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As GPU hardware becomes increasingly general-purpose, it
is quickly outgrowing the traditional, constrained GPU-as-copro-
cessor programming model. To make GPUs easier to program
and improve their integration with operating systems, we propose
making the host’s file system directly accessible to GPU code.
GPUfs provides a POSIX-like API for GPU programs, exploits
GPU parallelism for efficiency, and optimizes GPU file access by
extending the host CPU’s buffer cache into GPU memory. Our
experiments, based on a set of real benchmarks adapted to use
our file system, demonstrate the feasibility and benefits of the
GPUfs approach. For example, a self-contained GPU program that
searches for a set of strings throughout the Linux kernel source tree
runs over seven times faster than on an eight-core CPU.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design; I.3.1 [Hardware Architecture]: Graph-
ics processors

Keywords Operating Systems Design, GPGPUs, File Systems,
accelerators

1. Introduction
The file system is a successful, proven operating system abstrac-
tion, which benefits developer productivity by decoupling the ap-
plication’s logical view of storage from low-level details of the lo-
cation and type of devices on which data physically resides. Mod-
ern file systems have buffer caches enabling the system to opti-
mize data access locality across cooperating processes or modules,
e.g., by keeping frequently-accessed data or intermediate results in
memory to minimize the cost of accesses to slow storage devices.

Unlike CPU applications, programs running on graphical pro-
cessing units (GPUs) currently have no direct access to files on the
host OS file system. Although the power, functionality, and util-
ity of today’s GPUs now extend far beyond graphics processing,
the coprocessor-style GPU programming model still requires devel-
opers to manage movement of data explicitly between its “home”
in the CPU’s main memory and the GPU’s local memory. Man-
aging data transfers between CPU and GPU increases the design
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complexity and code size of even simple GPU programs requiring
file access. While programmers can explicitly optimize data move-
ment, this performance is often not portable to new generations of
hardware. Over time, application code to transfer and reuse recently
computed data becomes entwined with program logic, making it
hard to maintain functionality and performance.

Drawing an analogy to pre-virtual memory days, applications
often managed their own address spaces efficiently using manual
overlays, but this complex and fragile overlay programming ulti-
mately proved not worth the effort. GPUs are quickly evolving to-
ward general high-performance processors useful for a wide vari-
ety of massively parallel, throughput-oriented tasks, and we believe
GPU programming should reap the same benefits from the file sys-
tem abstraction enjoyed by CPU programmers for decades.

We propose GPUfs , an infrastructure that exposes the file sys-
tem API to GPU programs, bringing the convenience and power of
file systems to GPU developers. GPUfs offers compute-intensive
applications a convenience well-established in the CPU context:
to be largely oblivious to where data is located—whether on disk,
in main memory, in a GPU’s local memory, or replicated across
several GPUs or other coprocessors. Further, GPUfs lets the OS
optimize data access locality across independently-developed GPU
compute modules, using application-transparent caching and data
replication, much like a traditional OS’s buffer cache optimizes ac-
cess locality across multi-process computation pipelines. A unified
file API interface abstracts away the low-level details of different
GPU hardware architectures and their complex inter-device mem-
ory consistency models, improving code and performance portabil-
ity. GPUfs expands the appeal of GPU programming by offering
familiar, well-established data manipulation interfaces instead of
proprietary GPU APIs. Finally, GPUfs allows GPU code to be self-
sufficient, by simplifying or eliminating the complex CPU support
code traditionally required to feed data to GPU computations.

As a simple example, consider multiplying a matrix by a vector.
GPUs excel at such computational tasks, but most GPU programs
will assume that the matrix fits in GPU memory. If the input matrix
becomes larger than GPU memory, the program must be invasively
modified and its complexity increases sharply—for example, the
input must be split into chunks, each chunk processed separately,
and data transfers must be overlapped with computation for good
performance. File systems traditionally excel at insulating the de-
veloper from such low-level data movement details. File systems
also excel as a communication substrate for composing different
programs. Currently, GPUs are more often used for stand-alone
monolithic applications, because the complexity of integrating a



GPU program into a complex processing pipeline is too high. Data
movement is a major source of this complexity.

With GPU hardware changing so rapidly, a key design chal-
lenge for GPUfs is to focus on properties likely to be essential to
the performance of future as well as current GPUs. Some proper-
ties of current GPUs, such as particular memory consistency mod-
els, may continue changing rapidly and unpredictably. We believe,
however, that two key characteristics—data parallelism and depen-
dence on access locality—will persist as GPU architectures evolve,
and GPUfs must address these concerns in order to succeed.

GPUs are designed to optimize for massive data parallelism,
by sharing a limited set of “control plane” logic—for instruction
fetch, memory management, etc.—among far more numerous “data
plane” resources such as vector ALUs. As a result, GPUs are effi-
cient when thousands of lightweight threads run similar or identical
code, with little control-flow variation. The traditional file system
API was not built with such an execution environment in mind.
In GPUfs, therefore, both the API semantics and the file system
implementation must be designed to support such massive paral-
lelism, efficiently allowing thousands of GPU hardware threads to
invoke open, close, read, or write calls simultaneously.

Second, memory locality is vital for performance, due to the va-
riety in memory system speeds and interconnect topologies. Our
work currently focuses on discrete GPUs, which today provide
higher performance than GPUs integrated with CPUs on the same
die. Discrete GPUs have high-bandwidth DRAM, but connect to
the host via a peripheral interconnect bus, typically PCIe. These
buses are high latency and low bandwidth relative to DRAM buses,
effectively 6GB/s for PCIe 2.0. Future multi-GPU systems with
both integrated and discrete GPUs will further increase variance
in hardware speeds and topologies. The only way for GPUfs to
perform well in such systems is with comprehensive OS manage-
ment of the memory system. The OS must have a global policy to
manage data placement and data reuse across CPU and GPU mem-
ories based on dynamic access patterns. GPUfs’s buffer cache is
distributed across all system memories to enable such policies.

We evaluate a prototype implementation of GPUfs on an x86
PC with four NVIDIA GPUs, using several microbenchmarks and
two realistic I/O intensive applications. All the presented GPUfs
workloads are implemented entirely in the GPU kernel without
CPU-side application code. In sequential file access benchmarks, a
trivial 16 line GPU kernel using GPUfs outperforms a simple GPU
implementation with manual data transfer by up to 40%, and comes
within 5% of a hand-optimized double-buffering implementation.
A matrix multiply benchmark illustrates how GPUfs easily enables
access to datasets larger than the GPU’s physical memory, performs
from 5% to 4× faster than the manual double-buffering typical
in current GPU code, and is about 2× smaller in code size. Two
parallel data analysis applications, prioritized image matching and
string search, highlight the ability of GPUfs to support irregular
workloads in which parallel threads open and access dynamically-
selected files of varying size and composition.

This paper makes the following main contributions.
1. The first POSIX-like file system API we are aware of for GPU

programs, with semantics modified to be appropriate for the
data-parallel GPU programming environment.

2. A design and implementation of a generic software-only buffer
cache mechanism for GPUs, employing a lock-free traversal
algorithm for data parallel efficiency.

3. A proof-of-concept implementation of GPUfs on NVIDIA
FERMI GPUs [21], supporting multi-GPU systems.

4. A quantitative evaluation of a GPU file system that identifies
sensitive performance parameters such as page size, and evalu-
ates efficiency relative to hand-coded solutions.

The next section provides an overview of the GPU architecture.
We then explain and justify the design choices that we made while
building GPUfs, followed by the implementation details of GPUfs
on NVIDIA FERMI GPUs. We evaluate the GPUfs prototype im-
plementation in Section 5, and conclude with related work.

2. GPU architecture overview
This section provides a brief, simplified overview of the GPU soft-
ware/hardware model, highlighting the properties that are particu-
larly relevant to GPUfs. We use NVIDIA CUDA terminology be-
cause we implement GPUfs on NVIDIA cards; for more details we
refer the reader to the CUDA reference [20].

GPUs are multicore processors. Each core, called multiproces-
sor or MP, features a wide SIMD vector unit, which a hardware
scheduler multiplexes between multiple execution contexts.

