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It seems like “computation clouds” are cropping up everywhere nowadays... well, except perhaps, ac-
tually “in the clouds”, as a recent April Fool’s joke by Amazon suggested1. While there is no commonly
agreed-upon definition of what exactly constitutes a cloud, it is clear that there are some pretty interesting
mega-scale distributed computing environments out there. Such environments require, and already deploy,
many distributed services and applications. This column examines distributed computing research that seeks
to develop new solutions for clouds, as well as to improve existing ones.

Our main contribution is by Ken Birman, Gregory (Grisha) Chockler, and Robbert van Renesse, who
identify a research agenda for cloud computing, based on insights gained at the 2008 LADIS workshop.
They question whether contemporary research in distributed computing, which sometimes targets cloud
environments, is indeed relevant for cloud computing. Some researchers will be disappointed by (and might
disagree with) the conclusions they reach. They then proceed to define a new agenda for cloud computing
research. Their article, however, does not consider issues of security and trust. This perhaps stems from the
fact that the paper is written from the perspective of cloud service providers, rather than users, whereas trust
is a concern for the latter. In the next contribution, Christian Cachin, Yours Truly, and Alexander (Alex)
Shraer examine the trust that users have (or can have) in cloud services where they store their data, surveying
risks as well as solutions that are being proposed to address them.

The column then turns to a more applied perspective. The next contribution, by Edward (Eddie) Bort-
nikov from Yahoo! Research, surveys open source technologies that are used for web-scale computing,
highlighting some technology transfer from the research community to actual implementations. The col-
umn concludes with an announcement, provided by Roger Barga and Jose Bernabeu-Auban from Microsoft,
about a Cloud Computing tutorial that will be given at DISC’2009 in September, in Elche, Spain.

Many thanks to Ken, Grisha, Robbert, Christian, Alex, Eddie, Roger, and Jose for their contributions!

1http://aws.typepad.com/aws/2009/03/up-up-and-away-cloud-computing-reaches-for-the-sky.html
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Abstract

The 2008 LADIS workshop on Large Scale Distributed Systems brought together leaders from the
commercial cloud computing community with researchers working on a variety of topics in distributed
computing. The dialog yielded some surprises: some hot research topics seem to be of limited near-term
importance to the cloud builders, while some of their practical challenges seem to pose new questions to
us as systems researchers. This brief note summarizes our impressions.

1 Workshop Background

LADIS is an annual workshop focusing on the state of the art in distributed systems. The workshops are
by invitation, with the organizing committee setting the agenda. In 2008, the committee included ourselves,
Eliezer Dekel, Paul Dantzig, Danny Dolev, and Mike Spreitzer. The workshop website 1 includes the de-
tailed agenda, white papers, and slide sets 2; proceedings are available electronically from the ACM Portal
web site [21].

2 LADIS 2008 Topic

The 2008 LADIS topic was Cloud Computing, and more specifically:

• Management infrastructure tools (examples would include Chubby [4], Zookeeper [25], Paxos [22],
[19], Boxwood [23], Group Membership Services, Distributed Registries, Byzantine State Machine
Replication [6], etc),

• Scalable data sharing and event notification (examples include Pub/Sub platforms, Multicast [31],
Gossip [30], Group Communication [8], DSM solutions like Sinfonia [1], etc),

1http://www.cs.cornell.edu/projects/ladis2008
2http://www.cs.cornell.edu/projects/LADIS2008/presentations.htm
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• Network-Level and other resource-managed technologies (Virtualization and Consolidation, Resource
Allocation, Load Balancing, Resource Placement, Routing, Scheduling, etc),

• Aggregation, Monitoring (Astrolabe [29], SDIMS [32], Tivoli, Reputation).

In 2008, LADIS had three keynote speakers, one of whom shared his speaking slot with a colleague:

• Jerry Cuomo, IBM Fellow, VP, and CTO for IBM’s Websphere product line. Websphere is IBMs
flagship product in the web services space, and consists of a scalable platform for deploying and
managing demanding web services applications. Cuomo has been a key player in the effort since its
inception.

• James Hamilton, at that time a leader within Microsoft’s new Cloud Computing Initiative. Hamilton
came to the area from a career spent designing and deploying scalable database systems and clustered
data management platforms, first at Oracle and then at Microsoft. (Subsequent to LADIS, he joined
Amazon.com.)

• Franco Travostino and Randy Shoup, who lead eBay’s architecture and scalability effort. Both had
long histories in the parallel database arena before joining eBay and both participated in eBay’s scale-
out from early in that company’s launch.

We won’t try and summarize the three talks (slide sets for all of them are online at the LADIS web
site, and additional materials such as blogs 3 and videotaped talks 4. Rather, we want to focus on three
insights we gained by comparing the perspectives articulated in the keynote talks with the cloud computing
perspective represented by our research speakers:

• We were forced to revise our “definition” of cloud computing.

