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Abstract

When employing a consensus algorithm for state ma-
chine replication, should one optimize for the case that all
communication links are usually timely, or for fewer timely
links? Does optimizing a protocol for better message com-
plexity hamper the time complexity? In this paper, we inves-
tigate these types of questions using mathematical analysis
as well as experiments over PlanetLab (WAN) and a LAN.
We present a new and efficient leader-based consensus pro-
tocol that hasO(n) stable-state message complexity (in a
system withn processes) and requires onlyO(n) links to be
timely at stable times. We compare this protocol with sev-
eral previously suggested protocols. Our results show thata
protocol that requires fewer timely links can achieve better
performance, even if it sends fewer messages.

Keywords: synchrony assumptions, eventual synchrony,
failure detectors, consensus algorithms, FT Middleware.

1 Introduction

Consensus is an important building block for achieving
fault-tolerance using the state-machine paradigm [19]. It
is therefore not surprising that the literature is abundant
with fault-tolerant protocols for solving this problem. But
how does a system designer choose, among the multitude of
available protocols, the right one for her system? This deci-
sion depends on a number of factors, e.g., time and message
complexity, resilience to failures (process crashes, message
loss, etc.), and robustness to unpredictable timing delays.

In this paper we focus on the latter, namely the assump-
tions the protocol makes about timeliness. These are cap-
tured in atiming model. We study the impact of the choice
of a timing model on the performance in terms of time and
message complexity. It is important to note that although
the physical system is often given, the system designer has
freedom in choosing the timing model representing this sys-
tem. For example, one seldom comes across a system where
the network latency can exceed an hour. This suggests that
in principle, even the most unpredictable systems can be
modeled as synchronous, with an upper bound of an hour

on message latency. Although a round-based synchronous
protocol works correctly in this system, it can take an hour
to execute a single communication round, and hence may
not be the optimal choice. Indeed, measurements show that
timely delivery of 100% of the messages is feasible nei-
ther in WANs nor under high load in LANs[7, 5, 3]. In-
stead, systems choose timeouts by which messagesusually
arrive (e.g., 90% or 99% of the time); note that by know-
ing the typical latency distribution in the system, a designer
can fine-tune the timeout to achieve a desired percentage of
timely arrivals. One can then employ protocols that ensure
safety even when messages arrive late [7, 20, 13]. Such pro-
tocols are called indulgent [15].

While indulgent protocols ensure safety regardless of
timeliness, they do make some timeliness assumptions in
order to ensure progress. Periods during which these as-
sumptions hold are calledstable. For example, it is possi-
ble to requireEventual Synchrony (ES)[13, 7], where mes-
sages among all pairs of processes are timely in stable pe-
riods. Alternatively, one can use weaker majority-based or
leader-based models, where only part of the links are re-
quired to be timely in stable periods. This defines a trade-
off: whereas weaker models may require more communica-
tion rounds for decision, they may also be stable more often
(that is, their timeliness requirements will be satisfied more
often). A second consideration is message complexity: pro-
tocols that send more messages per round may require fewer
rounds. Thus, there may also be a tradeoff between the time
and message complexities.

In order to provide insights into such tradeoffs, this paper
(1) defines a new timing model, (2) introduces a novel time
and message efficient algorithm, and (3) presents an evalu-
ation of different consensus algorithms using probabilistic
analysis, as well as concrete measurements in a LAN and in
WAN over PlanetLab [4]. We next elaborate on each one of
these contributions.

We define a new model (Section 2), eventually weak
leader-majority♦WLM . It includes a leader oracle, and
only requires that in stable periods, there be timely links
from a designated leader process to other processes and
from a majority of processes to the leader. Nothing is re-
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quired before stabilization. The leader oracle can be im-
plemented with linear (inn, the number of processes) per-
round stable state message complexity [21, 23].

We then present a new efficient algorithm for♦WLM
(Section 3), which has linear stable state message complex-
ity, and decides within5 rounds from stabilization. If the
leader stabilizes earlier than the communication, our al-
gorithm decides in4 rounds. Although♦WLM was not
previously defined, its conditions allow some existing algo-
rithms [20, 8] to make progress. However, these algorithms
may takeO(n) rounds after stabilization [10] when run in
♦WLM , in runs where the leader is not initially known.

Section 4performs probabilistic analysis of the behavior
of consensus in different indulgent models, comparing our
new algorithm with three previously known algorithms. We
focus on algorithms that always take a constant number of
rounds from stabilization, all of which also have quadratic
message complexity. Our analysis studies the number of
rounds needed to reach stabilization and then decision in
each model. Although it makes simplifying assumptions,
this analysis gives a good starting point to understand such
behaviors in real systems. Note that we study the perfor-
mance of consensus without taking into account the cost
of leader election. This is justified since election protocols
often ensure leader stability [23, 1, 14], i.e., the leader is
seldom re-elected. Thus, the same leader may persist for
numerous instances of consensus (possibly thousands).

We then compare the performance of the above algo-
rithms in LAN and WAN (Section 5). To this end, we im-
plement a round synchronization protocol and deploy it in
PlanetLab. We compare our measurements with the prob-
abilistic analysis and explain discrepancies that arise. We
give insights to the effect of good leader election on leader-
based consensus protocols. We show that our message effi-
cient protocol, although requiring more stable communica-
tion rounds than several previously known protocols, incurs
practically no cost in terms of actual running time, due to its
easier to satisfy weak timeliness requirements: it achieves
comparable (and sometimes superior) performance to that
of the bestO(n2) (message complexity) protocol, provided
that adequate timeouts are set.

