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Abstract. We consider the problem of overcoming (Distributed) Denial of Ser-
vice (DoS) attacks by realistic adversaries that can eavesdrop on messages, or
parts thereof, but with some delay. We show a protocol that mitigates DoS at-
tacks by eavesdropping adversaries, using only available, efficient packet filtering
mechanisms based mainly on (addresses and) port numbers. Our protocol avoids
the use of fixed ports, and instead performs ‘pseudo-random port hopping’. We
model the underlying packet-filtering services and define measures for the capa-
bilities of the adversary and for the success rate of the protocol. Using these, we
analyze the proposed protocol, and show that it provides effective DoS prevention
for realistic attack and deployment scenarios.

1 Introduction

Denial of service (DoS) attacks have proliferated in recent years, causing severe service
disruptions [7]. The most devastating attacks stem from distributed denial of service
(DDoS), where an attacker utilizes multiple machines (often thousands) to generate ex-
cessive traffic [15]. Due to the acuteness of such attacks, various commercial solutions
and off-the-shelf products addressing this problem have emerged.

The most common solution uses an existing firewall/router (or protocol stack) to
perform rate-limiting of traffic, and to filter messages according to header fields like ad-
dress and port number. Such mechanisms are cheap and readily available, and are there-
fore very appealing. Nevertheless, rate-limiting indiscriminately discards messages, and
it is easy to spoof (fake) headers that match the filtering criteria: an attacker can often
generate spoofed packets containing correct source and destination IP addresses, and ar-
bitrarily chosen values for almost all fields used for filtering1. Therefore, the only hope
in using such efficient filtering mechanisms to overcome DoS attacks lies in choosing
values that are unknown to the adversary. E.g., TCP’s use of a random initial sequence
number is a simple version of this approach, but is inadequate if the attacker has some
(even limited) eavesdropping capability.

More effective DoS solutions are provided by expensive commercial devices that
perform stateful filtering [17,18,19]. These solutions specialize in protecting a handful
of commonly-used stateful protocols, e.g., TCP; they are less effective for stateless
traffic such as UDP [19]. Such expensive solutions are not suitable for all organizations.

1 An exception is the TTL field of IP packets, which is automatically decremented by each
router. This is used by some filtering mechanisms, e.g. BGP routers that receive only packets
with maximal TTL value (255) to ensure the packets were sent by a neighboring router, and
the Hop Counter Filtering proposal.
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Finally, the most effective way to filter out offending traffic is using secure source
authentication with message authentication codes (MAC), as in, e.g., IP-Sec [3]. How-
ever, this requires computing a MAC for every packet, which can induce significant
overhead, and thus, this approach may be even more vulnerable to DoS attacks.

Our goal is to address DoS attacks on end hosts, e.g., in corporate networks, as-
suming the network leading to the hosts is functional. (A complementary solution pro-
tecting the end network can be deployed at the ISP.) In this paper, we focus on forti-
fying the basic building block of two-party communication. Specifically, we develop a
DoS-resistant datagram protocol, similar to UDP or raw IP. Our protocol has promising
properties, especially in overcoming realistic attack scenarios where attackers can dis-
cover some of the control information included in protocol packets [1]. Nevertheless,
additional work is required in order to devise a practical system based on our ideas.

Our solution uses a dual-layer approach: On the one hand, we exploit cheap, simple,
and readily-available measures at the network layer. On the other hand, we leverage
these network mechanisms at the application layer. The latter allows for more complex
algorithms as it has to deal with significantly fewer packets than the network layer, and
may have closer interaction with the application. The higher layer dynamically changes
the filtering criteria used by the underlying layer, e.g., by closing certain ports and
opening others for communication. It is important to note that the use of dynamically
changing ports instead of a single well-known port does not increase the chance of a
security breach, as a single application is listening on all open ports.

The main contribution of our work is in presenting a formal framework for under-
standing and analyzing the effects of proposed solutions to the DoS problem. The main
challenges in attempting to formalize DoS-resistance for the first time are: coming up
with appropriate models for the attacker and the environment, modeling the function-
ality that can be provided by underlying mechanisms such as firewalls, and defining
meaningful metrics for evaluating suggested solutions. We capture the functionality
of a simple network-level DoS-mitigation solution by introducing the abstraction of
a port-based rationing channel. Our primary metric of an end-to-end communication
protocol’s resistance to DoS attacks is success rate, which is the worst-case expected
portion of valid application messages that successfully reach their destination, under a
defined adversary class.