• The keynote speakers seemingly discouraged work on some currently hot research topics.

• Conversely, they left us thinking about a number of questions that seem new to us.

3 Cloud Computing Defined

Not everyone agrees on the meaning of cloud computing. Broadly, the term has an “outward looking” and
an “inward looking” face. From the perspective of a client outside the cloud, one could cite the Wikipedia
definition:

Cloud computing is Internet (cloud) based development and use of computer technology (com-
puting), whereby dynamically scalable and often virtualized resources are provided as a service
over the Internet. Users need not have knowledge of, expertise in, or control over the technology
infrastructure ”in the cloud” that supports them.

3Perspectives: James Hamiltons blog: http://perspectives.mvdirona.com
4Randy Shoup on eBay’s Architectural Principles:

http://www.infoq.com/presentations/shoup-ebay-architectural-principles
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The definition is broad enough to cover everything from web search to photo sharing to social network-
ing. Perhaps the key point is simply that cloud computing resources should be accessible by the end user
anytime, anywhere, and from any platform (be it a cell phone, mobile computing platform or desktop). The
outward facing side of cloud computing has a growing set of associated standards. By and large:

• Cloud resources are accessed from browsers, “minibrowsers” running JavaScript/AJAX or similar
code, or at a program level using web services standards. For example, many cloud platforms employ
SOAP as a request encoding standard, and HTTP as the preferred way to actually transmit the SOAP
request to the cloud platform, and to receive a reply.

• The client thinks of the cloud as a single entity. Of course, this is just an illusion: in reality, the
implementation typically requires one or more data centers, composed of potentially huge numbers of
service instances running on a large amount of hardware. Inexpensive commodity PCs structured into
clusters are popular. A typical data center has an outward facing bank of servers with which client
systems interact directly. Cloud systems implement a variety of DNS and load-balancing/routing
mechanisms to control the routing of client requests to actual servers, in a manner that masks the
structure of the cloud from its users.

• Further isolating the clients of a cloud system from its internal structure, the external servers may
actually be the only ones that a client can access directly. This occurs because those servers often run
in a “demilitarized zone” (outside any firewall), and are limited to executing stateless “business logic.”
This typically involves extracting the client request and parallelizing it within some set of services that
do the work and maintain any state associated with the cloud or the transaction. The external server
collects replies, combines them into a single “result,” and sends it back to the client.

There is also an inside facing perspective:

• A cloud service is implemented by some sort of pool of servers that either share a database subsystem
or replicate data [13]. The replication technology is very often supported by some form of scalable,
high-speed update propagation technology, such as publish/subscribe message bus (in web services,
the term Enterprise Service Bus or ESB is a catch-all for such mechanisms).

• Cloud platforms are highly automated: management of these server pools (including such tasks as
launching servers, shutting them down, load balancing, failure detection and handling) are performed
by standardized infrastructure mechanisms.

• A cloud system will often provide its servers with some form of shared global file system, or in-
memory store services. For example, Google’s GFS [15], Yahoo!’s HDFS [3], Amazon.com’s S3 [2],
memcached [18], and Amazon Dynamo [12] are widely cited. These are specific solutions; the more
general statement is simply that servers share files, databases, and other forms of content.

• Server pools often need ways to coordinate when shared configuration or other shared state is updated.
In support of this many cloud systems provide some form of locking or atomic multicast mechanism
with strong properties [4], [25]. Some very large-scale services use tools like Distributed Hash Tables
(DHTs) to rapidly find information shared within a pool of servers, or even as part of a workload
partitioning scheme (for example, Amazon’s shopping-cart service uses a DHT to spread the shopping
cart function over a potentially huge number of server machines).
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We’ve focused the above list on the interactive side of a data center, which supports the clustered server
pools with which clients actually interact. But these in turn will often depend upon “back office” function-
ality: activities that run in the background and prepare information that will be used by the servers actually
handling client requests. At Google, these back office roles include computing search indices. Examples of
widely known back-office supporting technologies include:

• Scheduling mechanisms that assign tasks to machines, but more broadly, play the role of provisioning
the data center as a whole. As we’ll see below, this aspect of cloud computing is of growing impor-
tance because of its organic connection to power consumption: both to spin disks and run machines,
but also because active machines produce heat and demand cooling. Scheduling, it turns out, comes
down to “deciding how to spend money.”

• Storage systems that include not just the global file system but also scalable database systems and
other scalable transactional subsystems and middleware such as Google’s BigTable [7], which pro-
vides an extensive (conceptually unlimited) table structure implemented over GFS.

• Control systems for large-scale distributed data processing like MapReduce [11] and DryadLINQ [33].

