steps, we say they contend if there is a base object that is ac-
cessed by both sets of steps, and at least one of the accesses
changes the state of the object.

Definition 1. An STM is weakly disjoint-access parallel
(weakly DAP) if, given any execution α, and transactions
T1, T2 that are disjoint-access in α, the base steps for T1

and T2 in α do not contend.

4. MULTI-VERSIONED PERMISSIVENESS
One of the main benefits of multi-versioning is reducing

the aborts rate. In order to evaluate the effectiveness of
multi-versioned STMs, we need to formally define the set
of aborts that are avoided. Such restrictions on aborts are
captured by permissiveness conditions. As noted in Sec-
tion 2, many existing permissiveness notions are either too
weak or too strong. In this section, we define a practically
achievable permissiveness property that is suited for multi-
versioned STMs.

Multi-versioning is particularly useful for avoiding aborts
of read-only transactions. In fact, by keeping enough ver-
sions, read-only transaction can always find appropriate ob-
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Figure 2: No STM can be online space optimal — it is not known at time t0 whether to remove the version
of o3 written by T2.

ject versions to read, and commit successfully. Our per-
missiveness condition captures this property. In addition,
it captures the property that read-only transactions do not
cause update transactions to abort.

Definition 2. An STM satisfies multi-versioned (MV)-
permissiveness if a transaction aborts only when it is an up-
date transaction that conflicts with another update transac-
tion.

We say that an STM satisfying MV-permissiveness is MV-
permissive.

Most multi-versioned algorithms [17, 3, 2] are not MV-
permissive, because they do not always keep all the object
versions needed to commit all read-only transactions. How-
ever, the algorithm we present in Section 7, as well as the
algorithm in [16], are MV-permissive.

5. GARBAGE COLLECTION PROPERTIES
A key aspect to maintaining multiple versions is a mech-

anism for garbage collecting (GC) old object versions. This
section considers two sides to this problem. In Section 5.1
we show that no STM can always keep the minimum num-
ber of old object versions. Then in Section 5.2, we define an
achievable GC property that removes many old versions.

5.1 Impossibility of Space Optimal STM

Definition 3. An MV-permissive STM X is online space
optimal, if for any other MV-permissive STM X ′ and any
transactional history H, the number of versions kept by X
at any point of time during H is less than or equal to the
number of versions kept by X ′.

Theorem 1. No MV-permissive STM can be online space
optimal.

Proof. The main idea is to construct a transactional his-
tory in which any STM that keeps the minimum number of
object versions at a time t0 will keep more than the mini-
mum number of object versions at time t1 > t0. Thus, no
STM can keep the minimum number of versions at all times,
and so is not online space optimal.

Formally, assume for contradiction that there exists an
online space optimal STM X satisfying MV-permissiveness.

Consider the transactional history H depicted in Figure 2(a).
At time t0, X should either remove object version o1

3 or keep
it. We show that for either one of these decisions, there ex-
ists an MV-permissive STM that keeps fewer versions than
X during H or an extension of H .

Assume first that X keeps o1
3 at time t0. Consider another

STM X ′ which behaves the same as X until time t0, but
GCs o1

3 as soon as T4 performs its write to o3. Then X ′

keeps fewer object versions than X . It remains to show
that X ′ does not violate MV-permissiveness by GCing o1

3.
Notice that it suffices to show that at time t0, all live read-
only transactions, namely T1 and T3, can commit. Now,
T1’s first read step precedes T2’s first write step. Thus, T1

cannot read o1
3 when invoking a read operation of o3. X is

MV-permissive, hence there exists a version ox
3 �= o1

3, which
is kept by X at time t0 and which can be read by T1. Other
than removing version o1

3, X and X ′ are the same — T1

can read ox
1 when invoking a read operation of o3. Also,

T3 can return o3
2, by serializing T3 after T4. So both T1

and T3 can commit after X ′ removes o3
1, and so X ′ satisfies

MV-permissiveness. Thus, X is not online space optimal.
Next, suppose that o1

3 is GCed at time t0. Consider the
transactional history H1 depicted in Figure 2(b), which ex-
tends H . We claim that the second step of T3 cannot read
o0
3. Indeed, T3 starts after T2 finished, and T2’s second step

overwrote o0
3. So, T3’s second step must read o2

3, and so T4

precedes T3 in any strict serialization. Also, T3 precedes T5

in any strict serialization, because the first step of T3 does
not read o1

1. From this, we get that the third and fourth
steps of T3 must read o1

4 and o1
5, resp. So, these object ver-

sions cannot be GCed at time t1. Now, to show that X is not
online space optimal, consider another STM X ′ that keeps
o1
3 at time t0, but GCs o1