Related work
Model and Algorithm. In an earlier paper [18], we in-

troduced a round-based framework, GIRAF, for describing
timing models and indulgent protocols that exploit them.
We have studied the number of rounds required for consen-
sus in stable periods in several timing models. Nevertheless,
[18] studies neither how long it takes to reach stability in
practical network settings, nor the round durations in these
models. The current paper provides analysis and measure-
ments of the actual time it takes to reach consensus while
assuming the different models in a LAN and a WAN (Plan-
etLab). Moreover, [18] focuses on time complexity, and ig-

nores message complexity, which is no less important. Our
new protocol hasO(n) stable state message complexity.

The ♦WLM model satisfies the progress requirements
of the well-known Paxos protocol [20], and recent improve-
ments, such as [8]. But as noted in [10], although these
algorithms ensure constant time decision in Eventual Syn-
chrony (ES), they may take a linear number of communi-
cation rounds after stabilization to decide in weaker mod-
els like♦WLM . Most other previously suggested leader-
based protocols, e.g., [9, 16], require the leader to receive
timely messages from a majority in each round, including
during unstable periods, and hence do not work in♦WLM .

Malkhi et al. [23] have presented a somewhat weaker
timing model intended for use with Paxos, where, as in
♦WLM , some process has bidirectional timely links with
a majority, but unlike♦WLM , this process does not have
outgoing timely links to the rest of the processes. Although
their model allows Paxos to make progress so that some of
the processes decide, it does not allowall the processes to
reach consensus decision in a timely manner [18]. Here, we
measure time untilglobal decision, i.e., until all processes
decide, and therefore strengthen the model accordingly.

Evaluation. The time to reach consensusafter stabi-
lization inES has been studied in [12]; here, we also mea-
sure the time it takes to reach stabilization, and consider ad-
ditional models. Other papers evaluated related algorithms
in practical settings. Cristian and Fetzer [7] studied stable
periods, but only for a model similar toES, over a LAN.
The insight that a leader-based algorithm can work better
thanES appears in previous measurements on WANs [3, 2]
and simulations [24]. However these studies treated differ-
ent questions than we do, e.g., did not measure the time
required to get a sufficiently long stable period that allows
for consensus decision. Unlike most of the previous evalua-
tions, our evaluation includes mathematical analysis as well
as measurements in both LAN and WAN, thus identifying
general trends that do not depend on a specific setting.

2 Model and Problem Definitions

We consider an asynchronous distributed system consist-
ing of a setΠ of n > 1 processes,p1, p2, . . . , pn, fully
connected by communication links. Processes and links
are modeled as deterministic state-machines, called I/O au-
tomata [22]. Communication links do not create, duplicate,
or alter messages. Messages may be lost by links or take
unbounded latency. Timing models defined below restrict
such losses and late arrivals. Less thann/2 processes may
fail by crashing. A process that does not fail iscorrect.

Algorithms and models are defined using the GIRAF
framework [18], which we extend here to allow for arbi-
trary communication patterns. For space limitations, we
only overview GIRAF; for formal treatment see [18]. In
GIRAF, all algorithms are instantiations of Algorithm1, a
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Algorithm 1 Generic algorithm for processpi.

States:
ki ∈ N , initially 0 /*round number*/

senti[Π] ∈ Boolean array,
initially ∀pj ∈ Π : senti[j] = true

FDi ∈ OracleRange, initially arbitrary
Mi[N ][Π] ∈Messages∪{⊥},

initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥
Di ∈ 2Π, initially ∅

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N

Effect: Mi[k][j]← m

outputsend(〈Mi[ki][i], ki〉)i,j

Precondition:j ∈ Di ∧ senti[j] = false
Effect: senti[j]← true

inputend-of-roundi
Effect: FDi ← oraclei (ki)
if (ki = 0) then 〈Mi[1][i], Di〉 ← initialize (FDi)
else〈Mi[ki + 1][i], Di〉 ← compute(ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

generic round-based algorithm. Processpi is equipped with
a failure detector oracle, which can have an arbitrary out-
put range [6], and is queried using theoraclei function. To
implement a specific algorithm, one implements two func-
tions: initialize(), andcompute(). Both are passed the ora-
cle output, andcompute()also takes as parameters the set of
messages received so far and the round number.

Each process’s computation proceeds inrounds. The ad-
vancement of rounds is controlled by the environment via
the end-of-roundinput action. Theend-of-roundi actions
occur separately in each processpi, and there are no restric-
tions on the relative rate at which they occur at different pro-
cesses, i.e., rounds are not necessarily synchronized among
processes. However, specific environment properties de-
fined below do require some synchronization between pro-
cesses, e.g., that some messages are received at one process
at the same round in which they are sent by another. There-
fore, an implementation of an environment that guarantees
such properties needs to employ some sort of round or clock
synchronization mechanism. One way to do so is using syn-
chronized clocks (e.g., GPS clocks) when present. Alter-
natively, an implementation that does not rely on synchro-
nized clocks can be employed, such as the one we present
in Section 5.1and deploy in PlanetLab.