A GPU’s basic sequential unit of execution is a thread. GPU
hardware groups a number of threads (32 in NVIDIA GPUs) into
warps, and executes all threads in a warp concurrently in lockstep
on a single hardware vector unit. Each MP multiplexes many warps
onto the same SIMD unit to maximize hardware utilization, exe-
cuting one warp while another is blocked on a memory access for
example. Several warps (up to 32) form a threadblock. Threads in
a threadblock are always executed on a single MP. Multiple thread-
blocks form a single complete GPU program, often termed a kernel
(unrelated to an OS kernel).

A CPU application using the GPU enqueues all threadblocks
comprising a kernel into a single global hardware queue. The hard-
ware scheduler dispatches threadblocks onto MPs while assigning
unique IDs to each threadblock and each thread in the block. The
scheduler strives to maximize the number of warps concurrently
scheduled on an MP without exceeding MP hardware resources
such as available registers. Given sufficient hardware resources the
scheduler can schedule multiple independent kernels at once.

Challenges for GPUfs. There are two characteristics of the
GPU execution model that are particularly important in design-
ing system abstractions such as a file system API on a GPU. First,
once invoked, warps run to completion without preemption. This
implies, for example, that using spinlocks to synchronize between
running threads in the same kernel may lead to a deadlock. Sec-
ond, the hardware schedules threadblocks for execution in a non-
deterministic order, driven solely by the goal of maximizing hard-
ware utilization. This behavior creates challenges in implementing
reference-count based parallel versions of open and close file
calls, for example, as described later (§ 4).

3. Design
This section outlines the GPUfs API and file system semantics,
focusing on the similarities and differences from the POSIX API,
and the properties of GPUs that motivate these design choices.
We believe that our design reflects several key properties of data
parallel architectures that will apply to future as well as current
GPUs and hybrid processors. This section focuses on the high-
level aspects of the design and API that are visible to applications
using GPUfs, deferring lower-level implementation considerations
largely invisible to applications to § 4.

Figure 1 illustrates the architecture of GPUfs. CPU programs
are unchanged, but GPU programs can access the host’s file system,
via a GPUfs library linked into the application’s GPU code. The
GPUfs library works with the host OS on the CPU to coordinate
the file system’s namespace and data, caching file data in both CPU
and GPU memory largely transparently to the application.



Figure 1. GPUfs architecture

3.1 GPUfs design principles
Two key principles underly the design of GPUfs and the ways
in which it deviates from traditional POSIX semantics: making
common API operations efficient when executed in data parallel
fashion, and choosing consistency and data movement semantics
that maximizes file data access locality and minimizes expensive
global transfers between GPU and host memory.

API design for structured data parallelism. As we summarized
in § 2, GPU hardware offers parallelism at multiple granularities,
which combine to achieve high throughput. At finer granularities,
the hardware achieves efficiency by sharing control logic across
all threads comprising a warp. Processing is efficient when these
threads follow the same code paths in lockstep, but highly ineffi-
cient if the threads follow divergent paths: all the threads in a warp
must explore all possible divergent paths together, merely masking
instructions applicable only to some threads.

Because of these hardware characteristics, a key semantic de-
sign decision for any GPU-accessible library or system API is the
granularity at which API calls are to be invoked. Operations af-
fecting globally shared file system state, such as open and close
calls, involve control-flow heavy operations and require serializa-
tion. Even basic read and write API calls require updates to the
file system’s buffer cache data structures. If GPUfs allowed each
application to invoke these operations at thread granularity—e.g.,
each thread opening different files or reading different blocks—
these threads would quickly encounter divergent control paths
within GPUfs, entailing hardware serialization and inefficiency.
Moreover, hardware provides the highest memory throughput when
the accesses of all threads in a warp are aligned and can be coa-
lesced into one memory transaction.

For these reasons, GPUfs follows common GPU programming
practices by requiring all threads in a warp to cooperate to perform
the same operation, and requires applications to invoke the file
system API at warp—rather than thread—granularity.

Thus, all application threads in a warp must invoke the same
GPUfs call, with the same arguments, at the same point in ap-
plication code. These lockstep calls together comprise one logi-
cal GPUfs operation. For example, GPUfs does not allow an ap-
plication to open one file per thread in parallel, but only one file
per warp. On the other hand, this warp-granularity API allows
the GPUfs implementation to parallelize the handling of API calls
across threads in the invoking warp—parallelizing file table search
operations or data movement, for example. Our prototype currently
makes use of this capability only in a few performance-critical
cases, highlighting this principle by accelerating memory transfers
between the user and system buffers in read/write calls.

As detailed below, considerations of data parallelism also mo-
tivated several other design decisions we made in GPUfs: to mini-
mize per-open file state by eliminating seek pointers, decouple the
synchronizing side-effects traditionally bound into API calls such
as close, and constrain mmap semantics to avoid the need for
complex memory management on critical data parallel paths.

Locality-optimized file consistency model. GPU memory sys-
tems have pronounced NUMA characteristics, offering far more
bandwidth—over 30× in current systems—and lower latencies to
access local GPU memory than to main CPU memory or to that
of other discrete GPUs. Performance therefore critically depends
on minimizing file data movement between the GPU and CPU, or
between GPUs. To enable each GPU to access locally cached file
data as independently as possible, GPUfs implements a weak con-
sistency model similar to the private workspace model in Determi-
nator [1], and to distributed file systems such as LOCUS [26] or
AFS [10]. Once a file page is accessed and cached on a GPU, its
threads can read and write to that page locally without further com-
munication with the host—even if the host and/or other GPUs may
concurrently read and/or modify that file. GPUfs guarantees that
local file modifications propagate to main CPU memory only when
the application explicitly synchronizes the file or individual pages
with backing store, thereby persisting its content. These modifica-
tions become visible to other GPUs when they re-open the file.

Concurrent non-overlapping writes to the same file. In the po-
tentially common situation in which a parallel task is executing on
several GPUs and CPUs in one system, the same file may be write-
shared among all executing processors. Concurrent tasks typically
write into different parts of the file: i.e., to the particular range
each is assigned to produce. Workspace consistency allows mul-
tiple writers without causing memory page thrashing between dif-
ferent GPUs, as a single-writer MESI protocol would exhibit. An
important challenge, however, is that GPUfs must be able to han-
dle false sharing of buffer cache pages among different GPUs. As
a result, it has to determine which specific portions of a given page
were modified on a given GPU when propagating those modifi-
cations to the host, to avoid accidentally reverting other portions
of the same page that have been modified concurrently by other
GPUs. In general, for files opened for writing, GPUfs must main-
tain two copies of each cached block per GPU: a working copy to
which local writes are performed, and a pristine copy preserved
when the page is first read. GPUfs “diffs” the working and the pris-
tine copies at the next synchronization point to determine which
bytes have been modified and should be written back.

An important common case is write-once file access, where
GPU application threads produce a new output file without ever
reading it or overwriting already-written data. To avoid the costs
of both making and storing two copies of file blocks in this case,
GPUfs attaches special semantics to files an application opens in
a new (O_GWRONCE) open mode. GPUfs never reads pages of
such files from the host into the GPU cache, and instead implicitly
assumes the pristine copy of any file block is all zeros—even if
the host or some other GPUs may in fact have already written
to parts of that page in the underlying file. As a result, when the
GPU propagates locally written pages back to the host, determining
which bytes have been modified locally reduces to a trivial “diff
against zeros.” These semantics imply that one GPU’s threads will
typically never observe writes from other processors while the file
is opened for writing, and that multiple GPUs’ concurrent writes
are guaranteed to merge correctly only if threads write only once to
disjoint file areas. We believe these constraints are consistent with
common practices in file-producing data parallel applications, and
thus place reasonable semantic demands on applications in order to
enable important data movement optimizations.