4 and o1
5 at time t0. We claim that

X ′ satisfies MV-permissiveness. Again, it suffices to show
the live read-transactions T1 and T3 at time t0 can comm-
mit. Indeed, T1’s second and third steps read o0

4 and o0
5,

resp., so T1 can commit. Also, T3’s second, third and fourth
steps can read o1

3, o0
4 and o0

5, resp., by serializing T3 after
T2, and so T3 can also commit. This is illustrated in Figure
2(c). Thus, X ′ satisfies MV-permissiveness. So, since X ′

keeps 6 object versions at t1 and X keeps 7, X is not online
space optimal.

5.2 Useless-Prefix GC
Though we have just seen that no MV-permissive STM is
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Figure 3: In a weakly DAP STM T1 does not distinguish between H1 and H2 and cannot be MV-permissive.

online space optimal, we would still like an STM to garbage
collect as many old versions as it can. To this end, we define
the following.

Definition 4. An MV-permissive STM satisfies useless-
prefix (UP) GC if at any point in a transactional history H,
an object version oj

i is kept only if there exists an extension

of H with a live transaction Ti, such that (1) Ti can read oj
i ,

and (2) Ti cannot read any version written after oj
i .

In other words, an STM satisfying UP GC, removes the
longest possible prefix of versions for each object at any
point in time and keeps the shortest suffix of versions that
might be needed by read-only transactions.

6. INHERENT LIMITATIONS
In shared memory systems, cache contention due to con-

current memory accesses, and especially concurrent writes,
is a significant performance bottleneck. Thus, it is desirable
to try to separate the memory locations accessed by different
transactions as much as possible. One natural requirement
seems to be that transactions that access different transac-
tional objects access only different base objects. However,
we show in this section that MV-permissive STMs cannot
satisfy this property.

Another desirable property for an STM is not to update
shared memory during read-only transactions. Such STMs
are said to use invisible reads. It is easy to show that an
STM satisfying MV-permissiveness and UP GC cannot use
invisible reads. Indeed, UP GC requires knowing about ex-
isting read-only transactions, in order to determine which
object versions to GC; such knowledge cannot be obtained
unless read-only transactions write. In our second result in
this section, we prove a stronger statement. We show that
it is not possible for an MV-permissive STM to perform UP
GC, even when we allow read-only transactions to write,
and only require that when such a transaction runs alone,
the external configurations before and after the transaction
are the same. This means that read-only transactions must
leave some trace of their existence, even after they have com-
mitted. In particular, even keeping current readers lists for
the objects [7], or using non-zero indicators for conflict de-
tection [5] does not suffice.

6.1 Disjoint-Access Parallelism

Theorem 2. An STM satisfying MV-permissiveness can-
not be weakly disjoint-access parallel.

Proof. Suppose for contradiction that there exists an
STM satisfying MV-permissiveness that is weakly DAP. Con-
sider the transactional histories in Figure 3. In both H1

and H2, transactions T2 and T3 conflict on object o1: T3

writes to o1 and commits, overriding the value read by a
live transaction T2. Note that since an STM satisfies MV-
permissiveness, T3 neither aborts nor waits for T2’s termi-
nation upon a write to o1. We claim the following. (1) The
second step of T2 returns o1

2 in H1. (2) The second step
of T2 returns o1

2 in H2. (3) The first step of T2 returns o0
1

in H2. (4) H2 is not strictly serializable if the first step of
T2 returns o0

1, and the second step returns o1
2. Conclusion

(4) contradicts the strict serializability of the STM. So there
is no STM that is both MV-permissive and weakly DAP. In
the following, let s1, s2, s3 denote the first steps of T1, T2, T3,
resp., and let s′2 denote the second step of T2.