When theend-of-roundaction first occurs, it queries the
oracle and callsinitialize(), which returns the message for
sending in round1 and a set,Di, of the destinations of this
message. Subsequently, in each round, a process sends a
message to processes inDi (although allowed, self mes-
sages are not necessary since a message is always stored in
the incoming buffer of the sender) and receives messages
available on incoming links, until theend-of-roundaction

occurs, at which point the oracle is queried andcompute()
is called, which returns the message for the next round, and
a new setDi of target processes.

Environments are specified usinground-based proper-
ties. We consider onlyeventualproperties. Namely, the
system may be asynchronous for an arbitrary period of time,
but eventually there is a round GSR (Global Stabilization
Round), so that from GSR onward no process fails and all
properties hold in each round. GSR is thefirst round that
satisfies this requirement.

We now define some round-based properties. The link
from ps to pd is timely in roundk, if the following holds: if
(i) end-of-rounds occurs in roundk, (ii) d ∈ Ds in roundk,
and (iii) pd is correct, thenpd receives the roundk message
of ps in roundk. A processp is a ♦j-sourcev if in every
roundk ≥ GSR, there arej processes to which it has timely
outgoing links. Correctness is not required from the recipi-
ents, andp’s link with itself counts towards the count ofj.
The subscript “v” indicates that the set ofj timely links is
allowed to change in each round (i.e., the failures are mo-
bile). Similarly, a correct processp is a♦j-destinationv if in
every roundk ≥ GSR, it hasj timely incoming links from
correct processes. AnΩ failure detector outputs a process
so that there is some correctpi s.t. for every roundk ≥ GSR
and every correctpj , oraclej(k) = i.

We study the following four timing models:

ES (Eventual Synchrony)[13]: in every roundk ≥ GSR, all
links between correct processes are timely.

♦LM (Leader-Majority)[18]: Ω failure detector, the leader is
a ♦n-source, and every correct process is a♦(

⌊

n

2

⌋

+ 1)-
destinationv.

(New)♦WLM (Weak-Leader-Majority): Ω failure detector, the
leader is a♦n-source and a♦(

⌊

n

2

⌋

+ 1)-destinationv.
♦AFM (All-From-Majority) [18] (simplified): every correct

process is a♦(
⌊

n

2

⌋

+ 1)-destinationv, and a♦(
⌊

n

2

⌋

+ 1)-
sourcev.

Consensus A consensus problem is defined for a given
value domain,Values. We assume thatValuesis a totally
ordered set (our algorithm makes use of this order). Every
processpi has a read-only variablepropi ∈ Values, initial-
ized to some valuev ∈ Values, and a write-once variable
deci ∈ Values∪{⊥} initialized to⊥. We say thatpi decides
d ∈Valuesin roundk if pi writesd to deci whenki = k.

A consensus algorithm must ensure: (a) (validity) if a
process decidesv then propi = v for some processpi,
(b) (agreement) no two correct processes decide differently,
and (c) (termination) every correct process eventually de-
cides. We say that algorithmA achievesglobal decisionat
roundk if every process that decides decides by roundk
and at least one process decides at roundk.

3 Time and Message Efficient Algorithm
Algorithm 2 is a consensus algorithm for♦WLM, which

has a linear stable state message complexity and reaches
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global decision within5 rounds of GSR.
As in many indulgent algorithms, including Paxos, pro-

cesses commit with increasing timestamps (called “ballots”
in [20]), and decide on a value committed by majority. In
Paxos, the leader always attempts to discover the highest
timestamp in the system before committing on a new one.
Although this occurs promptly in ES, in♦WLM , even af-
ter stabilization, the leader can continue to hear increasing
timestamps forO(n) rounds. Each time it receives a times-
tamps higher than the one it has, the decision attempt is
aborted, leading to a linear worst case decision time after
GSR [10]. Our algorithm avoids such scenarios. Neverthe-
less, we still need the leader to start a new decision attempt
with a fresh timestamp higher than those previously pos-
sessed by processes. But unlike Paxos, our algorithm does
not assume that the leader knows all the timestamps of cor-
rect processes. Instead, the new timestamp is chosen to be
the round number, which is monotonically increasing. This
must be done with care, so as to ensure that the leader does
not miss timestamps of real decisions.

Key idea to preserving consistency is to trust the leader,
even if it competes against a higher timestamp, provided
that it indicates that at least a majority believes it to be
the leader. The latter is conveyed using themajApproved
message field, which attests to the fact that the leader’s
timestamps reflect “fresh” information from a majority, and
therefore any timestamp it does not know of could not have
led to decision.

A second challenge our algorithm addresses is avoiding
“wasted” rounds when the system stabilizes in the middle
of a decision attempt. This poses a problem, as we strive to
reduce the number of rounds needed for reaching a consen-
sus, so that the system is not required to have long periods
of stability. The solution we employ is to pipeline propos-
als. Namely, the leader tries in each round to make progress
towards a decision, based on its current state and the mes-
sages it gets in the current round, regardless of the unknown
status of previous attempts to make progress.