API Explanation
gread/gwrite Reads and writes always supply explicit file offsets, to avoid the file seek pointer becoming a sequential bottleneck.
gopen/gclose Open and close files in the namespace of a single threadblock. Multiple concurrent open requests to open or close the same

file are coalesced into one open/close. The precise semantics are further discussed in the text.
gfsync Synchronously write back to the host all dirty file pages that are currently neither memory-mapped nor being accessed

concurrently via gread or gwrite calls.
gmmap/gmunmap A relaxed form of mmap that avoids double copies in gread/gwrite. Imposes API constraints discussed in the text.
gmsync Write back a specific dirty page to the host. The application must coordinate calls to gmsync with updates by other

threadblocks.
gunlink Remove a file. Files unlinked on the GPU have their local buffer space reclaimed immediately.
gfstat Retrieve file metadata. File size reflects file size at the time of the first gopen call that opened this file on the host.
gftruncate Truncate a file to a given size, and reclaim any relevant pages from the buffer cache.

Table 1. GPUfs API, and discussion of relaxed file system semantics for GPUfs.

3.2 GPUfs API
Guided by the above principles, we now explore their implications
on specific parts of the GPUfs API. GPUfs attempts to preserve
the POSIX API’s familiar semantics when practical, while diverg-
ing as needed for efficiency in GPU environments. Table 1 sum-
marizes the API and its deviations from from POSIX semantics.
We prepend a ‘g’ to GPUfs’ API function names to emphasize that
their semantics deviates from strict POSIX.

Open and file descriptors. Traditionally, if several POSIX threads
concurrently open the same file, each thread obtains a fresh file
descriptor in a process-global file table, each descriptor containing
a separate seek pointer and other file-open state. For GPU kernels
we expect it to be commonplace to open the same file in parallel
across hundreds of concurrently running warps, for example when
each warp is assigned a given chunk of a given file. Preserving
POSIX semantics would in such cases require these gopen calls
to coordinate the efficient simultaneous allocation and initialization
of large “batches” of file descriptors at once, a complex and likely
inefficient file descriptor management task. In GPUfs, therefore,
“file descriptors” do not represent individual file opens but merely
correspond directly to files, so that all GPU threads opening the
same file obtain a single shared file descriptor. GPUfs forwards
the first gopen call on a given file to the CPU to open the file on
the underlying host file system. GPUfs then reference counts these
open files, so a gopen on an already-open file just increments the
file’s open count without requiring CPU communication.

Besides the standard open flags, gopen introduces two new
flags enabling useful performance optimizations.
• O GWRONCE: Creates a new write-only file, in which the appli-

cation will write each byte at most once. If data is overwritten,
partial updates may occur. This flag eliminates fetching of file
content from the CPU before writing, as described above in §3.1.

• O NOSYNC: Creates a temporary file to be used only by the GPU
opening it. GPUfs never writes the file’s data to disk on close, and
never writes it at all except to reclaim GPU buffer cache space.

Read and write. Because GPUfs dispenses with most per-open
state, its file descriptors have no seek pointers. As a result, gread
and gwrite correspond to POSIX’s pread and pwrite—
taking file offsets explicitly as arguments—instead of the tradi-
tional streaming read and write. This convention matches com-
mon practice in parallel workloads anyway [14], and application
threads can maintain their own explicit seek pointers if required, as
we demonstrate in our experiments (§5.2.2).

Close and synchronization. POSIX semantics require the con-
tents of a file to be synchronized to stable storage (e.g., disk) after
each close. In the common-case sequence of gopen, gwrite,
gclose, executed by many GPU threads, POSIX close seman-

tics cause many costly write-backs due to the nondeterministic
GPU scheduler. Even if we reference count files, it is common for
several threadblocks to open, write, then close the file, sending its
reference count temporarily to zero before other threadblocks are
scheduled that open the file again. In our experience this situation
can be common, and synchronizing files each time the reference
count drops to zero results in many unnecessary writes.

GPUfs therefore decouples the file “close” and “synchronize”
operations. In particular, gclose does not propagate locally writ-
ten data back to the CPU, or to other GPUs, until the application
explicitly synchronizes file data, by calling gfsync to synchronize
either an entire file or a specific offset range.

File mapping. GPUfs allows GPU threads to map portions of
files directly into local GPU memory via gmmap/gmunmap. As
with traditional mmap, file mapping offers two benefits: the conve-
nience to applications of not having to allocate a buffer and sepa-
rately read data into it, and opportunities for the system to improve
performance by avoiding unnecessary data copying.

Full-featured memory mapping functionality requires user-pro-
grammable hardware virtual memory, which current GPUs lack.
Even in future GPUs that may offer such control, we expect per-
formance considerations to render traditional mmap semantics im-
practical in data parallel contexts. GPU hardware shares control
plane logic, including memory management, across compute units
running hundreds or thousands of threads at once. Thus, any trans-
lation change has global impact, likely requiring synchronization
too expensive for fine-grained use within individual threads.

GPUfs therefore offers a more relaxed alternative to mmap,
permitting more efficient implementation in a data parallel context
by avoiding frequent translation updates. There is no guarantee that
gmmap will map the entire file region the application requests—
instead it may map only a prefix of the requested region, and
return the size of the successfully mapped prefix. Further, gmmap
is not guaranteed ever to succeed when the application requests a
mapping at a particular address: i.e., MMAP_FIXED may not work.
Finally, gmmap does not guarantee that the mapping will have only
the requested permissions: mapping a read-only file may return
a pointer to read/write memory, and GPUfs trusts the application
not to modify that memory. Improper updates to such “quasi-read-
only” pages are never propagated back to the host CPU, so GPUfs
ensures host file system integrity despite less stringent page-level
access enforcement on data resident in local GPU memory.

These looser semantics ultimately increase efficiency by allow-
ing GPUfs to give the application pointers directly into GPU-local
buffer cache pages, residing in the same address space (and protec-
tion domain) as the application’s GPU code.



3.3 Buffer cache
An essential component of a file system layer is a buffer cache. In
CPUs, the buffer cache minimizes disk accesses, which can be a
thousand times slower than memory. The GPU page cache extends
this principle to GPU file accesses, caching file data in fast local
GPU memory to minimize transfers across the relatively slow and
bandwidth-constrained peripheral interconnect.

The role of the buffer cache extends beyond simple caching.
As on a CPU, a GPU buffer cache enables further performance
optimizations such as read-ahead, data transfer scheduling, and
asynchronous writes. In multi-processor, multi-GPU systems the
buffer cache spans multiple GPUs and serves as an abstraction
hiding the low-level details of the shared I/O subsystem.

Due to limitations in the software interfaces available to today’s
GPU hardware, GPUfs currently implements a private GPU buffer
cache for each host CPU process: buffer cache pages are not shared
across host applications, as in the OS-maintained buffer cache on
the host CPU. Programmable memory protection interfaces on fu-
ture GPUs could eliminate this limitation, enabling a true cross-
user, cross-application GPU buffer cache.1 On the other hand, mul-
tiple kernels launched by the same process can share data via the
buffer cache, and we use that feature in our experiments (§5.1.3).

Replacement policies. A GPU file system allows the OS to coor-
dinate file system replacement policies across all hardware in the
system. For example, if the GPU is idle, the OS could use GPU
memory as a staging area for data before writing it to disk. As GPU
computations evolve to become part of heterogeneous processing
pipelines, OS management of file system data will enable signifi-
cant performance optimizations.

Whether standard LRU replacement policies for CPUs will be
appropriate for the GPU buffer cache is not yet clear. Typical file
access patterns in GPU applications remain to be seen, but we
already observe accesses to be fairly chaotic even in workloads
with logically sequential accesses, due to the non-deterministic
scheduling of threadblocks in the GPU execution model.

Failure semantics. GPUfs has failure semantics similar to the
CPU page cache: on failure, file updates not yet committed to
disk may be lost. From the application’s perspective, successful
completion of gfsync or gmsync ensures that data has been
written to the host page cache. The API also allows forcing writes
to stable storage, equivalent to fsync or msync on CPUs.

Unfortunately, GPU failures are more frequent and have severe
implications. In existing systems, a GPU program failure—such as
an invalid memory access or assertion failure [20]—may require
restarting the GPU card, thus losing the GPU’s entire memory state.
As GPUs continue to become more general-purpose, we expect
GPU hardware to gain more resilience to such software failures.