To show (1), note that T1 performs the last write on o2

before the start of T2 in H1. So by strict serializability, s′2
returns o1

2.
To show (2), we show that H1 and H2 are indistinguish-

able to thr(T2). We first claim that the base steps of s1 and
s2 in H1 do not contend. Indeed, consider another transac-
tional history H3 in which T2 commits after its first step s2.
T1 and T2 are disjoint-access in H3, so the base steps of s1

and s2 in H3 do not contend. After s2, thr(T1) and thr(T2)
do not distinguish H1 from H3, because the steps of T2 are
not known ahead of time. Thus, the base steps of s1 and
s2 in H1 also do not contend. Next, we claim that the base
steps of s1 and s3 in H1 do not contend. This is because
T1 and T3 are disjoint-access in H3, so the base steps of s1

and s3 in H3 do not contend. Since thr(T1) and thr(T2) do
not distinguish H1 from H3 after s3, then thr(T3) does not
distinguish them after s3. So, the base steps of s1 and s3 do
not contend in H1. Now, since the base steps for s1, s2 and
s1, s3 in H1 do not contend, then the configuration after the
base steps of s3 in H1, and after the base steps of s1 in H2,
are the same. Thus, thr(T2) does not distinguish between
H1 and H2. So since s′2 returns o1

2 in H1, it also returns o1
2

in H2.
(3) is true because s2 occurs before s3 in H2, and so s2

returns o0
1.

To show (4), let S be any legal sequential history that
is equivalent to H2. Since s2 returns o0

1 and s′2 returns o1
2,

then T2 �S T3 and T1 �S T2. Also, since T1 starts after T3

commits, then T3 �S T1. But then T1 �S T2 �S T3 �S T1,
which is a contradiction. Thus, H2 is not strictly serializ-
able.

6.2 Read Visibility

Theorem 3. Suppose an STM satisfies MV permissive-
ness and UP GC. Consider a read-only transaction whose
execution interval does not contain base steps of any other
transaction. Then the configuration external to the transac-
tion, immediately before and after the transaction, cannot be
the same.
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Figure 4: H1 and H2 are indistinguishable if a read-only transaction T2 does not leave any trace after its execution.

Proof. Suppose for contradiction that there exists an
STM satisfying MV-permissiveness and UP GC, in which
the external configurations before and after a read-only trans-
action are the same, when the transaction’s interval does
not overlap the steps of any other transaction. Consider
the transactional histories in Figure 4. We claim the fol-
lowing. (1) o1

2 is GCed in H1. (2) o1
2 is GCed in H2. (3)

T4 aborts in H2. Conclusion (3) is a contradiction, because
T4 is a read-only transaction, and cannot abort because of
MV-permissiveness.

To show (1), first note that the second step of T4 can read
o2
2, since this is equivalent to the legal sequential history

T1T2T3T4T5. Also, any read transaction that starts after H1

follows T3 in real-time, and so it cannot return o1
2. Thus,

in every extension of H , a live transaction can read o2
2 or a

later version. So by the definition of UP GC, o1
2 is GCed.

We now show (2). In H1 and H2, T2 is a read-only trans-
action, and its execution interval does not contain steps of
any other transactions. So by assumption, the external con-
figuration before and after T2 are the same. Thus, after T2’s
second step in H2, the only thread that distinguishes be-
tween H1 and H2 is thr(T2). Note that thr(T2) does not
GC o1

2, since o1
2 is the latest version of o2 during T2’s execu-

tion interval. Then, since o1
2 is GCed in H1, it is also GCed

in H2.
To show (3), assume for contradiction that T4 commits

in H2. Let S be a legal sequential history equivalent to
H2. Since o2

1 is GCed in H2, then T4 must return o2
2 in

its second read step. Thus, we have T3 �S T4. Next, we
have T4 �S T5, because T4 does not read o2

1 in its first read
step. We have T5 �S T2, because T2 starts after T5 commits.
Finally, we have T2 �S T3, because the first step of T2 does
not return o2

2. Combining the above, we have T2 �S T3 �S

T4 �S T5 �S T2, which is a contradiction. Thus, T4 does
not commit in H2, and so the lemma is proved.

7. UP MULTI-VERSIONING ALGORITHM
We present UP Multi-Versioning (UP-MV), an STM algo-

rithm satisfying MV-permissiveness and UP GC. Section 7.1
overviews the principles underlying UP-MV’s design. The
data structures used by UP-MV and its algorithm are de-
scribed in Section 7.2. UP-MV’s properties are analyzed in
Section 7.3.

7.1 Algorithm Overview and Design Principles
First we explain how the algorithm finds the versions to

read and write, and then explain the garbage collection
mechanism.