We now describe the algorithm in detail. Algorithm2
works in the framework of Algorithm 1 described in
Section 2, and therefore implements theinitialize() and
compute()functions. These function are passedleaderi, the
leader trusted bypi’s Ω oracle in the current round. Pro-
cesspi maintains the following local variables: an estimate
of the decision value,esti; the timestamp of the estimated
value, tsi; the maximal timestamp received in the current
round,maxTSi; the maximal estimate received with times-
tampmaxTSi in the current round,maxESTi (recall that
Valuesis a totally ordered set); the leader provided by the
oracle at the end of the previous round,prevLDi, and in
the current round,newLDi; a Booleanflag, majApprovedi,
which is used to indicate whetherpi received a message in
the current round from a majority of processes that indi-

catedpi as their leader; and the message type,msgTypei,
which is used as follows: Ifpi sees a possibility of decision
in the next few rounds, then it sends aCOMMIT message.
Oncepi decides, it sends aDECIDE message in all subse-
quent rounds. Otherwise, the message type isPREPARE.

We now describe the computation of roundki. If pi has
not decided, it updates its variables (lines 15-18), and then
executes the following conditional statements:

• If pi receives aDECIDE message then it decides on the
received estimate by writing that estimate todeci (rule
decide-1, line 20), and sets its message type (for the
roundki + 1 message) toDECIDE.

• If pi receives aCOMMIT message from a majority, in-
cluding itself (ruledecide-2), and receives a message
from itself with the majApprovedindicator astrue
(rule decide-3), it decides on its own estimate and sets
its message type toDECIDE (line 23). Ruledecide-
3 ensures that no other process commits or decides in
the same round with a different value, since thecommit
rule checksmajApproved of the leader, and two pro-
cesses cannot claim to bemajApproved in the same
round, since it is not possible that different processes
were trusted to be leaders by a majority in the same
round (roundki −1). Ruledecide-2ensures that a ma-
jority of processes have the latest information about the
decided value. Since commits in further rounds require
the leader to hear from a majority (themajApproved
indicator required by rulecommit), the leader must
hear from at least one process that has this informa-
tion, and this will ensure that it does not promote a
value that contradicts agreement.

• Let prevLDi be the leader indicated inpi’s roundki

message. Ifpi receives a roundki message from
prevLDi with themajApprovedindicator astrue, then
pi sets its message type (for the roundki + 1 mes-
sage) toCOMMIT, adopts the estimate received from
prevLDi, sayest′, and sets its timestamp to the current
round numberki (line 25). We say thatpi commits in
roundki with estimateest′. ThemajApproved indi-
cator ensures that commits of the same round are on
the same value, since any such commit is on an esti-
mate received from a leader that was trusted by a ma-
jority in the previous round (ki-1), and majorities in-
tersect.

• Otherwise,pi prepares (sets his message type toPRE-
PARE) and adopts the estimatemaxESTi and times-
tampmaxTSi (line 26).

Finally, pi returns the message for the next round and a
subset of processes to which this message is intended. This
group is calculated using procedureDestinations()as fol-
lows: if pi believes that it is the leader of the current round,
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Algorithm 2 leader–based algorithm, code for processpi.
1: Additional state
2: esti ∈ Values, initially propi; tsi, maxTSi ∈ N , initially 0; majApprovedi ∈ Boolean, initially false
3: prevLDi, newLDi ∈ Π; msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

4: Message format
5: 〈msgType∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, majApprovedi ∈ Boolean〉

6: procedureDestinations(leaderi)
7: if (leaderi = pi) then returnΠ.
8: elsereturn{leaderi}

9: procedure initialize(leaderi)
10: prevLDi ← newLDi ← leaderi

11: return〈〈msgTypei, esti, tsi, newLDi, majApprovedi〉, Destinations(leaderi)〉

12: procedurecompute(ki, M[*][*], leaderi)
13: if deci = ⊥ then
14: /*Update variables*/
15: prevLDi ← newLDi; newLDi ← leaderi
16: maxTSi ←max{ m.ts|m ∈M [ki][∗] }
17: maxESTi ←max{ m.est|m ∈M [ki][∗] ∧m.ts = maxTSi }
18: majApprovedi ← (|{ j |M [ki][j].leader = pi }| > ⌊n/2⌋)
19: /*Round Actions*/
20: if ∃m ∈M [ki][∗] s.t.m.msgType = DECIDE then /*decide-1*/
21: deci ← esti ← m.est; msgTypei ← DECIDE

22: else if((|{ j |M [ki][j].msgType = COMMIT }| > ⌊n/2⌋) ∧M [ki][i].msgType = COMMIT) /*decide-2*/
and (M [ki][i].majApproved) then /*decide-3*/

23: deci ← esti; msgTypei ← DECIDE;
24: else if(M [ki][prevLDi].majApproved) then /*commit*/
25: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
26: elsetsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE

27: return〈〈msgTypei, esti, tsi, newLDi, majApprovedi〉, Destinations(leaderi)〉

then Destinations()returns the set of all processes, and
otherwise, the procedure returns the trusted leader. Thus,
starting from the first round in which all processes indicate
the same leader in their messages (at most one round after
GSR), every process sends a message to this leader, and the
leader sends a message to every other process. The stable
state message complexity is therefore linear inn.