Having defined our model and metrics, we proceed to give a generic analysis of
the communication success rate over a port-based rationing channel in different attack
scenarios. We distinguish between directed attacks, where the adversary knows the port
used, and blind attacks, in which the adversary does not know the port. Not surprisingly,
we show that directed attacks are extremely harmful: with as little as 100 machines (or
a sending capacity 100 times that of the protocol) the success rate is virtually zero. On
the other hand, the worst-case success rate that an attacker can cause in blind attacks in
realistic scenarios is well over 90% even with 10,000 machines.

Our goal is therefore to “keep the attacker in the dark”, so that it will have to resort
to blind attacks. Our basic idea is to change the filtering criteria (i.e., ports) in a manner
that cannot be predicted by the attacker. This port-hopping approach mimics the tech-
nique of frequency hopping spread spectrum in radio communication [20]. We assume
that the communicating parties share a secret key unknown to the attacker; they apply
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a pseudo-random function [8] to this key in order to select the sequence of ports they
will use. Note that such port-hopping has negligible effect on the communication over-
head for realistic intervals between hops. The remaining challenge is synchronizing the
processes, so that the recipient opens the port currently used by the sender. We present
a protocol for doing so in a realistic partially synchronous model, where processes are
equipped with bounded-drift bounded-skew clocks, and message latency is bounded.

1.1 Related Work

Our work continues the main line of research on prevention of Distributed Denial of
Service attacks, which focuses on filtering mechanisms to block and discard the offend-
ing traffic. Our work is unique in providing rigorous model and analysis. Necessarily,
we focus on what we consider as the most basic and common attack scenarios and
on a simple network architecture, protecting the communication between two agents,
both using our protocol. We hope that future work will extend our protocols, model and
analysis to more complex attack scenarios and network architectures, as investigated in
some of the related work.

Most closely related is the work presented in [1,12], which proposes realistic and
efficient mechanisms that do not require global adoption, yet allow a server to provide
services immune to DDoS attacks. These solutions, like ours, utilize efficient packet-
filtering mechanisms between the server and predefined, trusted ‘access point’ hosts,
and use an overlay network to allow clients to forward messages via the overlay net-
work to the access points and then to the server. Our protocol is appropriate for use
between the access points and the server, utilizing efficient packet filtering mechanisms
(as available in current routers). The basic ideas of filtering based on ports or other sim-
ple identifiers (‘keys’), and even of changing them, already appear in [1,12], but without
analysis and details. On the other hand, [1] provides a discussion of attack types and
limitations, justifying much of our model, including the assumption that the exposure
of the identifier (port) number may be possible but not immediate.

There are other several proposed methods to filter offending DoS traffic. Some pro-
posals, e.g., [10,13], filter according to the source IP address. This is convenient and
efficient, allowing implementation in existing packet filtering routers. However, IP ad-
dresses are subject to spoofing; furthermore, using a white-list of source addresses of
legitimate clients/peers is difficult, since many hosts may have dynamic IP addresses
due to the use of NAT, DHCP and mobile-IP. Some proposals try to detect spoofed
sender, using new routing mechanisms such as ‘path markers’ supported by some or all
of the routers en route [21,22,2,14]; notice that global router modification is difficult to
achieve. Few proposals try to detect spoofed senders using only existing mechanisms,
such as the hop count (TTL) [9]. However, empirical evaluation of these approaches
show rather disappointing results [6].

A different approach is to perform application-specific filtering for pre-defined pro-
tocols [11,16]. Such protection schemes are cumbersome, only work for a handful of
well-known protocols, and are usually restricted to attackers that transmit invalid pro-
tocol packets.

In earlier work, we have presented Drum [5], a gossip-based multicast protocol
resistant to DoS attacks at the application level. Drum does not make use of pseudo-
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random port-hopping, and it heavily relies on well-known ports that can be easily at-
tacked. Therefore, Drum is far less resistant to DoS attacks than the protocol we present
here. Finally, Drum focuses on multicast only, and as a gossip-based protocol, it relies
on a high level of redundancy, whereas the protocol presented herein sends very little
redundant information.

2 Model and Definitions

We consider a realistic semi-synchronous model, where processes have continuously-
increasing local clocks with bounded drift Φ from real time. Each party may schedule
events to occur when its local clock reaches a specific value (time). There is a bound∆
on the transmission delay, i.e., every packet sent either arrives within ∆ time units, or
is considered lost.