Versions written and read. As UP-MV satisfies MV-
permissiveness, each read-only transaction commits. Almost
all STMs abort an update transaction whenever its read-

set is overwritten [11, 4, 17, 7]. Our first design principle
mandates that we abort only in such situations:

Design Principle 1. Update transaction T aborts if and
only if one of the objects in its read-set has been overwritten
after being read by T and before T commits.

This rule is trivially checked at commit time by validating
that each version in the read-set is still the latest one. To
expedite these checks, we use a global version clock, as in
TL2 [4] and LSA [17]. The clock is incremented by each
committed transaction, and object versions are tagged with
its values.

The writes to a transactional object o create a sequence of
versions o0, o1, . . .. Like [4, 7, 6], UP-MV defers the writes
to commit time, and does not allow for “write reordering”:

Design Principle 2. When an update transaction com-
mits, it adds a new object version as the latest one.

Since update transactions abort whenever their read-set is
overwritten, they read only the last object versions. A read-
only transaction reads the latest version that it can read
without violating correctness. To specify this, we define the
transaction precedence relation recursively as follows: Tj

precedes Ti if:

• Tj terminates before the start of Ti (real-time order);

• Ti reads the value written by Tj (read-after-write);

• Ti writes to object ok, which was previously written to
by Tj (write-after-write);

• Ti writes to object ok and Tj reads the version over-
written by Ti (write-after-read); or

• ∃Tk s.t. Ti precedes Tk and Tk precedes Tj .

If Tj precedes Ti, we say that Ti follows Tj . Note that
any serialization order must respect the precedence order.
We can now specify which versions are read:

Design Principle 3. Consider a transaction Ti reading
object oj . If Ti is an update transaction, it reads the latest
version. Otherwise, let Tk be the earliest update transaction
that follows Ti and writes to oj . Then Ti reads the version
of oj overwritten by Tk. If no such Tk exists, Ti reads the
last version of oj .

For example, in Figure 5, when transaction T0 reads o2

it should read o1
2, because this version is overwritten by

T2, which follows T0 and writes to o2. We say that a live
transaction Ti is a potential reader of version oj

i if Ti pre-

cedes oj+1
i .writer and does not precede oj

i .writer. In order
to maintain the precedence information, UP-MV keeps a
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Figure 5: Transaction T0 reads the latest object versions

it can correctly read: when reading o2 it accesses o1
2,

which was overwritten by T2; when reading o3, it accesses

the last version.

graph whose vertices are transactional descriptors for each
transaction, and whose edges correspond to the precedence
relations created by transactional steps during the run.

Note that if a read-only transaction does not conflict with
any update transaction, then it has no following transac-
tions, and therefore reads the last version of every object.
Thus, by default, read-only transactions access the last ob-
ject versions, which are referenced directly by object han-
dles. In addition, each read-only transaction should be able
to find references to relevant old object versions. But since,
by UP GC, such versions may exist only as long as there are
live transactions that can read them, these versions have to
somehow be linked to their potential readers. This leads to
the following design principle:

Design Principle 4. Every read-only transaction T has
a map of references from objects to old versions of which T
is a potential reader.

The responsibility for maintaining such maps lies on up-
date transactions: before a committing update transaction
writes to an object, it copies the reference to the overwrit-
ten version to all the maps of its live preceding transactions,
(which are the potential readers of that version). The poten-
tial readers are found by traversing the precedence graph. In
case the map already includes a version for this object, the
version numbers are compared, and the earlier one is kept.

In the full version of the paper [15], we prove that our
algorithm satisfies the following invariant:

Invariant 1. Transaction Ti has oj
i in its map if and

only if oj
i is not oi’s last version and oj

i is the latest version
that Ti can read without violating correctness.

Garbage Collection. To satisfy the UP GC, an old
object version is deleted at time t0 if it cannot be read by
any transaction after t0. By Design Principle 3, version oj

i

may be read if and only if it has a potential reader. Version
oj

i is deleted at time t0 if it may have no potential readers
from t0 onward. Our algorithm ensures that if there are
no potential readers at time t0, then no such readers may
appear after t0.

We deduce the following design rule for garbage collecting
old object versions:

Design Principle 5. Every old object version is deleted
when its last potential reader terminates.