We prove the correctness of Algorithm2 in the full ver-
sion [17], and show that it reaches global decision by round
GSR+4, i.e., in 5 rounds starting at GSR. If the even-
tual requirements of theΩ leader are satisfied starting from
round GSR−1 (instead of starting from round GSR as the
model requires), then all correct processes decide by round
GSR+3, i.e., in4 rounds (if GSR= 1 this means that query-
ing the oracle before the first communication round returns
the correctΩ leader at all processes). We make this distinc-
tion in order to analyze the performance of the algorithm in
the common case, when leader re-election is rare.

4 Probabilistic Comparison of Decision Time
We study four models and the fastest known algorithm

in each model – 3 rounds for ES ([11]), 3 for ♦LM ([18]),
4 with stable leader for♦WLM (Section 3), and 5 for
♦AFM ([18]).

In this section we model link failure probabilities as In-
dependent and Identically Distributed (IID) Bernoulli ran-
dom variables. By “link failure” we mean that the link fails

to deliver a message in the same round in which it is sent.
We assume that processes proceed in synchronized rounds,
although this is not required for correctness, and focus on
runs with no process failures, which are common in prac-
tice. Additionally, we do not take the cost of leader election
into account, since we assume a stable leader, i.e., a leader
that is seldom re-elected (e.g., [23, 1]). Such a leader can
persist throughout numerous instances of consensus.

We denote the probability that a message arrives on time
by p. For simplicity, we do not treat a process’ link with
itself differently than other links. Our metric in this section
is number of rounds until global decision. The length of
each round is the time needed to satisfyp, and it is the same
for all algorithms we deal with, while the number of rounds
depends on the algorithm. InSection 5.3we investigate the
effect of changing the explicit time length of each round on
the overall decision time in each model.

4.1 Mathematical Analysis

All communication in some single roundk can be rep-
resented as ann by n matrix A, where the rows are the
destination process indices, the columns are the source pro-
cess indices, and each entryAi,j is 0 if a message sent by
pj to pi does not arrive in roundk, and1 if it does reachpi

in roundk. p is the probability of any entryAi,j to be1.
Note that our protocol for♦WLM may not send messages
on some links. If a message is not sent, we denote the corre-
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sponding entry inA by ⊥. We define random variables for
decision time in different models subscripted by the model
name, e.g.,DES is the total number of rounds until decision
(including the time until stabilization) in ES. We denote by
PM (e.g.,PAFM ) the probability of a communication round
to satisfy the requirements of modelM .

Analysis of ES. Recall that ES requires all entries in the
matrixA to be1. The probability for this is:

PES = pn2

(1)

An optimal ES consensus algorithm reaches a global deci-
sion in 3 rounds from stabilization, thus we need the as-
sumptions of ES to be satisfied for 3 consecutive rounds
starting at some roundk ≥ 1. The probability of this to
happen at any given roundk is (PES)3. Thus:

E(DES) =
1

(PES)3
+ 2 (2)

Analysis of♦LM . Let pk be the stable leader. For♦LM ,
it is required thatA has a majority of ones in every row.
Additionally, ♦LM requires that∀1 ≤ j ≤ n Aj,k = 1.
Denote the event that there is a majority of ones in rowAj

by M and the event thatAj,k = 1 by L. We haven inde-
pendent rows, and thus:

P♦LM = (Pr(L ∩ M))n = (Pr(L) · Pr(M |L))n (3)

Note thatPr(L) = p. Given thatAj,k = 1, the probability
that more thann

2
− 1 of the remainingn − 1 entries of row

j are1 is:

Pr(M |L) =

n−1
∑

i=⌊n

2 ⌋

(

n − 1

i

)

pi(1 − p)n−1−i (4)

Global decision is achieved in 3 rounds from stabilization in
♦LM , meaning that this condition onA has to be satisfied
for 3 rounds, and thus:

E(D♦LM ) =
1

(P♦LM )3
+ 2 (5)

Analysis of ♦WLM . Let pk be the stable leader.
♦WLM requires thatA has a majority of ones in rowAk.
We denote this event byM . Additionally, it requires that
∀1 ≤ j ≤ n Aj,k = 1. We denote this event byL′.

P♦WLM = Pr(L′ ∩ M) = Pr(L′) · Pr(M |L′) (6)

Note thatPr(L′) = pn, andPr(M |L′) = Pr(M |L) (de-
fined in Equation4) since rowAk is independent of other
rows. These conditions only examine the row and column

corresponding to the leader,pk. Sincepk is stable, all pro-
cesses agree on its identity, and thus, the leader sends mes-
sages to all other processes, while every other process sends
a message to the leader. Hence, the entries of A are not⊥.

We first analyze the algorithm ofSection 3, which takes
4 rounds starting from GSR, under the stable leader assump-
tion. We get:

E(D♦WLM ) =
1

(P♦WLM )4
+ 3 (7)

For comparison, we also examine an alternative solution:
running the optimal algorithm for♦LM over a simulation
of ♦LM in ♦WLM (shown in [17]). We show that this
simulation reaches global decision in7 rounds. Therefore:

E(DSimulated ♦WLM ) =
1

(P♦WLM )7
+ 6 (8)

Analysis of♦AFM . This model requiresA to have a ma-
jority of ones in each row and column. Consider a given
row k of A. We first analyze the probability that the row in-
cludes a majority of ones. To this end, letXj be the random
variable representing the cellAk,j . According to our as-
sumption,X1,X2, ...,Xn are independent and identically
distributed Bernoulli random variables with probability of
success p. LetX =

∑n

i=1
Xi. The probability that any

given row in A has a majority of1’s is:

Pr(X >
n

2
) =

n
∑

i=⌊n

2 ⌋+1

(

n

i

)

pi(1 − p)n−i

Forn (independent) rows we need to raise this expression to
the power ofn. Now assume that every row has a majority
of 1 entries. The probability of an entry to be1 is still at
leastp. We therefore can make an identical calculation for
the columns, raising the expression again to the power of2.