Our goal is to send messages from a senderA to a recipientB, in spite of attempts to
disrupt this communication by an adversary. The basic technique available to the adver-
sary is to clog the recipient by sending many packets. The standard defense deployed by
most corporations is to rate-limit and filter packets, typically by a firewall. We capture
this type of defense mechanism using a port-based rationing channel machine, which
models the communication channel between A and B as well as the filtering mecha-
nism. To send a message, A invokes a ch send(m) event, a message is received by the
channel in a net recv(m) event, and B receives messages via ch recv(m) events. We as-
sume that the adversary cannot clog the communication to the channel, and that there
is no message loss other than in the channel. The channel discards messages when it
performs rate-limiting and filtering.

The channel machine is formally defined in [4]. We now provide an intuitive de-
scription of its functionality. Since we assume that the attacker can spoof packets with
valid addresses, we cannot use these addresses for filtering. Instead, the channel fil-
ters packets using port numbers, allowing deployment using existing, efficient filtering
mechanisms. Specifically, let the set of port numbers be {1, . . . , ψ}. We are particularly
interested in the case ψ = 65536, since this is the number of ports available for UDP re-
cipients, and using them requires minimal changes on the sender side. The buffer space
of the channel is a critical resource. The channel’s interface includes the alloc action,
which allows B to break the total buffer space of R messages into a separate allocation
of Ri messages per port i ∈ {1, . . . , ψ}, as long as R ≥ ∑ψ

i=1Ri. For simplicity, we
assume that the buffers are read and cleared together in a single deliver event, which
occurs exactly once on every integer time unit. If the number of packets sent to port i
since the last deliver exceeds Ri, a uniformly distributed random subset of Ri of them
is delivered.

We define several parameters that constrain the adversary’s strength. The most im-
portant parameter is the attack strength, C, which is the maximal number of messages
that the adversary may inject to the channel between two deliver events.

As shown in [1], attackers can utilize different techniques to try to learn the ports
numbers expected by the filters (and used in packets sent by the sender). However,
these techniques usually require considerable communication and time. To simplify,
we allow the adversary to eavesdrop by exposing messages, but we assume that the
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adversary can expose packets no earlier than E time after they are sent, where E is the
exposure delay parameter. The exposure delay reflects the time it takes an attacker to
expose the relevant information, as well as to distribute it to the (many) attacking nodes,
possibly using very limited bandwidth (e.g., if sending from a firewalled network). Our
protocol works well with as little as E > 5∆. Notice that while we assumed messages
always arrive within ∆ time, this is only a simplification, and our results are valid even
if a few messages arrive later than that; therefore, ∆ should really be thought of as the
typical maximal round trip time, and not as an absolute bound on a message’s lifetime
(e.g., a second rather than 60 seconds).

Since the adversary may control some behavior of the parties, we take a conser-
vative approach and let the adversary schedule the app send(m) events in which the
application (at A) asks to send m to B. To prevent the adversary from abusing these
abilities by simply invoking too many app send events before a deliver event, we de-
fine the throughput, T ≥ 1, as the maximal number of app send events in a single time
unit. We further assume that R ≥ ∆T , i.e. that the capacity of the channel is sufficient
to handle the maximal rate of app send events.

Since we focus on connectionless communication such as UDP, our main metric
for a system’s resiliency to DoS attacks is its success rate, namely the probability that
a message sent by A is received by B.

Definition 1 (Success rate µ). Let E be any execution of a given two-party protocol
operating over a given port-based rationing channel with parameters Ψ,R,C, Φ,∆, E
and T , with adversary ADV . Let end(E) be the time of the last deliver event in E. Let
sent(E) (recv(E)) be the number of messages sent (resp., received) by the application,
in app send (resp., app recv) events during E, prior to end(E) −∆ (resp, end(E)).
The success rate µ of E is defined as µ(E) = recv(E)

sent(E) . The success rate of adversary
ADV is the average success rate over all executions of ADV . The success rate of the
protocol, denoted µ(Ψ,R,C, Φ,∆, E , T ), is the worst success rate over all adversaries
ADV .

Finally, a protocol can increase its success rate by sending redundant information,
e.g., multiple copies or error-correcting codes. We therefore also consider a system’s
message (bit) complexity, which is the number of messages (resp. redundant bits) sent
on the channel per each application message.