In addition to removing old object versions, UP-MV’s
garbage collection should clean up transactional descriptors
of terminated transactions from the precedence graph. As

noted above, this graph is needed to allow committing trans-
actions to copy overwritten versions to their live preced-
ing transactions. Once a terminated transaction T has no
live preceding transactions, its descriptor become useless.
Hence:

Design Principle 6. The descriptor of terminated trans-
action T is deleted when the last live preceding transaction
of T terminates.

7.2 UP-MV’s Data Structures and Algorithm

Algorithm 1 UP-MV algorithm data structures.

1: Object Handle oj :
2: Version: latest � latest version of the object

3: Version ok
j :

4: Data: data � actual data
5: Tid: writerId � Id of the version’s writer
6: int: versionNum � ordered version number of ok

j

7: TxnDsc[]: readers � current live readers
8: int: potentialCount � the number of live read-only transac-

tions that might need the version in future

9: TxnDsc Ti:
10: {Live, Terminated}: status
11: int: clockVal � global clock at the beginning of transaction
12: 〈Object, Version〉[]: readSet
13: 〈Object, Version〉[]: writeSet
14: TxnDsc[]: prev � immediate predecessors of Ti

15: TxnDsc[]: next � immediate successors of Ti

16: 〈Object, Version〉[]: toRead � if Ti cannot read the latest
version of oj , then the legal version is kept in Ti.toRead[oj]

17: Global Variables:
18: int: globalClock � incremented by committing update txn
19: TxnDsc[]: finished � finished txns that have not been GCed
20: 〈Tid, TxnDsc〉[]: txnMap

Memory layout. The data structures used in the algo-
rithm are depicted in Algorithm 1. Transactional objects
are accessed via object handles, which point to the last ob-
ject versions. In order to facilitate garbage collection, old
versions are referenced directly by their potential readers.

Each version keeps a counter of potential readers, poten-
tialCount ; when this counter becomes zero the version is
deleted. Additionally, each version keeps the version num-
ber, versionNum, as read from the global clock when the
version is written. Each object version also keeps the list of
its current live reading transactions, readers, which is used
by update transactions to maintain precedence information.
This is where the algorithm violates read invisibility, as re-
quired for UP GC (see Section 6.2).

Each transaction is represented by its transactional de-
scriptor keeping the read-set and the write-set of the ac-
cessed objects. A data structure TxnMap keeps pointers
to all the non-GCed transactions’ descriptors. Some of the
transactional descriptors point to each other, forming a sub-
graph of the precedence graph. Transactional steps add
edges according to read-after-write, write-after-write, and
write-after-read relations. Edges reflecting real-time prece-
dence are added at startup, as we explain below. The trans-
actional descriptor of a terminated transaction is GCed once
it has no incoming edges. If transaction Ti has no live pre-
ceding transactions at the end of its run, Ti’s descriptor is
deleted by Ti itself. Otherwise, Ti’s descriptor is deleted by
the last live transaction preceding Ti when it terminates.

In order to track real-time order, the algorithm maintains
a global transaction set finished, which holds the descriptors
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Figure 6: An example of memory layout: object handles keep last versions only, old versions are kept as long as they

have potential readers, terminated transactions are GCed once they have no live preceding transactions.

of all the terminated transactions that have not been GCed.
A transaction T that cannot GC its descriptor inserts it to
this set upon termination, and the descriptor is removed
from finished when it is GCed. Note that finished is always
empty in runs without conflicts. When a new transaction
starts, it adds edges from every transaction in finished to
itself. The use of this set is where the algorithm violates
the DAP property, as necessary for MV-permissiveness (see
Section 6.1). Although the use of a global clock, which is
incremented by each committing transaction, and copied to
every written version, also violates DAP, we use it only to
optimize consistency checks, and it is not needed for correct-
ness.

In Figure 6, we see the memory layout for the scenario
depicted in Figure 5: a live read-only transaction T0 precedes
committed transactions T2 . . . T4, so these transactions are
not GCed, whereas committed transactions T1, T5, T6, which
have no live preceding transactions, are deleted.

The map of old object versions Ti may read is stored in
Ti.toRead. Invariant 1 guarantees that if a read-only trans-
action Ti cannot read the last version of object oj , then
Ti.toRead contains a mapping from oj to the old version
that should be read by Ti. In Figure 6, the object versions
overwritten by T1 are referenced by its live preceding trans-
action T0. All other old object versions are GCed because
they have no potential readers.