P♦AFM ≥ (Pr(X >
n

2
))2n (9)

Since the algorithm for♦AFM achieves global decision in
5 rounds from GSR, this needs to hold for5 consecutive
rounds, and therefore we additionally raise the expression
to the power of 5. We get:

E(D♦AFM ) =
1

(P♦AFM )5
+ 4 (10)

4.2 Numerical results

We plot the upper bounds on expected decision times
given in Equations2, 5, 7, 8 and10 for specific values of
p. We focus on the case thatn = 8, similarly to the group
sizes used in other performance studies of consensus-based
systems [7, 2, 8], which used 4-9 nodes.
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(e) Average incidence of rounds satisfying the model
WAN measurements with 95% confidence intervals
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Figure 1. Comparison betweenES, ♦AFM , ♦LM and♦WLM .

In Figure 1(a) we see that even with a very high prob-
ability of timely message delivery, performance in ES de-
teriorates drastically asp decreases, while♦AFM , ♦LM
and the direct algorithm for♦WLM maintain excellent
performance. The direct algorithm for♦WLM does not
incur practically any penalty for its improvement of mes-
sage complexity from quadratic inn to linear. We can also
see that♦LM and our algorithm for♦WLM outperform
♦AFM in this high range ofp. Finally, the simulated algo-
rithm for ♦WLM (♦LM algorithm running over the sim-
ulation from [17]) is worse than the direct one, since it is
much harder to maintain the needed timeliness conditions
for 7 rounds than for4 rounds.

Figure 1(b) examines smaller success probabilities, start-
ing from from0.9. Here ES is not shown, since it steeply
deteriorates as we decreasep (e.g., ES requires349 rounds
for p = 0.97). The intuition of why ES performs so poorly,
is that it is practically impossible to get3 matrices not con-
taining a single zero entry, if the probability for a zero is

non-negligible. Our direct algorithm for♦WLM greatly
outperforms the simulated algorithm (e.g., forp = 0.92 our
algorithm requires 18 rounds, while the simulation-based
requires114 rounds). ♦AFM is better than♦LM and
♦WLM whenp is low, but fromp = 0.96, ♦LM becomes
better, and starting fromp = 0.97, the direct algorithm for
♦WLM becomes better. Thus,♦AFM is better for lower
p values, e.g., forp = 0.85 ♦AFM is expected to take10
rounds and♦LM - 69 rounds. Comparing the algorithms
for ♦LM and♦WLM , we see that even though♦WLM
requires fewer timely links,♦LM is slightly better, since
the dominant factor in the performance of both is the re-
quirement that the leader is a♦n-source, and satisfying it
for 4 rounds instead of3 is harder.

5 Measurements

In this section we compareES, ♦AFM , ♦LM and
♦WLM using experiments in two different practical set-
tings - a LAN and a WAN (using PlanetLab). Additionally,
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we investigate whether the predictions made assuming the
IID model in Section 4were accurate. Like our analysis,
the experiments involve 8 nodes.

5.1 Implementation

The round mechanism (GIRAF, Algorithm 1) can be im-
plemented using synchronized clocks, when such are avail-
able. Since this is not the case in a WAN, we implemented
round synchronization with the simple protocol described
below. Before starting the experiments, we measure the av-
erage latency between every pair of nodes in the system us-
ing pings. Each nodeni then has an arrayLi, such thatLi[j]
is the average latency between nodeni and nodenj as mea-
sured byni. This information is used for two purposes: to
achieve round synchronization, which we describe below,
and to “elect” one well-connected process as the leader, as
discussed inSection 5.2.

A process running GIRAF on a nodeni gets thetimeout
as a parameter and runs two threads. In each local roundki,
the task of the first thread is to receive and record messages,
inserting them into a message buffer according to the round
to which the message belongs (this information is included
in the message). Upon receipt of a message belonging to a
future roundkj > ki from a nodenj , this thread records
the message and notifies the second thread.

The second thread starts each roundki by sending mes-
sages to its peers, and then waits for the remainder of the
round as specified by thetimeoutparameter. At the end of
each round it callscompute(). In case of a notification from
the first thread about a receipt of round-kj message from
nodenj , this thread stops waiting, i.e., the round is ended
immediately, andcompute()is called. It then starts round
kj , and the duration of this round is set totimeout−Li[j].

This algorithm allows a slow node to join its peers al-
ready in roundkj , utilizing round-kj message it received,
and takes into account the expected latency of this message
to approximate the remaining time for roundkj in order to
start roundkj+1 together with the peers. We found that this
algorithm achieves very fast synchronization, and whenever
the synchronization is lost, it is immediately regained.

5.2 LAN

Our experiment includes 8 nodes running simultaneously
on a 100Mbit/sec LAN. Each process sent 100 UDP mes-
sages to all others. In a LAN, machines often have syn-
chronized clocks, and there is no need for a synchronization
algorithm. We therefore do not focus on round synchroniza-
tion over LAN, and only measure message latencies and
their impact on satisfying the conditions for consensus in
different models.