3.4 Resource contention with GPU programs
Operating systems are known to compete with user programs for
hardware resources such as caches [23], and are often blamed for
decreased performance in high performance computing environ-
ments. GPUfs is less intrusive than a complete OS because it has
no active, continuously running components. It necessarily adds
some overheads, however, in the form of memory consumption,
increased program instruction footprint, and the use of GPU hard-
ware registers. We expect the relative effect of these overheads on
performance to decrease with future hardware generations, which
will provide larger memory, larger register files, and larger instruc-

1 A cross-application buffer cache could potentially be implemented already
using the new IPC feature in CUDA 5.0, but this interface still lacks the
programmable memory protection that would be necessary to protect a
shared GPUfs buffer cache from errant host processes or GPU kernels.

Figure 2. Main GPUfs software layers and their location in the
software stack and physical memory.

tion caches. And despite these additional costs, we find GPUfs to
have good performance in useful application scenarios (§5).

GPUfs by design imposes no overhead on GPU kernels that use
no file system functionality. We deliberately avoided design alter-
natives involving “daemon” threads: i.e., persistent GPU threads
dedicated to file system management, such as paging or CPU-GPU
synchronization. While enabling more efficient implementation of
the file system layer, such threads would violate the “pay-as-you-
go” design principle to be discussed further in §4.2

4. Implementation
This section describes our GPUfs prototype for NVIDIA FERMI
GPUs. We first outline the prototype’s structure and how it imple-
ments the above API, then explore implementation details and chal-
lenges. We cover buffer cache management, GPU-CPU communi-
cation, file consistency management, and limitations of the current
prototype. Some of these implementation choices are likely to be
affected by future GPU evolution, but we feel that most consider-
ations discussed here will remain relevant. For simplicity, our cur-
rent implementation supports parallel invocation of the GPUfs API
only at threadblock and not warp granularity. GPUfs calls represent
an implicit synchronization barrier, and must be called at the same
point with the same parameters from all threads in a threadblock.

Most of GPUfs is a GPU-side library linked with application
code. The CPU-side portion runs as a user-level thread in the host
application, giving it access the application’s CUDA context.

Figure 2 shows the three main software layers comprising
GPUfs, their location in the overall software stack shown on the
right and indicated by different colors, and the type of memory the
relevant data structures are located in shown on the left.

The top layer is the core of GPUfs, which runs in the context of
the application’s GPU kernels and maintains its data structures in
GPU memory. This layer implements the GPUfs API, tracks open
file state, and implements the buffer cache and paging.

The communication layer manages GPU-CPU communica-
tions, and naturally spans the CPU and GPU components. Data
structures shared between the GPU and CPU are stored in write-
shared CPU memory accessible to both devices. This layer imple-
ments a GPU-CPU Remote Procedure Call (RPC) infrastructure,
to be detailed in Section 4.3.

Finally, the GPUfs consistency layer is an OS kernel module
running on the host CPU, which manages consistency between the
host OS’s CPU buffer cache and the GPU buffer caches, according
to the file consistency model described above in §3.

The GPUfs file system is inspired by the Linux file system and
buffer cache. We now examine its function in more detail.



Figure 3. Functional diagram of a call to gread. Color scheme
is the same as Figure 2.

4.1 File system operations
Open and close. GPUfs keeps track of open and recently closed
files in several tables. Each open file has an entry in the open
file table. This table holds a pointer to a radix tree indexing the
file’s pages. For each file, the table stores several file parameters,
including the pathname and the CPU file descriptor used for data
requests handled by the CPU. Finally, each entry stores a reference
count of the number of threadblocks holding the file open.

When a file is closed its pages are retained in GPU memory
until they are reclaimed for caching other data. The closed file table
maintains pointers to the caches of closed files, and is a hash table
indexed by file inode number in the CPU file system. Because of
GPU hardware thread scheduling, files can appear to be closed
while still in use by threadblocks that have yet to be scheduled
(§3.2). To optimize for this case and to support data reuse in and
across kernels, gopen checks the closed file table first, and moves
the file cache back to the open file table.

Reads and writes. Reads and writes work as expected, first
checking the cache for the relevant block, and forwarding requests
to the CPU and allocating cache space as necessary. Figure 3 shows
a functional summary of gread’s operation. Reads and writes
exploit the GPU’s fine-grain parallelism by using many threads
to copy data or initialize pages to zero collaboratively. Reference
counts protect pages during memory transfers.

When gwrite completes, each thread issues a memory fence
to ensure that updates reach GPU memory, in case the GPU buffer
cache needs to write the page back to the CPU. Otherwise, due
to the GPU’s weak memory consistency model, the data paged
back via a DMA from the GPU memory might be left inconsistent
because the writes might remain buffered in the GPU’s L1 cache.

File management operations. File management operations such
as gunlink and gftruncate each generate an RPC to the CPU
to request the respective operation on the host. They also reclaim
the file page cache on the GPU if necessary.

4.2 GPU buffer cache
Pages, page frames and page table. GPUfs manages file con-
tent at the granularity of a buffer cache page. This page size is
configurable, though performance considerations typically dictate
page sizes larger than OS-managed pages on the host CPU—e.g.,
256KB, since GPU code often parallelizes the processing of a page
across many threads in a threadblock (on the order of 256 threads).
The ideal page size depends on empirical considerations explored
further in §5. For efficiency, GPUfs pre-allocates pages in a large
contiguous memory array, which we call the raw data array.

As in Linux, each page has an associated pframe structure
holding metadata for that page, e.g., the size of the actual data in
the page, dirty status, and others. Unlike Linux, pframes contain
some file-related information, such as a unique file identifier used
for lock-free traversal, and the page’s offset in the file, because in
GPUfs all pages are backed by a host OS file.

Pframes are allocated in an array separate from the pages them-
selves, but the ith pframe in this array holds metadata for the ith

page in the raw data array, making it easy to translate in both direc-
tions, as needed in operations such as gmunmap and gmsync.

Per-file buffer cache. The buffer cache keeps replicas of previ-
ously accessed file content for later reuse. For simplicity the GPUfs
buffer cache is per-file, not per-block device as in Linux, but future
GPU support for direct access to storage devices may motivate re-
consideration of this decision.

A dynamic radix tree indexes each file’s buffer cache, enabling
efficient page lookups given a file offset. Last-level nodes in the
tree hold an array of fpage structures, each with a reference to a
corresponding pframe. The fpages manage concurrent access to
the respective pframes: each holds a read/write reference count
and a spinlock, together preventing concurrent access by mutually
exclusive operations such as initialization, read/write access, and
paging out. The fpages are allocated not by reference, but by value
within radix tree nodes. We use in-place data structures to avoid
pointer traversal and minimize memory allocations, even though
all dynamic memory is managed by GPUfs via special allocators.

Buffer cache management. CPUs handle buffer cache manage-
ment tasks in a daemon thread, keeping costly activities such as
flushing dirty pages out of an application’s performance path.
GPUs unfortunately have a scheduling-related weakness that makes
daemon threads inefficient, affecting the performance of all GPU
applications including those not using GPUfs. GPU threadblocks
are non-preemptive, so a daemon would require its own thread-
block. This dedicated threadblock could be either an independent,
constantly running GPU kernel, or it could be part of each GPU
application. The former approach reduces performance by perma-
nently consuming a portion of GPU hardware resources, whereas
the latter breaks the correctness of GPU applications that rely on
the availability of a specific number of threadblocks for execution.
Alternatively, offloading GPU cache management to a CPU dae-
mon is impractical on existing hardware due to the lack of atomic
operations over a PCIe bus, as explained later in §4.3.

Organizing the file system to avoid asynchronous GPU-initiated
activity has important design consequences, such as the need to
optimize the paging algorithm for speed. GPUfs performs paging
as a part of regular file operations such as gwrite, with the
GPUfs code hijacking the calling thread to perform paging. To keep
paging fast, GPUfs does not use replacement policies that perform
a variable amount of work, such as the clock algorithm [5].

GPUfs implements a FIFO-like policy by tracking allocation of
last-level radix tree nodes. Newly allocated nodes are placed at the
head of a doubly-linked list. When a thread needs to evict pages
back to the CPU, it performs a lock-free traversal of this list to
reclaim a desired number of pages from a particular file.