Handling update transactions. The pseudo-code for
update transaction Ti is depicted in Algorithms 2 and 3. At
startup, transaction Ti saves the value of the global clock
in its local variable clockVal and adds edges from all the
descriptors in finished to itself (line 35).

Write operations postpone most of the work till the com-
mit phase; a write operation merely updates the local copy
of the object and puts it in its write-set. A read operation
may only return the last version of the object. To that end,
the last version’s number is validated. If a read operation
succeeds, Ti updates the precedence information: if the last
version’s writer Tj was not GCed, then Ti adds an edge from
Tj to itself.

Transaction Ti commits successfully if and only if no ob-
ject in its read-set is overwritten after being read by Ti and
before Ti commits. This is checked similarly to TL2 [4], us-
ing the global clock, and without using precedence informa-

Algorithm 2 UP-MV algorithm for update transaction Ti.

1: Write to oj:
2: if (oj ∈ Ti.writeSet) then update Ti.writeSet[oj]; return
3: localCopy ← oj .latest.clone()
4: writeSet[oj] ← localCopy
5: update localCopy

6: Read oj :
7: if (oj ∈ Ti.writeSet) then return Ti.writeSet[oj]
8: version← oj .latest
9: if (version.versionNum > Ti.clockVal) then

10: if ¬validateReadSet() then abort
11: clockVal ← version.versionNum

� update precedence information
12: lastWriter ← txnRepository.get(version.writerId)
13: if (lastWriter �= ⊥) then addEdge(lastWriter, Ti)

14: version.readers← version.readers ∪Ti

15: readSet[oj] ← version
16: return version.data

17: Commit:
18: if ¬validateReadSet() then abort
19: overwritten ← ∅ � keep the versions overwritten by Ti

20: globalClock← globalClock + 1
21: foreach oj ∈ Ti.writeSet do:

� update precedence info
22: prevWriter← txnRepository.get(oj.latest.writerId)
23: if (prevWriter �= ⊥) then addEdge(prevWriter, Ti)
24: foreach Tj ∈ oj.latest.readers do: addEdge(Tj, Ti)

� install the new version
25: oj.latest.potentialReadersCount← 0
26: overwritten[oj] ← oj .latest
27: localCopy.versionNum← globalClock
28: oj.latest← localCopy

� pass the overwritten versions to the txns preceding Ti

29: foreach Tj ∈ Ti.prev do:
30: overwrittenVersions(Tj, overwritten)

tion. A commit operation starts by revalidating Ti’s read-set
(line 18). If the validation fails, Ti aborts. Otherwise, Ti ex-
ecutes the following: 1) increments the global clock; 2) for
each oj ∈ Ti.writeSet, Ti adds edges from oj ’s writer and
from oj ’s readers to itself, and then installs the new version
(lines 22–28); and 3) calls the function overwrittenVersions
to update potential readers’ maps with the versions over-
written by Ti (line 30).

The process of updating potential readers with overwrit-
ten versions (lines 54–62) is executed recursively for every
preceding transaction. For a live transaction Tj , the over-



Algorithm 3 UP-MV algorithm for update transaction Ti.

31: Startup:
32: Ti.status ← Live
33: Ti.clockVal ← globalClock
34: foreach Tj ∈ finished do:
35: addEdge(Tj, Ti) � RTO dependence

36: Termination:
37: Ti.status ← Terminated
38: finished← finished ∪ Ti

39: GC(Ti)

40: Function GC(Ti)
� remove the transactions with no live preceding transactions

41: if (Ti.prev = ∅) then
42: txnRepository← txnRepository \ Ti

43: finished← finished \ Ti

44: foreach 〈oj , version〉 ∈ Ti.readSet do:
45: version.readers← version.readers \ Ti

46: foreach Tj ∈ Ti.next do:
47: Tj .prev← Tj .prev \ Ti

48: GC(Tj)
49: delete Ti’s descriptor

50: Function validateReadSet()
51: foreach 〈oj , version〉 ∈ Ti.readSet do:
52: if oj .latest �= version then return false
53: return true

54: Function overwrittenVersions(Tj , overwritten)
55: if (Tj .status = Live) then
56: foreach 〈oi, veri〉 ∈ overwritten do:
57: curVer← Tj .toRead[oi]
58: if (curVer = ⊥∨curVer.versionNum > veri.versionNum)
59: veri.potentialCount++
60: Tj .toRead[oi]← veri

61: foreach Tk ∈ Tj .prev do:
62: overwrittenVersions(Tk, overwritten)

written versions are inserted to its toRead map. If for some
object oi, toRead already contains a version of oi, the version
with the smaller versionNum is chosen (lines 57–60). This
way, the algorithm guarantees that a read-only transaction
that reads oi accesses the version overwritten by the earliest
following transaction.