The purpose of this experiment is to comparePM , i.e.,
the probability of a communication round to satisfy model
M according to IID-based predictions to the percentage of
such rounds in measurements on LAN, for various timeouts.

A message is considered to arrive in a communication round
if its latency is less than the timeout. The IID-predicted val-
ues are calculated by taking the fraction of all messages that
arrived in all communication rounds of the experiment as an
estimate forp (the probability of a message to arrive on time
in the IID analysis) and then using Equations1, 3, 6 and9
fromSection 4.1. We found that the measuredp values were
high already for very short timeouts. For example, whereas
for a timeout of0.1ms we measuredp = 0.7, for a timeout
of 0.2ms it was alreadyp = 0.976.

Figure 1(c) shows measured and predictedPES ,
P♦AFM , P♦LM andP♦WLM . We see that even in a LAN,
the ES model is hard to satisfy, which matches the IID-
based predictions. Although still worse than the other mod-
els,ES is better in practice than what was predicted. The
reason is that the messages that are late in a run tend to
concentrate, rather than to spread among all rounds of the
run uniformly as in IID. Thus, in practice, there are fewer
rounds that suffer from message loss, andPES is higher.

On the other hand,♦AFM is worse in reality than was
predicted, since it is sensitive to a poor performance of any
single node. While in IID all nodes are the same, in our
experiment, one node was occasionally slow.♦AFM re-
quires this node, like any other, to receive a message from
a majority of processes, and its message had to reach a ma-
jority of processes (these two requirements can be satisfied
by the same set of links). Since this node is slow, there
is a higher chance of messages to be late on its links than
on other links (unlike in IID), making it harder to satisfy
♦AFM . As ♦LM requires each process to receive a mes-
sage from a majority, it suffers from the same problem as
♦AFM . ♦LM additionally requires that the messages of
the leader reach all processes, which explains why there are
more rounds satisfying♦AFM than♦LM .

According to IID-based prediction, at a high rate of mes-
sage arrival (p values),P♦LM andP♦WLM are almost iden-
tical as can be seen fromFigure 1(c), and both are worse
than ♦AFM . In practice, for leader-based algorithms,
choosing a good leader helps. As implementing a leader
election algorithm is beyond the scope of this paper, we des-
ignated one process to act as a leader in all runs. We chose
this process as follows: before running our experiments, we
measured the round-trip times of all links using pings, and
then chose a well-connected node to be the leader. Given
this leader, both♦WLM and ♦LM behaved much bet-
ter than IID analysis predicted, and we see that♦WLM
performs much better than all other models. When we run
♦LM and♦WLM with a less optimal leader, whose links
have average timeliness, we saw that much bigger time-
outs are needed for reasonable performance, and in partic-
ular, bigger timeouts than for♦AFM . For example, while
♦AFM reachesP♦AFM = 0.97 at a timeout of0.9ms,
with an average leader♦WLM and♦LM reach the same
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incidence only at a timeout of1.6ms. With a good leader
♦WLM reaches this point at0.35ms and♦LM at0.8ms.

5.3 WAN

We implemented GIRAF (Section 5.1) and deployed it
in PlanetLab, using 8 nodes located in Switzerland, Japan,
California USA, Georgia USA, China, Poland, United
Kingdom, and Sweden. The participating processes on
these nodes are started up non-synchronously, and then
synchronized and continue running for an overall of 300
communication rounds per experiment. We consider only
rounds that occur after the system stabilizes for the first time
(with respect to the model) to eliminate startup effects. The
experiment was repeated with different timeouts, 33 times
(runs) for each timeout. The PlanetLab node located in
United Kingdom was chosen to serve as the leader for the
leader-based protocols, since it was found to be well con-
nected using the same method as was done for our LAN ex-
periment (Section 5.2). We measure the time and number of
rounds until the appropriate conditions for global decision
are satisfied for each model, starting at 15 random points of
each run, and the average of these represent the run. Addi-
tionally, we measure the fraction of rounds in each run that
satisfy the timeliness requirements of the different models.

Figure 1(d) shows how timeouts translate to fraction of
delivered messages (p in Section 4) as measured in our ex-
periment. We have chosen to work with timeouts which
assure that up to99% messages are delivered on time, since
it is known that in WANs, the maximal latency can be or-
ders of magnitude longer than the usual latency [5, 3], and
thus assuring100% is unrealistic.

Figure 1(e) shows the measuredPES , P♦AFM , P♦LM

andP♦WLM , averaged over the repetitions of the experi-
ment for each timeout, as well as the95% confidence inter-
val for the average.Figure 1(f) shows the varience of the
values used to calculate the average points inFigure 1(e).
We see that the timeliness requirements of♦WLM are sat-
isfied much more frequently than for the other models. This
is because♦WLM only requires timeliness from the in-
coming and outgoing links of the leader. We also observe
that ♦LM and ♦WLM are much easier to satisfy than
♦AFM and ES. For example, for a timeout of160ms
we getPES = 0, P♦AFM = 0.4 while P♦LM = 0.79 and
P♦WLM = 0.94.