To choose the file whose pages will be reclaimed, GPUfs uses
a policy similar to Linux’s. GPUfs first looks at closed files, which
are not in use so their content can be evicted with lower perfor-
mance penalty for the running application. Furthermore, their pages
are clean, so they can be reclaimed without GPU-CPU communi-
cation.2 GPUfs then looks for pages from read-only open files, and
as a last resort chooses pages from writable open files.

Lock-free buffer cache access. The buffer cache radix tree is
a major contention point among threads accessing the same file.
These accesses must be synchronized to avoid data races, such
as concurrent attempts to initialize pages belonging to the same
intermediate node, or node deletion due to page reclamation, which
may be performed concurrently with page lookup.

GPUfs uses lock-free reads and locked updates, similar to
Linux’s seqlocks [9]. Updates maintain the radix-tree invariants
used by readers, and all fields are initialized before a new node
becomes visible to readers. Reads can fail, in which case they retry.
GPUfs retries once without locking, then locks on its third attempt.
To check that the page found is correct, GPUfs assigns a unique
identifier to each radix tree during initialization, then propagates
this identifier to every page referenced by the tree. This identifier,
combined with the page offset, uniquely identifies the page.

The paging algorithm also uses lock-free reads on a doubly
linked list used as a FIFO queue.

4.3 GPU-CPU Remote Procedure Call
GPUfs implements an RPC protocol to coordinate data transfers
between the CPU and GPU. The GPU serves as a client that issues
requests to a file server running on the host CPU. This GPU-
as-client design contrasts with the traditional GPU-as-coprocessor
programming model, reversing the roles of CPU and GPU.

The challenge of implementing an efficient RPC protocol lies
in the CPU/GPU memory consistency model. GPU consistency
models are tailored to the bulk-synchronous GPU programming
model, where GPU-CPU communications traditionally occur only
at kernel invocation boundaries and not while the kernel is running.
Except at these points, CPU/GPU consistency is not guaranteed.
Our RPC system is thus not currently portable to all GPUs, but
relies on hardware providing the following consistency features.
1. GPU-CPU memory fences. GPU file read and write requests

must be delivered to the CPU while the GPU kernel is running.
This is only possible if consistent updates of the CPU-GPU
write-shared memory can be enforced in both directions.

2. GPU cache bypass. To allow consistent reads of GPU memory
from the running GPU kernel, after this memory has been up-
dated by CPU-initiated DMA transfers, GPU reads must either
invalidate or bypass the GPU’s L1 and L2 caches.
The OpenCL [7] standard, and consequently AMD’s discrete

GPUs, currently do not support these features. Hybrid AMD GPUs
are adding support for the first feature, but are not yet available.
Only NVIDIA GPUs currently satisfy all of our requirements.

Challenges due to hardware constraints. RPC implementation
is complicated by the lack of atomic operations over the PCIe bus.
The new PCIe-III standard includes atomics, but implementation is
optional and we know of no hardware currently supporting it.

This limitation precludes the use of efficient one-side commu-
nication protocols. A CPU cannot reliably lock and copy a page
from GPU memory, for example, without GPU code being involved
in acknowledging that the page has been locked. Consequently,
the current implementation must resort to a less efficient message-
passing protocol for synchronization.

2 For clarity we omit some technical details on handling dirty files on close.

Today’s GPUs also lack a signal-like mechanism accessible to
applications, to notify a host CPU process of events originating on
the GPU. The current API offers the CPU only coarse-grained no-
tifications when entire GPU kernels or memory transfers complete,
and do not allow code within a GPU kernel to send notifications.
The CPU must therefore poll the GPU-CPU shared memory region
continuously to detect RPC requests from the GPU.

RPC protocol implementation. GPU-CPU communications in
GPUfs follow a synchronous, stateless client-server protocol,
where the GPU sends requests to the CPU and waits for the CPU
to acknowledge the request’s completion. The RPC request chan-
nel is a FIFO queue in write-shared memory, which the CPU polls
for requests. Each GPU in the system has a separate RPC request
queue, managed exclusively by the GPU that owns that queue.

The GPU uses its request queue only to send commands: when
the GPU issues a bulk transfer request such as a bulk data read or
write, the CPU initiates a DMA-based bulk data transfer directly
to or from the respective GPU buffer cache pages, using source or
destination pointers supplied by GPU code. The CPU then notifies
the GPU when the transfer completes.

The RPC queue usually contains multiple concurrent requests
that, in principle, CPU code could handle in parallel. Our imple-
mentation uses a single-threaded, event-based design on the host
to restrict the GPU-related CPU load to one CPU, simplify syn-
chronization, and to avoid overwhelming the disk subsystem with
concurrent requests. Our implementation thus currently orders file
accesses, but data transfers to and from the GPU use multiple asyn-
chronous CPU-GPU channels to utilize full-duplex DMA and over-
lap GPU-CPU transfers with disk accesses.

4.4 File consistency management
The current prototype implements the locality-optimized file con-
sistency model described in Section 3, though currently only for
the common cases of files opened in either read-only (O_RDONLY)
or write-once mode (O_GWRONCE, see §3.2). The GPUfs proto-
type does not yet implement the diff-and-merge protocol required
to support general write-sharing, and thus currently supports only
one writer at a time.

If a GPU is caching the contents of a closed file, this cache
must be invalidated if the file is opened for write or unlinked by
another GPU or CPU. GPUfs propagates such invalidations lazily,
if and when the GPU caching this stale data later reopens the file.
We call this strategy lazy because closing a file on one GPU or
CPU does not actively push an invalidation to other GPUs caching
the file. The GPUfs API currently offers no direct way to push
changes made on one GPU to another GPU, except when the latter
reopens the file. Supporting such invalidations without PCI atomics
would require GPUs to run daemon threads waiting for such an
invalidation signal, an overhead we wish to avoid (see §4.2).

GPUfs uses WRAPFS [28], a stackable passthru file system,
on the CPU to implement file consistency. WRAPFS is a Linux
module that introduces a thin software layer on top of any file
system, enabling interposition on calls to the underlying file sys-
tem. We modified WRAPFS to implement our consistency proto-
col, enabling seamless integration of GPUfs with unmodified CPU
programs. The CPU-side GPUfs daemon communicates with this
modified WRAPFS module via a special character device. This de-
vice is used solely to update and query file state to implement file
consistency, and provides no access to actual file content, thereby
leaving the host OS’s file access policies uncompromised. We do
not currently protect against denial-of-service by misbehaved ap-
plications via buffer cache invalidation, however.



4.5 Implementation limitations
GPUs contain hardware translation and protection mechanisms that
prevent GPU kernels launched by one CPU process from accessing
the GPU memory of kernels launched by other processes. Today’s
GPUs do not offer software interfaces to control this memory
protection hardware, however. A GPUfs instance can therefore
serve only a single CPU process, and GPUfs cannot share state
across GPU invocations by different host processes. For the same
reason, GPUfs cannot protect the contents of its GPU buffer caches
from corruption by the application it serves. Such features may
become feasible once GPU vendors offer appropriate interfaces.

GPUfs does preserve file access protection at the host OS level,
however. The host OS prevents a GPUfs application from opening
host files the application doesn’t have permission to access, and
it denies writes of dirty blocks back to the host file system if the
GPUfs application has opened the file read-only.

5. Evaluation
We evaluate GPUfs on a SuperMicro server system featuring two
4-core Intel Xeon L5630 CPUs at 2.13GHz with 12MB L3 cache
per CPU, and four NVIDIA TESLA C2075 GPUs, each with 6
GB of GDDR5 memory. We run Ubuntu Linux kernel 3.0.0-27,
with CUDA SDK 5.0, GPU driver 304.54. GPUfs is mounted
atop a regular disk partition; the disk is a 500GB WDC WD5003,
7200RPM. The performance as reported by ‘hdparm -t -T’ is
6,600MB/s and 132MB/s for cached and disk reads respectively.

We evaluate the system’s performance and utility with several
microbenchmarks, and also present two more realistic applications.
For every data point we report the arithmetic mean of 5 executions
after one warm up, unless stated otherwise. In all experiments we
found the standard deviation of the results to be less than 1%.