3 Analyzing the Channel’s Success Rate in a Single Slot with a
Single Port

This section provides generic analysis of the probability of successfully communicating
over a port-based rationing channel under different attacks, when messages are sent to a
single open port, p. This analysis is independent of the timing model and the particular
protocol using the channel, and can therefore serve to analyze different protocols that
use such channels, e.g., the one we present in the ensuing section. We focus on a single
deliver event, and analyze the channel’s delivery probability, which is the probability
for a valid message in the channel’s buffer to be delivered, in that event. Since every
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ch send(m) event eventually results inm being added to the channel’s buffer, we can use
the channel’s delivery probability to analyze the success rates of higher level protocols.

Let Rp denote the ration allocated to port p in the last alloc event, and let In(p)
be the contents of the channel’s buffer for port p (see [4] for more details). Consider
a deliver event of a channel from A to B, when A sends messages only to port p. We
introduce some notations:

Rp = R is the value of the channel’sRp when deliver occurs.
ap = a is the number of messages whose source is A in the channel’s In(p) when

deliver occurs. We assume a ≤ R. If ap < Rp (i.e., a < R), we say that there is
over-provisioning on port p.

cp is the number of messages whose source is not A in In(p) when deliver occurs.

Assume that 1 ≤ a ≤ R. If cp < R− a+ 1 then B receives A’s messages, and the
attack does not affect the communication from A to B on port p. Let us now examine
what happens when cp ≥ R − a+ 1.

Lemma 1. If cp ≥ R− a+ 1, then the channel’s delivery probability is R
cp+a .

Proof. The channel delivers m ∈ In(p) if it is part of the R messages read uniformly
at random from the cp + a available messages. Thus, the delivery probability is R

cp+a .

If the attacker knows that B has opened port p, it can direct all of its power to that
port, i.e., cp = C, where we assume C ≥ R− a+ 1. We call this a directed attack.

Corollary 1. In a directed attack at rate C on B’s port p, the delivery probability on
the attacked port is R

C+a , assuming 1 ≤ a ≤ R and C ≥ R− a+ 1.

Lemma 2. For fixedR and cp such that 1 ≤ a ≤ R and cp ≥ R−a+1, the probability
of B receiving only invalid messages on port p decreases as a increases.

The proof of this lemma is simple and is omitted due to space considerations.

3.1 Blind Attack

We define a blind attack as a scenario where A sends messages to a single open port, p,
and the adversary cannot distinguish this port from a random one. We now analyze the
worst-case delivery probability under a blind attack.

In general, an adversary’s strategy is composed both of timing decisions and in-
jected messages. The timing decisions affect a, the number of messages from A that
are in the channel at a given delivery slot. Given that a is already decided, we define the
set of all strategies of an attacker with sending rate C as:

S(C) �
{
{ci}i∈ψ | ∀i ∈ ψ : ci ∈ N ∪ {0} ∧

ψ∑

i=1

ci = C
}

Each strategy s ∈ S is composed of the number of messages the attacker sends to
each port. Note that since the adversary wishes to minimize the delivery probability, we
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restrict the discussion to the set of attacks that fully utilize the attacker’s capacity for
sending messages. We denote by µB(a, C,R) : S(C) → [0, 1] the channel’s delivery
probability under all possible blind attack strategies with the given a,C, andR. Since S
is a finite set, µB has at least one minimum point, and we define the delivery probability
to be that minimum:

µB(a, C,R) � min
s∈S(C)

µB(a, C,R, s)

We sometimes use µB instead of µB(a, C,R) when a, C, andR are clear from context.
We want to find lower bounds on µB , depending on the attacker’s strength. We say that
port pi is attacked in strategy s if cpi > 0. We partition S(C) according to the number
of ports being attacked, as follows:

Sk � {s ∈ S(C) | Exactly k ports are being attacked in s}

In [4] we find a lower bound on µB as follows: We first derive a lower bound on
{µB(a, C,R, sk)|sk ∈ Sk}; this lower bound is given as a function of k. Incidently,
the worst depredation occurs when the attacker divides its power equally among the
attacked ports, i.e., when it sends C

k messages to each attacked port. Then, we show
lower bounds on µB(a, C,R) by finding the k that yields the minimum value. In [4],
we prove the following lemma:

Lemma 3. µB(a, C,R) is bounded from below by the following function f(a, C,R):

f(a, C,R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψa
C+ψa if R = a and C ≥ ψ