When Ti terminates, it adds its descriptor to finished and
starts the GC procedure (lines 40–49). The transactional
descriptor may be deleted if it has no incoming edges. Since
deleting one transactional descriptor decreases the number
of incoming edges in its successors, the GC continues recur-
sively with them.

Handling read-only transactions. The pseudo-code
for read-only transactions appears in Algorithm 4. To read
object oj (lines 3–6), Ti checks whether the object is in
toRead. If not, then Ti reads the last version of oj . Other-
wise, Ti reads the version from its toRead list.

When a read-only transaction Ti terminates, it decre-
ments the counter of potential readers for all the versions
in its toRead list. If a version’s number of potential readers
becomes zero, the old object version is deleted (lines 80–82).

7.3 Properties
UP-MV’s MV-permissiveness immediately follows from the

code, since read-only transactions never abort and update
transactions abort only if some object in their read-set is
modified during their lifecycle. UP GC is also easy to see,
since each version has a counter, which is non-zero only if
the version is in the map of a read-only transaction. But by
Invariant 1, Ti has oj

i in its toRead map only if oj
j is the last

version Ti can read.
UP-MV’s correctness follows from the following arguments:

Algorithm 4 UP-MV algorithm for read-only transaction
Ti.

63: Read oj :
64: if (oj ∈ Ti.readSet) then return readSet[oj].data

� find the version to read
65: if (oj ∈ Ti.toRead) then
66: verToRead← Ti.toRead[oj ]
67: else
68: verToRead← oj .latest

� update precedence information
69: writer ← txnRepository.get(verToRead.writerId)
70: if (writer �= ⊥) then
71: addEdge(writer, Ti)

� pass the overwritten versions to the preceding transactions
72: foreach Tj ∈ Ti.prev do:
73: overwrittenVersions(Tj, Ti.toRead)

74: verToRead.readers← verToRead.readers ∪Ti

75: readSet[oj] ← verToRead
76: return verToRead.data

77: Termination:
78: Ti.status ← Terminated
79: finished← finished ∪ Ti

80: foreach 〈oj , oldVersion〉 ∈ Ti.toRead do:
81: oldVer.potentialCount← oldVer.potentialCount− 1
82: if (oldVer.potentialCount = 0) then delete oldVersion
83: GC(Ti)

1. The algorithm maintains precedence order correctly.
That is, if Ti is a live preceding transaction of Tj , then
there is a path from Ti’s descriptor to Tj ’s.

2. The precedence graph remains acyclic, since (a) by In-
variant 1, a read-only transaction can always find a
version to read without creating a cycle; and (b) up-
date transactions have no followers as long as they are
alive because they abort on every conflict, and so their
steps also do not create cycles.

3. Any total order that preserves the precedence order of
an H is a legal serialization of H [13].

8. CONCLUSIONS
This paper studied the use of multi-versioning to reduce

the number of aborts in STMs, as well as techniques for
garbage collection to reduce the memory consumption of
multi-versioned STMs. We first defined the property of
multi-version permissiveness. Then we showed that no MV-
permissive STM can guarantee to always garbage collect
the maximum number of unneeded object versions. We
also showed that an MV-permissive STM cannot be weakly
disjoint-access parallel. We defined an achievable garbage
collection property, useless-prefix GC, and showed that in
an MV-permissive STM satisfying UP GC, even read-only
transactions must make lasting changes to the system state.
Finally, we presented an MV-permissive STM satisfying UP
GC that uses visible reads and is non-DAP, showing that
these conditions are not only necessary but also sufficient.

Our paper suggests a number of areas for future research.
For example, while we showed that no MV-permissive STM
can be online space optimal, it is interesting to consider
whether there exist approximately optimal STMs. There
are clear tradeoffs between the quality of garbage collection,
permissiveness and the computational complexity of trans-
actional operations: we believe that understanding these
tradeoffs may be valuable to improving the performance and
utility of transactional memory.
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