One important property shared by all the test workloads is that
their GPUfs implementation required almost no CPU code: they
were entirely implemented in the GPU kernel. For all the work-
loads, the CPU code is identical, save the name of the GPU kernel
to invoke. This is a remarkable contrast with standard GPU devel-
opment, which always requires substantial CPU programming ef-
fort. From our experience we found it significantly easier to develop
self-contained GPU programs, and believe that self-contained GPU
programming will enable broader adoption of GPUs.

5.1 Microbenchmarks
The microbenchmarks below examine basic system performance
and its sensitivity to several important configuration parameters.

5.1.1 Sequential file read
We first evaluate the effect of page size on sequential read per-
formance. The benchmark transfers a single 1.8 GB file, in three
ways: (a) reading data from the GPU kernel via GPUfs, (b) us-
ing the CUDA memory transfer API in chunks the same size as a
GPUfs page (CUDA pipeline), and (c) reading the whole file in one
chunk and transferring it to the GPU in one CUDA API call.

The GPU file reading kernel runs with 28 threadblocks (twice
the number of active multiprocessors in the GPU), where each
threadblock maps pages from a contiguous range in the file. Each
threadblock maps one page at a time, until the total 64MB of data
is mapped. The number of map requests depends on the page size.
The data itself is not accessed, but the pages are fetched from the
CPU page cache into the GPU buffer cache. The threadblock then
closes the file and exits. GPU file access is not strictly sequen-
tial because the order of reads by different threadblock is non-
deterministic. We do not anticipate any measurable effect from
these non-sequential reads, however, because the file data is cached
in CPU memory and fits in the GPU page cache.

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1000

2000

3000

4000

5000

6000

CUDA pipeline GPU File I/O

Page size

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

 Whole file transfer (2100MB/s)

 Maximum PCI bandwidth (5731MB/s)

Figure 4. Sequential read performance as a function of the page
size. The red line is the maximum achievable PCI bandwidth on
this hardware configuration. Higher is better.
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Figure 5. Contribution of different factors to the file I/O perfor-
mance as a function of the page size. Lower is better.

The CPU code uses pread to read each chunk of the file
into pinned CPU memory allocated with cudaHostMalloc, then
issues an asynchronous cudaMemcpy to enqueue a DMA transfer
request for that chunk, then proceeds to the next chunk (except in
the whole file transfer case in which there is only one big chunk).
Dividing the file into chunks overlaps file access latency with DMA
data transfers to the GPU. An alternative implementation, which
copies file content directly from the CPU page cache exposed via
mmap, performs worse because it prevents CUDA from optimizing
DMA transactions and forces cudaMemcpy to be synchronous.

The graph in Figure 4 shows read bandwidth for different page
sizes. As expected, small GPUfs pages (less than 64KB) result in
low performance, and increasing page size increases performance,
with diminishing returns after 512 KB. Reading entire files, a com-
mon practice among GPU programmers expecting larger transfers
to amortize data transfer overheads most effectively, is in fact less
efficient than breaking reads into chunks, as chunks allow overlap
of pread from the CPU page cache with PCI data transfer. The
CUDA pipeline implementation appears to achieve the maximum
possible file-to-GPU transfer performance on this machine.

GPUfs outperforms simple CUDA whole file reads at 64 KB
pages and higher, and achieves on average within 5% of the band-
width of the hand-pipelined version, a cost we consider to be a
reasonable tradeoff for the convenience GPUfs offers.

Figure 5 breaks down the timing of the microbenchmark, by
eliminating PCI data transfer time while leaving only the RPC
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Figure 6. Random read/write performance as a function of page
size. Higher is better.

traffic, eliminating CPU file reads, and eliminating both. The graph
shows latency, where lower is better.

Execution time with small pages is dominated by the DMA
transfers, which copy too little data per transaction, and by GPUfs
API costs. I/O operations become fully overlapped with GPUfs
buffer cache code execution for pages larger than 64KB. We see
that total page cache access overhead (the rightmost labeled col-
umn) diminishes proportionally to page size. This is because the
total amount of memory mapped by each threadblock is fixed while
the page size changes, so the number of map requests performed by
each threadblock is reduced as the page size grows. For pages larger
than 128K the CPU page cache becomes the main bottleneck.

5.1.2 Random file read
This experiment shows the performance of random file access for
different page sizes. This kernel is invoked with 112 threadblocks,
where each threadblock reads 32 32KB data blocks from random
offsets in a 1GB file, for a total of 112 MB read. The kernel uses
gread to read the data into a 32KB array allocated in the GPU on-
die scratchpad memory. Unlike gmmap, gread is not constrained
in size to a single cache page, hence it is more appropriate for ac-
cessing file data at random offsets. Occasionally, different thread-
blocks may access the same page and fetch it from the GPU buffer
cache. Time measurements are an average over 8 runs.

Figure 6 shows that as with sequential reads, small pages lead to
bad performance, but now large pages also lead to bad performance.
Small pages fail to amortize transfer costs, while large pages trans-
fer too much data that is not actually read by the application. 64KB
achieves the best performance in this test.

We calculate effective throughput in this experiment assum-
ing an ideal case of exactly 112MB of data transferred. To sup-
port random accesses from GPU code without GPUfs, a GPU pro-
gram would typically transfer the whole 1GB and perform the ran-
dom accesses in GPU memory. Assuming the maximum observed
throughput of 3100MB/s (see Figure 4), using only one tenth of the
total 1GB of transferred data results in an effective random-access
throughput of only 310 MB/s, comparable to GPUfs’s worst per-
formance using very large pages. Further, without GPUfs, random
access to files whose size exceeds the GPU’s physical memory is
complex and inefficient in hand-coded GPU programs, often requir-
ing frequent, brief kernel invocations between each random access.
GPUfs eliminates from the application the design and implementa-
tion complexity required to handle such cases efficiently.

In the above experiments, a 128KB page size achieves a reason-
able balance between sequential and random access performance.
The optimal page size in general depends on application access pat-

Figure 7. Buffer cache access performance with and without lock-
free radix tree traversal, normalized by the raw memory access
time.

tern, however. In the current implementation, in which GPUfs is de-
ployed on a per-application basis, page size may easily be tailored
to the particular application’s access patterns if necessary.

5.1.3 Buffer cache access performance
As the “GPUfs-lock-free” case in Figure 7 shows, GPUfs achieves
85–88% of raw memory access performance when accessing files
in the GPU buffer cache, for 128KB pages or larger. In this ex-
periment we invoke 112 threadblocks, each reading 64MB of data
into the GPU’s on-die scratchpad memory in chunks of 16KB. The
baseline implementation reads data directly from the GPU’s main
memory, without using the GPUfs API. The GPUfs implementa-
tion reads data from the cached file via gread, passing to gread
a direct pointer to the destination buffer in scratchpad memory.
The file is fully prefetched into the GPU page cache by another
previously invoked kernel, excluding PCI transfer time from the
measurements. We randomized the memory accesses so that every
16KB chunk is read from a different file location, to cause non-
trivial contention on the buffer cache data structure.

This workload mimics the behavior of linear algebra kernels,
for example, which perform tiled operations on large matrices,
prefetching data to be processed into scratchpad memory.

We ran this experiment with a locked traversal of the buffer
cache’s radix trees, for comparison against our default lock-free
implementation. As described in §4.2, we normally use the lock-
free traversal to access each page, resorting to locking only in cases
of high contention. When file data is fully resident in the buffer
cache, GPUfs locks the tree rarely, as confirmed later in Table 2. As
a result, Figure 7 shows that the lock-free protocol performs nearly
3× better than the locked protocol across various page sizes.

5.1.4 Matrix-vector product
We run a simple single-precision matrix-vector product kernel to
highlight two key benefits of the file system API: automatic data
transfer pipelining and code simplification.