1 − C
ψ(1+a) if R = a and C < ψ

ψR
C+ψa if R > a and C ≥ ψa√

R
R−a−1

ψa−C
(√

R
R−a−1

)

ψa + R
ψ · C

(√
R

R−a−1
)2

a2
√

R
R−a

if R > a and C < ψa√
R

R−a−1

0 otherwise
(1)

Lemma 3 provides us with some insights of the adversary’s best strategy and of
the expected degradation in delivery probability. If no over-provisioning is used (i.e.,
R = a), then the adversary’s best strategy is to attack as many ports as possible. This
is due to the fact that even a single bogus message to the correct port degrades the
expected delivery probability. When the adversary has enough power to target all of the
available ports with at least one message, it can attack with more messages per attacked
port, and the delivery probability asymptotically degrades much like the function 1

C .
When not all ports are attacked, the adversary would like to use its remaining resources
to attack more ports rather than target a strict subset of the ports with more than one
bogus message per port. The degradation of the expected delivery probability is then
linear as the attacker’s strength increases.

When over-provisioning is used (R > a), it affects the attack and its result in two
ways. First, the attacker’s best strategy may not be to attack as many ports as it can,
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since a single bogus message per port does not do any harm now. Second, for an ad-
versary with a given strength, the degradation in delivery probability is lower when
over-provisioning is used than when it is not employed. We can see in Equation 1 that
if the attacker has enough power to attack all the ports, the over-provisioning ratio R

a
is also the ratio by which the delivery probability is increased, compared to the case
where R = a.

3.2 Actual Values

Figure 1 shows the expected worst-case delivery probabilities for various attack scenar-
ios on a single port. For directed attacks, we show the actual delivery probability, and
for blind attacks, the lower bound f(a, C,R) is shown. We chose ψ = 65536, the num-
ber of ports in common Internet protocols, e.g., UDP. Figure 1(a) illustrates the major
difference between a directed attack and a blind one: even for a relatively weak attacker
(C ≤ 100), the delivery probability under a directed attack approaches 0, whereas under
a blind attack, it virtually remains 1.

Figure 1(b) examines blind attacks by much stronger adversaries (with C up to
10,000 for R = 1, and up to 20,000 for R = 2). We see that the delivery probability
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Fig. 1. Delivery probability per slot in various attack scenarios on a single port, ψ = 65536
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gradually degrades down to a low of 92.5% whenR = 1. If we use an over-provisioned
channel, i.e., have a = 1 (one message from A) when R = 2, the delivery probability
improves to almost 95% forC = 20,000. (The ratio C

R is the same for both curves). Fig-
ure 1(c) shows the effect of larger over-provisioning. We see that the cost-effectiveness
of over-provisioning diminishes as R

a increases.

4 DoS-Resistant Communication

We now describe a protocol that allows for DoS-resistant communication in a partially-
synchronous environment. The protocol’s main component is an ack-based protocol.
B sends acknowledgments for messages it receives from A, and these acks allow the
parties to hop through ports together. However, although the ack-based protocol works
well as long as the adversary fails to attack the correct port, once the adversary gets a
hold of the port used, it can perform a directed attack that renders the protocol useless.
By attacking the found data port, or simultaneously attacking the found data and ack
ports, the adversary can effectively drop the success rate to 0, and no port hopping will
occur. To solve this matter, there is a time-based proactive reinitialization of the ports
used for the ack-based protocol, independent of any messages passed in the system.

4.1 Ack-Based Port Hopping

We present a port-hopping communication protocol that has no indication of time. In
the absence of a clock, A and B must rely on message-passing in order to synchronize
their port-hopping. We present an ack-based port-hopping protocol, which uses two
port-based rationing channels, from B to A (with ration RBA) and vice versa (with
ration RAB). For simplicity we assume RAB = 2RBA = 2R. B always keeps two
open ports for data reception from A, and A keeps one port open for acknowledgments
(acks) fromB. The protocol hops ports upon a successful round-trip on the most recent
port used, using a pseudo-random function, PRF ∗2. In order to avoid hopping upon
adversary messages, all protocol messages carry authentication information, using a
second pseudo-random function, PRF , on {0, 1}κ. (We assume that PRF and PRF ∗

use different parts of A and B’s shared secret key.)
The protocol’s pseudocode appears in Figure 2. Both A and B hold a port counter