We see thatES rounds are really rare, especially with
short timeouts (for example when the timeout is less than
200ms,PES = 0), which matches the IID-based prediction
of Section 4(on average, a timeout of200ms corresponds
to p = 0.95 used in IID analysis, i.e.,95% of messages
arrive on time). We observe that while the confidence in-
tervals ofP♦AFM , P♦LM , andP♦WLM are small and di-
minish as we increase the timeout, the confidence intervals
for ES grow. Given a fixed number of measurements, the

interval length follows from the variance.ES has high vari-
ance even for large timeouts, due to message loss. While in
some runs, over80% of rounds satisfyES with a timeout
of 350ms, in others only30% do. For short timeouts the
variance ofES is low and its confidence intervals are short
since the incidence ofES rounds is consistently low.

Figure 1(f) shows that for longer timeouts, the high in-
cidence of♦AFM , ♦LM and♦WLM rounds varies only
slightly (unlike ES). However, for short timeouts♦LM
has high variance. This is caused by its sensitivity to bad
performance by any single node, as was also observed in
LAN. Specifically, for a timeout of160ms, while in some
runs95% of all rounds satisfy the conditions of♦LM , in
other runs little more than15% do. This happened because
in some runs with this timeout, PlanetLab node located in
Poland was slow to receive messages, although most of the
messages it sent arrived on time. While in IID all links are
the same, we saw that in reality this is not true. This affects
♦LM which requires every node to receive a message from
a majority. On the other hand,P♦AFM is consistently low
(around0.4, rarely above0.5) for this timeout, hence the
low variance. For larger timeouts, usually all nodes manage
to receive a message from a majority, and we see that the in-
cidence of♦AFM and♦LM is high, while the confidence
intervals become shorter and the variance goes to 0.

Figure 1(g) andFigure 1(h) show the average (over all
runs) number of rounds and time (resp.) that were needed
to reach global decision in each model. We observe that
for low timeouts the algorithm ofSection 3achieves con-
sensus much faster than the algorithms assuming any of
the other models ([11, 18]). For timeouts starting with ap-
proximately 180ms and higher, its performance is compa-
rable to♦LM , whereas♦AFM takes more rounds and
time than both for timeouts less than 230ms. As before, the
choice of the leader gave♦LM and♦WLM an advantage
over ♦AFM and thus the difference from IID-based pre-
diction in Figure 1(b) (according toFigure 1(d), a timeout
of 160ms corresponds, on average, top = 0.88).

In general, we see that a longer timeout (a higherp in
the IID analysis), reduces the number of rounds for de-
cision. On the other hand, it is obvious that a higherp,
or a longer timeout, make each individual round longer.
We wish to explore this tradeoff and determine the optimal
timeout. Of course, the specific optimum would be differ-
ent for a different system setting, but the principle remains.
Figure 1(i) zooms-in on the appropriate part ofFigure 1(h),
and demonstrates this tradeoff for♦LM and♦WLM . For
timeouts less than170ms (on average, this corresponds to
p = 0.90 for IID), while ♦WLM ’s required number of
rounds is increasing (as the timeout decreases), the length
of each round is decreasing. For timeouts more than170ms
(as the timeout increases) the number of required rounds
decreases, but the cost of each round increases. For exam-
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ple, if we set our timeout to180ms, although the number
of rounds will be very small (4.5 rounds on average accord-
ing to Figure 1(g)), the actual time until decision will be
800ms, which is about the same as the average time we
would get if we shorten the timeout to160ms although the
required number of rounds would be higher. This shows that
setting conservative timeouts (improvingp) will not neces-
sarily improve performance. As we see from this graph, it
might actually make it worse.

FromFigure 1(i), we conclude that in our setting, choos-
ing the timeout to be170ms is optimal for the♦WLM al-
gorithm and the timeout210ms is optimal for♦LM . These
timeouts correspond top = 0.90 andp = 0.96, e.g., setting
the timeout to170ms causes90% of messages on average to
arrive on time in our setting. Note that we present a method-
ology rather than a specific timeout: a system administra-
tor can perform measurements and choose the timeout for a
specific system, according to such criteria.

Finally, if we compare the performance of♦WLM with
that of ♦LM with their optimal timeouts, we see that
♦WLM is expected to take730ms, which is only80ms
more than what♦LM is expected to take at its best setting.
We conclude that it is clearly well worth using♦WLM ,
while gaining the reduction of stable state message com-
plexity from quadratic to linear.

6 Conclusions

We presented a timing model that requires timeliness on
O(n) links in stable periods and allows unbounded peri-
ods of asynchrony. We introduced a consensus algorithm
for this model, which has linear per-round stable state mes-
sage complexity, and achieves global decision in a constant
small number of rounds from stabilization. Since all previ-
ously known algorithms that can operate in this model re-
quire linear number of rounds, we compared our algorithm
to algorithms that require stronger models, all of which also
have quadratic message complexity.

Even though our algorithm might take more rounds to
decide compared to the others, we have shown that its eas-
ier to satisfy weak stability requirements allow it to achieve
comparable or even superior global consensus decision time
(with very low variance), despite the fact that it sends much
fewer messages in each round. Thus, optimizing for mes-
sage complexity and requiring fewer timely links might ac-
tually improve decision time. Our analysis includes mea-
surements in a LAN and a WAN, as well as mathematical
analysis, and thus is valid in a broad variety of systems.
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