This test reads an input matrix and vector from files, and writes
the result to an output file. We compare three implementations:
one using GPUfs, one that explicitly implements double buffering
to overlap the PCI data transfer and the kernel execution (CUDA
naı̈ve in Figure 8), and an optimized version of the latter (CUDA
optimized). The GPUfs implementation does not call the CUDA
host-side API, employing gmmap to read the data in the kernel,
gftruncate to truncate the output file at the start, gwrite to
write the output, and finally gfsync to synchronize the data to
disk. The GPUfs buffer cache is sized to 2 GB, with 2MB pages.
The “naı̈ve” version implements a simple pipeline, splitting the file



280 560 2800 5600 11200
0

500

1000

1500

2000

2500

3000

3500 GPU file I/O CUDA naïve CUDA optimized

Matrix size (MB)

T
hr

ou
gh

p u
t (

M
B

/s
)

Figure 8. Matrix-vector product for large matrices

into four chunks and processing each chunk independently, over-
lapping the file read, data transfer and kernel execution between
them. Note that the chunk size depends on the size of the input,
which is convenient because every GPU kernel invocation may use
the same number of threads. The optimized version is similar, but
the chunk size is fixed at 70 MB and there are 16 independently pro-
cessed chunks. Similarly to the CUDA naı̈ve version, each chunk is
processed separately, and the file read, data transfer and kernel ex-
ecution are overlapped between the chunks. Both implementations
run the same code for computing the inner-product.

We fix the input vector length to 128K elements, and vary the
matrix size from a few megabytes up to 11GB. The largest input
does not fit in the GPU’s memory, and barely fits into the CPU’s
RAM. The GPUfs version requires no special treatment for this
case, however. While this workload is entirely limited by the PCIe
bus bandwidth, and for the largest inputs by the disk bandwidth, it
is representative of many kernels that need to read data from disk
as part of a large processing pipeline.

Figure 8 shows that the GPUfs based implementation outper-
forms the double-buffering implementation, achieving maximum
PCI bandwidth equivalent to reading sequential files (see Figure 4).
The main reason for the performance benefit is that the non-GPUfs
code reads the input in large chunks (1GB each), which some-
times causes slowdowns due spurious paging of the CPU buffer
cache, stalling the CPU-GPU transfer pipeline. GPUfs performs
many shorter reads, due to the 2MB page size in this experiment,
and the performance irregularities are smoothed by the fine-grained
pipelining performed under the hood by the CPU’s RPC daemon.

When file size exceeds available CPU buffer cache (the last data
point in the graph), performance falls as the workload becomes
disk bound. In this performance regime, GPUfs outperforms both
CUDA versions by a factor of 4. The pinned memory allocated
for large transfer buffers for the CUDA implementations competes
with the CPU buffer cache, slowing it down significantly.

On the other hand, we observe no slowdown for inputs exceed-
ing the size of the GPU buffer cache (larger than 2GB). The FIFO-
like replacement policy employed by GPUfs appears to offer ade-
quate efficiency for such streaming workloads.

5.2 Application benchmarks
We now consider two more realistic I/O intensive workloads: image
search, and a “grep”-like search of text files. Both applications have
highly data-dependent, unbounded working sets that dynamically
change during computations. Such dynamic data dependencies are
challenging to handle in GPU programs without GPUfs.

Buffer
cache size

Time (s) Pages
reclaimed

Lock-free
accesses

Locked
accesses

2G 53 0 1,088,838 21,516
1G 69 11,509 547,819 574,463

0.5G 99 38,317 176,758 1,351,903

Table 2. Impact of the buffer cache size on the running time and
locking behavior for the image search workload. Locked access
count also includes unlocked retries.

5.2.1 Finding approximately matching images
The first application’s input is a set of query images and several
image databases containing many small images. The goal is to find
which databases contain images matching the query images, where
a match is defined by a threshold on a similarity metric, in our case
Euclidian distance. While each image may be present in several
databases, the databases must be scanned in a predefined order and
only the first match output for a given query image. This process
is representative of large-scale image registration tasks, e.g., when
processing aerial photographs while attempting to find a matching
image in a specific region first.

We can easily parallelize this problem by dynamically or stat-
ically splitting the input images between the threadblocks. The
databases or/and the input set may not fit in GPU memory, how-
ever. Thus, the decision of which database to load and when must
be done at runtime depending on the outcome of prior matching
attempts. For example, if all the matching images are located at the
beginning of the first database, the amount of data to be transferred
is much lower than simply transferring all of the databases at once.

Without GPU access to the file system, the CPU must transfer
the databases to the GPU first. To avoid redundant PCI transfers,
the CPU is likely to split the databases into chunks, small enough
so that the amount of redundant data transferred would be negligi-
ble, but large enough to amortize the overheads of GPU invocation
on each chunk. This heuristic is not only suboptimal and introduces
additional overheads, but significantly complicates the code. Fur-
thermore, before starting the kernel to process the next chunk, all
previously matched images must be removed from the input set,
requiring additional program logic to compact the input array.

GPUfs streamlines this task, making the implementation almost
trivial and closely following the design for CPU code. Both the
OpenMP parallel CPU and GPUfs-based versions of the program
are about 130 ± 10 LOC, counting semicolons.3 The associated
CPU code for the GPU version is only a single line—the GPU
kernel invocation.

In our synthetic workload, the images in the input and the
databases are randomly generated. Each image is represented as a
4K-element vector. The input contains 2,016 images, amounting to
31.5MB of raw data. We use 3 database files, of sizes 383, 357 and
400 MB, containing about 25,000 images each. The images from
the input are injected at random locations in the databases. We in-
voke the kernel with 28 threadblocks, 512 threads per threadblock.

We measure raw performance using a query set containing only
images with no matches in the databases, forcing all databases
to be read completely. We flush the OS page cache before each
experiment. We set the GPU buffer cache size to 2GB, enough to
keep all databases in GPU memory. The GPU throughput achieved
is 18GFLOP/s, twice as fast as an 8-core CPU run using OpenMP.

Changing the buffer cache size. We examine the effect of the
buffer cache size on program performance in Table 2. Observe that
as the amount of available memory decreases, the ratio between
lock-free and locked accesses drops due to the paging algorithm’s

3 We tried David Wheeler’s SLOCCount but it fails to parse CUDA code.



Input CPUx8 #GPUs
1 2 3 4

No match 119s 53s 27s
(2.0×)

18s
(2.9×)

13s
(4.1×)

Exact match 100s 40s 21s
(1.9×)

14s
(2.9×)

11s
(3.6×)

Table 3. Approximate image matching performance. Speedup for
multi-GPU runs relative to a single GPU are given in parentheses.

Input CPUx8 GPU-GPUfs GPU-vanilla
Linux source 6.07h 53m (6.8×) 50m (7.2×)
Shakespeare 292s 40s (7.3×) 40s (7.3×)
LOC (semicolon) 80 140 (+52) 178

Table 4. GPU exact string match “grep -w” performance.

attempts to free pages being used. Each threadblock runs indepen-
dently of the others, and may follow different execution paths, for
example accessing the databases relevant to the set of input im-
ages it is processing. File access patterns among different thread-
blocks quickly desynchronizes, a well known effect in large-scale
parallel environments, requiring careful implementation and possi-
bly redundant work to avoid.

Finally, we evaluate our implementation’s scalability by split-
ting the query list equally among up to 4 GPUs. We do not evaluate
the diff-and-merge algorithm for write-sharing, but the system in-
teraction with the WRAPFS-based consistency daemon is included
(as is the case for all experiments presented in this section).

This set of experiments is performed with preliminary warmup
in order to prefetch the data into the CPU buffer cache and highlight
the scaling capabilities of the system. As confirmed in the experi-
ments in Table 3, GPUfs shows near linear scaling with increasing
GPU count because of the lightweight consistency protocol. The
first run (“No match”) shows the performance of the more regular
workload, for which GPUfs shows ideal scaling. The second run
is irregular because the number of exact matches per processor is
different, and static input partitioning does not scale as well in ei-
ther the GPUfs or CPU versions. All 4 GPUs together outperform
a single CPU execution by about a factor of 9.

The benefits of dynamic database loading becomes apparent as
we relax the matching threshold, allowing searches to terminate
earlier, and occasionally eliminating the need to accesses lower-
priority databases altogether. Runtime decreases as expected; in
the degenerate case where images always match the first entry
in the first database, runtime falls by 400×—from 53 seconds
to a minimum of 130ms—leaving only the costs of initialization,
invocation, and matching the query list with the first database page.