P , initialized to some seed (e.g., 1). Each party uses its counter P in order to determine
which ports should be open, and which ports to send messages to. B opens port pold
using the (P − 1)th element in the pseudo-random sequence, and pnew, using P . A
sends data messages to the P th port in the sequence, and opens the P th port in a second
pseudo-random sequence designated for acks. When B receives a valid data message
fromA on port pold, it sends an ack to the old ack port. When it receives a valid message
on port pnew, it sends an ack to the P th ack port, and then increases P . WhenA receives

2 Intuitively, we say that fkey(data) is pseudo-random function (PRF ∗) if for inputs of suf-
ficient length, it cannot be distinguished efficiently from a truly random function r over the
same domain and range, by a PPT adversary which can receive g(x) for any values of x, where
g = r with probability half and g = f with probability half. For definition and construction,
see [8].
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a valid ack on port pack, it increases P . We note that several data messages may be in
transit before a port hop takes place, since it takes at least one round-trip time for a port
hop to take effect. The proof of the next theorem is given in [4].

PROTOCOL FOR RECIPIENT B:

On ch recv(m,pnew):
if m.auth = PRFSAB (P |“data”) then

app recv(m.data)
alloc(pold, 0)
pold = pnew

pnew = PRF ∗
SAB

(P + 1|“data”)
alloc(pnew , RAB/2)
ack = PRFSAB(P |“ack”)
ch send(ack, PRF ∗

SAB
(P |“ack”))

P = P + 1

On ack init(seed):
P = seed

pold = PRF ∗
SAB

(P − 1|“data”)
pnew = PRF ∗

SAB
(P |“data”)

alloc(pold, RAB/2)
alloc(pnew , RAB/2)

On ch recv(m, pold):
if m.auth = PRFSAB(P − 1|“data”) then

app recv(m.data)
ack = PRFSAB(P − 1|“ack”)
ch send(ack, PRF ∗

SAB
(P − 1|“ack”))

PROTOCOL FOR SENDER A:

On ack init(seed):
P = seed

pack = PRF ∗
SAB

(P |“ack”)
alloc(pack, RBA)

On app send(data):
m = data|PRFSAB(P |“data”)
ch send(m,PRF ∗

SAB
(P |“data”))

On ch recv(ack, pack):
if ack.auth = PRFSAB(P |“ack”) then

alloc(pack, 0)
pack = PRF ∗

SAB
(P + 1|“ack”)

alloc(pack, RBA)
P = P + 1

Fig. 2. Two-party ack-based port-hopping

Theorem 1. When using the ack-based protocol, the probability that a data message
that A sends to port p arrives when p is open is 1 up to a polynomially-negligible
factor3.

In order to compute the throughput that the protocol can support in the absence of
a DoS attack (i.e., when C = 0), we need to take latency variations into consideration.
Since messages sent up to∆ time apart can arrive in the same delivery slot, a throughput
T ≤ R/∆ ensures a ≤ R. For the rest of this section, we assume T ≤ R/∆.

We now analyze the protocol’s success rate under DoS attacks. We say that the
adversary is in blind mode if it does not know the ports used by the protocol. We first
give a lower bound on the success rate in blind mode, and then give a lower bound on the
probability to be in blind mode at a given time t. Finally, µ is bounded by the probability

3 Namely, for every polynomial g > 0, there is some κg s.t. when κ ≥ κg , then the success rate
µ(t) ≥ f(R,C,R) − g(κ).
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to be in blind mode throughout the execution of the protocol, times the success rate in
blind mode.

Suppose B opens port p with reception rate Rp, and that a ≤ Rp messages from
A are waiting in its channel, along with cp messages from the adversary (cp ≥ 0). By
Lemma 1, the success rate monotonically non-increases with a. Since the adversary can
control a by varying the network delays, it can set a as high as possible for a delivery
slot. Therefore the worst case success rate occurs when a = T∆. Using Equation 1
in Section 3, we get that the success rate in blind mode is bounded from below by
f(T∆,C,R).

Note that the protocol begins in blind mode. We now analyze the probability that the
protocol can keep the adversary in blind mode. The only way the adversary can learn
of a port used by the protocol is using an expose event E time after a message is sent to
this port. This information is only useful to the adversary if the port is still in use. Let
us trace the periodic sequence of events that causes the data port to change (once the
data port changes, the acks for the old port are useless). Assume that A continuously
sends messages m1,m2, . . . to B starting at time 0, and consider an execution without
an attack: (1) By time∆, B receives a valid message from the channel and sends an ack
to A; (2) By time 2∆, A receives the ack and changes the sending port; (3) B gets the
last message destined for the old port at most at time 3∆.