5.2.2 Exact string matching in text files
The last experiment is an implementation of a constrained version
of grep on a GPU. Given a dictionary and a set of text files, for each
word in the dictionary, the program determines how many times
and in which files it appears.

This application is conceptually similar to image matching, but
with two key differences. The parallelization strategy is different
because words are typically short (up to 32 symbols), so each
GPU thread is assigned one word, instead of one image per thread-
block in the previous case. Second, the output buffer becomes un-
bounded, so we need to write the output frequently to flush the
per-threadblock internal buffer.

This experiment counts the frequencies of modern English
words in two datasets: the works of William Shakespeare, and
the Linux kernel source code. We search for a specific dictionary

of 58,000 modern English words4, within the complete works of
Shakespeare as a single 6MB text file5, and within the Linux 3.3.1
kernel source containing about 33,000 files for 524MB in total. To
simplify the parsing of the dictionary file by a GPU, we reformat
the dictionary to align every word on a 32 byte boundary; none of
the words in the dictionary exceed that length. The list of input files
is itself specified in a file.

Each threadblock opens one file at a time, then each thread
searches for a subset of the dictionary that it is allocated to
match. Matched words are printed out together with the file name
and match count into an internal per-threadblock output buffer,
which is then periodically flushed into a global output file. Various
text parsing and formatted output tasks required us to implement
limited GPU versions of the sprintf, strtok, strlen,
strcat functions not normally available to GPU code.

This workload puts extremely high pressure on GPUfs because
most of the files are fairly small (few kilobytes on average), leading
to frequent calls to gopen and gclose. Since the progress of each
threadblock depends on the actual number of matching words in
its input subset, the number of concurrently open files eventually
reaches the number of concurrently running threadblocks.

As a point of reference we compared two other implementa-
tions: a simple CPU program performing the same task on 8 cores
(using OpenMP), and a “vanilla” GPU version implemented with-
out GPUfs. Both implementations prefetch the contents of the input
files into a large memory buffer first, then do not read from the file
system during the matching phase.

The vanilla GPU version pre-allocates a large output buffer
in the GPU memory (5GB—all remaining GPU memory), but
if it overflows, the GPU kernel crashes. In general, our vanilla
GPU version is more limited than the one using GPUfs because
it conservatively assumes that the inputs and outputs fit in the
GPU’s physical memory. Large file support would substantially
complicate the implementation, whereas the GPUfs-based version
automatically supports arbitrarily large input files.

We present the results (no warmup) in Table 4. Even for such
a file-system intensive workload, a single GPU outperforms the 8-
core CPU by 6.8×. The GPUfs version is only 9% slower than
the vanilla GPU implementation on the Linux kernel input, but the
two versions perform similarly on one large input file. The GPUfs-
based code is shorter than the vanilla version if we exclude string
parsing and formatted output functions (52 lines of code), which
are not used in the vanilla version because they are executed on a
CPU as a part of a post-processing phase.

We emphasize, however, that no serious effort has been made
to optimize either the GPU or CPU version. The main point of this
exercise is to highlight the utility of the file system API on GPUs,
which opens up new ways to explore the computing power of these
massively parallel processors.

6. Related work
To our knowledge GPUfs is the first extension of the file system ab-
straction to modern GPU architectures. This work touches on many
areas from classic OS design and efficient lock-free synchroniza-
tion to GPU architectures and programming techniques.

General-purpose GPU computing. The research community has
focused considerable effort on the problem of providing a general-
purpose programming interface to the specialized hardware sup-
ported by GPUs (GPGPU). GPGPU computing frameworks such
as CUDA [20], OpenCL [7], and others [3, 4, 8, 17, 25] provide

4 http://www.mieliestronk.com/wordlist.html
5 http://www.gutenberg.org/ebooks/100



an expressive platform, but none provide any way for GPUs to use
host OS services in general, or file system access in particular.

I/O for GPUs. GPUDirect from NVIDIA allows GPUs to ac-
cess certain storage and network devices without the mediation of
the host OS. This technology is exposed via proprietary, low-level
hardware-specific interfaces, and does not provide higher-level ab-
stractions, such as a file system API.

Other hardware architectures. The Cell processor [12] pio-
neered the integration of parallel accelerators into the OS, allowing
system calls and file accesses from its Synergistic Processor Ele-
ments (SPEs). The SPEs share the same die as the main processor,
offering a high bandwidth channel with memory performance more
like multicore SMPs than today’s discrete GPUs. Also, we are un-
aware of any published work analyzing file system design tradeoffs
or I/O intensive data parallel applications, the focus of this paper.

Intel’s Xeon-Phi [11] is a PCIe-attached accelerator sharing
the NUMA characteristics of discrete GPUs, but built of more
traditional CPU cores that can run a full OS such as Linux. To
our knowledge Xeon-Phi does not expose the host’s file system to
software on the accelerator. We expect many aspects of GPUfs to
be relevant to Xeon-Phi systems, particularly the NUMA-driven
need to maximize file cache locality. Matuso et al [15] presented
a file system layer for Xeon-phi, providing access to the host file
system from the card. This design does not explore file I/O in fine-
grain data-parallel workloads, however, one of the main foci of our
work.

Host OS support for GPU programming. Stuart [24] prototyped
CPU-GPU communication via RPC, enabling GPU software to
make host system calls. GPUfs includes such a mechanism, but
focuses on coping with data parallelism and locality at design level
via its GPU buffer cache, to avoid redundant data transfers and
GPU-CPU interaction.

Hydra [27] and PTask [22] explore dataflow frameworks for
GPU programming, offering host CPU software an API with which
to compose GPU modules. GPUfs in contrast focuses on the com-
plementary goal of enhancing the API available to GPU code.

Kato [13] introduces a host OS driver for GPUs that facilitates
the OS-managed sharing of GPU resources, allowing different CPU
processes to share GPU memory for example. We hope to leverage
this complementary functionality to enable future cross-application
file system support in GPUfs.

Simplifying data management in GPUs. The complexity of data
management in discrete GPUs is well recognized. Gelado [6] sug-
gested ADSM, an asymmetric, CPU-centric shared memory [6].
ADSM emulates a unified address space between CPUs and GPUs,
alleviating management problems. Unlike GPUfs, ADSM does not
support communications with a running kernel, and also introduces
new accelerator-specific abstractions, which GPUfs avoids.

Heterogeneous and multi-core OS design. A number of re-
searchers considered the general problem of building OSes for
heterogeneous architectures. The Helios operating system [19] tar-
gets heterogeneous systems with multiple programmable devices.
However, Helios requires the processors to expose interfaces to
three basic hardware primitives: a timer, an interrupt controller,
and the ability to catch exceptions. These services are currently not
available on most GPUs, making Helios inapplicable to such archi-
tectures. Furthermore, Helios does not account for the specifics of
massively parallel SIMD architectures, as GPUfs does.

The Barrelfish OS [2] treats the hardware as a network of in-
dependent, heterogeneous cores communicating via RPC. Again, it
is not clear if a GPU could run Barrelfish directly. Philosophically,
Barrelfish argues for a ground-up OS redesign based on message

passing. GPUfs takes a more pragmatic view of applications inter-
acting through the file system, keeping the host OS largely intact.

Lock-free algorithms. Lock-free algorithms are a well known
technique in parallel programming [16]. Our algorithm was in-
spired by seqlocks [9] and read-copy update (RCU) [18]. We are
unaware of any prior radix tree designs with lock-free traversal
available for GPUs.

7. Conclusions
This paper describes the design and implementation of GPUfs, a
file system API and implementation allowing data parallel GPU
software to access host files directly. GPUfs extends the constrained
GPU-as-coprocessor programming model, turning GPUs into first-
class computing devices with full file I/O support. GPUfs exploits
fine-grained parallelism and memory locality to offer a familiar
and efficient file system for GPU programs, and simplifies GPU
programming by hiding the complexities of low-level data move-
ment between GPUs and CPUs and among GPUs. Our prototype
shows that file system access for GPU kernels enables good perfor-
mance and ease of development for applications that have not typi-
cally been considered suitable for GPU processing. GPUfs achieves
good performance on today’s architecture, and is likely to benefit
from future hardware architecture advances.
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