If E ≥ 3∆, the adversary remains in blind mode. Now let us examine what hap-
pens under attack. In order to prevent the port from changing, the adversary must ei-
ther prevent B from getting valid data messages or prevent A from receiving acks. By
Lemma 2, the probability that all valid messages are dropped decreases when a in-
creases. Thus, (as opposed to the previous analysis), in order to increase the probability
that all valid messages are dropped, the adversary should set a ≤ 1 whenever possible.
Denote µB = f(1, C,R), the lower bound on the probability of a single message to be
received on a single port given in Section 3.1.

Lemma 4. If E = 2k∆ for k > 0, and A sends messages to B at least every 2∆ time
units, then the probability that the port changes while the attacker is still blind is at
least 1 − (1 − µ2

B)k.

Proof. The probability that the port does not change in a single round-trip is at most
1 − µ2

B . Since A sends messages to B every 2∆ time units, at the conclusion of each
maximal time round-trip, there is at least one new message on its own round-trip. In
order for the port not to change while the adversary is still blind, every round-trip needs
to fail. Since the attacker can react only after 2k∆ time, there is time for k round-trips
in which the attacker is blind, even if none of them succeed. The probability that all
of them fail is less than (1 − µ2

B)k. If one succeeds, the port changes. And so, the
probability that the port changes is at least 1 − (1 − µ2

B)k.

The lower bound above is illustrated in Figure 3(a).
We now bound the probability to be in blind mode at time t, by assuming that once

the attacker leaves the blind mode it never returns to it. The bound is computed using
a Markov chain, where each state is the number of round-trips that have failed since
the last port change. In the last state, all round-trips have failed before the exposure,
and thus the attacker is no longer blind. The Markov chain for E = 4∆ is shown in
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(b) Bound (g) on prob. to stay in blind mode,
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(c) Bound on protocol’s success rate,
∆ = T = R = 1, C = 10,000, E = 5∆ .

(d) Markov chain for computing the lower
bound in Figure 3(b).

Fig. 3. The effect of E on the ack-based protocol, ψ = 65536

Figure 3(d). We use the chain’s transition matrix to compute the probability g(t, E , C,R)
for remaining in blind mode at time t. Figure 3(b) shows values of g for E = 4∆. We
can see that the protocol works well only for a limited time.

Finally, we note that the protocol’s message complexity is 2, since it sends an ack
for each message, and its bit complexity is constant: log2(ψ) bits for the port plus κ bits
for the authentication code.

4.2 Adding Proactive Reinitializations

We now introduce a proactive reinitialization mechanism that allows choosing new
seeds for the ack-based protocol depending on time and not on the messages passed
in the system. We denote by tA(t) and tB(t) the local clocks ofA andB, resp., where t
is the real time. From Section 2 we get that 0 ≤ |tA(t) − t| ≤ Φ, 0 ≤ |tB(t) − t| ≤ Φ.
We also assume tA, tB ≥ 0.

If A reinitializes the ack-based protocol and then sends a message to B at time
tA(t0), this message can reachB anywhere in the real time interval (t0, t0 +∆]. There-
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fore, the port used by A at tA(t0) must be open by B at least throughout this interval.
To handle the extreme case where A sends a message at the moment of reinitialization,
B must use the appropriate port starting at time tB(t0) − Φ. (We note that t0 may also
be Φ time units apart from tA(t0).) We define δ as the number of time units between
reinitializations of the protocol, and assume for simplicity and effectiveness of resource
consumption that δ > 4Φ+∆ (see Figure 4 for more details).

Every δ time units, A feeds a new seed to the ack-based protocol, and B anticipates
it by creating a new instance of the protocol, which waits on the new expected ports.
Once communication is established using the new protocol instance, or once it is clear
that the old instance is not going to be used anymore, the old instance is terminated.
The pseudocode for the proactive reinitialization mechanism can be found in Figure 4
(where ABPI stands for ack-based protocol instance). Due to space considerations we
do not detail the change in port rations at the recipient’s side as protocol instances
are created or terminated. We also note that there is a negligible probability that more
than one ack-based protocol instance will share the same port. Even if this happens,
differentiating between instances can be easily done by adding the instance number
(i.e., the total number of times a reinitialization was performed) to each message. The
proof of the next theorem is given in [4].

ADD-ON FOR SENDER A:

Whenever tA(t) ∈ {0, δ, 2δ, . . .}:
ack init(tA(t)/δ)

ADD-ON FOR RECIPIENT B:

When tB(t) = 0:
Create 1st ABPI
For that ABPI, ack init(0)

ADD-ON FOR RECIPIENT B (CONT’D):

Whenever (tB(t) + 2Φ) ∈ {δ, 2δ, 3δ, . . .}:
Create a new ABPI
For that ABPI, ack init((tB(t) + 2Φ)/δ)

4Φ+∆ time after creating a new ABPI
or ∆ time after receiving 1st msg for that ABPI:

Terminate all older ABPIs

Fig. 4. Proactive reinitialization of the ack-based protocol

Theorem 2. When using the ack-based protocol with proactive reinitializations, the
probability that a data message that A sends to port p arrives when p is open is 1 up to
a polynomially-negligible factor.

Proactive reinitialization every δ time units allows us to limit the expected degrada-
tion in success rate for a single ack-based protocol instance. Choosing δ is therefore an
important part of the combined protocol. A small δ allows us to maintain high success
rate in the ack-based protocol, but increases the average number of ports that are open
in every time unit (due to running several protocol instances in parallel). When several
ports are used the ration for each one of them is decreased, and so might the success
rate. On the other hand, choosing a high δ entails lower success rate between reinitial-
izations. We conclude the discussion above and the results presented in Section 4.1 with
the following theorem:
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Theorem 3. The success rate of the proactively reinitialized ack-based protocol with
throughput T ≤ R/∆ and reinitialization periods of length δ is bounded from below
by: g(δ +∆, E , C,R) · f(T∆,C,R) up to a polynomially-negligible factor.

Figure 3(c) shows the value of g(δ + 1, E , 10000, 1) · f(1, 10000, 1, 1).

5 Conclusions and Directions for Future Work

We have presented a model for port-based rationing channels, and a protocol robust to
DoS attacks, for communication over such channels. The protocol is simple, efficient
and effective, as shown by our analysis. While this worst case analysis is valuable, it
can be followed by simulations, experiments, and common case analysis. Moreover, the
system aspects of deploying such a protocol in today’s Internet are yet to be dealt with.

As the important field of application-level DoS mitigation is relatively new, there
is much research space to explore. We now describe several future research directions.
Clearly, many more directions can be sought.

Our model is realistic, as it only requires the underlying channel to provide port-
based filtering; therefore, it can be efficiently implemented using existing mechanisms,
typically at a firewall or router between the victim and the attacker. This raises an inter-
esting question regarding the trade-off between the cost and the possible added value of
implementing additional functionality by the channel (e.g., at the firewall).

This work has focused on two parties only. It would be interesting to extend it to
multiparty scenarios, such as client-sever and multicast. These scenarios may require
a somewhat different approach, and will obviously necessitate analyses of their own.
Furthermore, we required the parties to share a secret key; we believe we can extend
the solution to establish this key using additional parties, e.g., a key distribution center.
Another approach is to use ‘proof of work’ (computational puzzles) techniques to es-
tablish the shared key, by sending an encrypted key together with a ‘proof of work’ that
ensures that the sender worked much more than the recipient.

Our work has focused on resisting DoS attacks; however, it could impact the per-
formance and reliability properties of the connection; in fact, it is interesting to explore
combinations between our model and problem, and the classical problems of reliable
communication over unreliable channels and networks. Furthermore, since our work
requires a shared secret key, it may be desirable to merge it with protocols using shared
secret key for confidentiality and authentication, such as SSL/TLS and IP-Sec.

One of the most important issues when designing a secure and robust protocol is to
quantify its effectiveness under attack. This calls for a clear definition of a metric for that
protocol. But even more importantly, such an analysis requires a clear definition of the
adversary and the environment it operates in. The challenge in modeling the adversary
and the environment rises because the model should reflect reality. Good models allow
to test the protocol as if it deployed “in the wild”, where real adversaries give it their
best shot. Such models enable us to find the attacker’s optimal strategy, or provide a
bound thereof, thus permitting analytical analysis of the protocol. We hope that future
work will take further strides towards defining realistic yet tractable models.
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