• Archival data organization tools, applications that compress information or compute indexes, applica-
tions that look for duplicate versions of objects, etc.

In summary, cloud computing lacks any crisp or simple definition. Trade publications focus on cloud
computing as a realization of a form of ubiquitous computing and storage, in which such functionality can
be viewed as a new form of cyber-supported “utility”. One often reads about the cloud as an analog of the
electric power outlet or the Internet itself. From this perspective, the cloud is defined not by the way it
was constructed, but rather by the behavior it offers. Technologists, in turn, have a tendency to talk about
the components of a cloud (like GFS, BigTable, Chubby) but doing so can lose track of the context in
which those components will be used — a context that is often very peculiar when compared with general
enterprise computing systems.

4 Is the Distributed Systems Research Agenda Relevant?

We would like to explore this last point in greater detail. If the public perception of the cloud is largely
oblivious to the implementation of the associated data centers, the research community can seem oblivious
to the way mechanisms are used. Researchers are often unaware that cloud systems have overarching design
principles that guide developers towards a cloud-computing mindset quite distinct from what we may have
been familiar with from our work in the past, for example on traditional client/server systems or traditional
multicast protocols. Failing to keep the broader principles in mind can have the effect of overemphasizing
certain cloud computing components or technologies, while losing track of the way that the cloud uses those
components and technologies. Of course if the use was arbitrary or similar enough to those older styles of
client/server system, this wouldn’t matter. But because the cloud demands obedience to those overarching
design goals (either because the cloud was built with tools that only support certain styles of system, or
because operators such as eBay or Microsoft impose and enforce “rules of practice”, as we discuss further
below), what might normally seem like mere application-level detail instead turns out to be dominant and to
have all sorts of lower level implications.

Just as one could criticize the external perspective (“ubiquitous computing”) as an oversimplification,
LADIS helped us appreciate that when the research perspective overlooks the roles of our technologies, we
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can sometimes wander off on tangents by proposing “new and improved” solutions to problems that actually
run contrary to the overarching spirit of the cloud mechanisms that will use these technologies.

To see how this can matter, consider the notion of distributed systems consistency. The research com-
munity thinks of consistency in terms of very carefully specified models such as the transactional database
model, atomic broadcast, Consensus, etc. We tend to reason along the following lines: Google uses Chubby
(a locking service) and Chubby uses State Machine Replication based on Paxos. Thus Consensus, an es-
sential component of State Machine Replication, should be seen as a legitimate cloud computing topic:
Consensus is “relevant” by virtue of its practical application to a major cloud computing infrastructure. We
then generalize: research on Consensus, new Consensus protocols and tools, alternatives to Consensus are
all “cloud computing topics”.

While all of this is true, our point is that Consensus, for Google, wasn’t the goal. Sure, locking matters
in Google, this is why they built a locking service. But the bigger point is that even though large data
centers need locking services, if one can trust our keynote speakers, application developers are under huge
pressure not to use them. We’re reminded of the old story of the blind men touching the elephant. When
we reason that “Google needed Chubby, so Consensus as used to support locking is a key cloud computing
technology,” we actually skip past the actual design principle and jump directly to the details: this way of
building a locking service versus that one. In doing so, we lose track of the broader principle, which is that
distributed locking is a bad thing that must be avoided!

This particular example is a good one because, as we’ll see shortly, if there was a single overarching
theme within the keynote talks, it turns out to be that strong synchronization of the sort provided by a
locking service must be avoided like the plague. This doesn’t diminish the need for a tool like Chubby;
when locking actually can’t be avoided, one wants a reliable, standard, provably correct solution. Yet it does
emphasize the sense in which what we as researchers might have thought of as the main point (“the vital
role of consistency and Consensus”) is actually secondary in a cloud setting. Seen in this light, one realizes
that while research on Consensus remains valuable, it was a mistake to portray it as if it was research on the
most important aspect of cloud computing.

Our keynote speakers made it clear that in focusing overly narrowly, the research community of ten
misses the bigger point. This is ironic: most of the researchers who attended LADIS are the sorts of
people who teach their students to distinguish a problem statement from a solution to that problem, and
yet by overlooking the reasons that cloud platforms need various mechanisms, we seem to be guilty of fine-
tuning specific solutions without adequately thinking about the context in which they are used and the real
needs to which they respond — aspects that can completely reshape a problem statement. To go back to
Chubby: once one realizes that locking is a technology of last resort, while building a great locking service
is clearly the right thing to do, one should also ask what research questions are posed by the need to support
applications that can safely avoid locking. Sure, Consensus really matters, but if we focus too strongly on
it, we risk losing track of its limited importance in the bigger picture.

Let’s look at a second example just to make sure this point is clear. During his LADIS keynote,
Microsoft’s James Hamilton commented that for reasons of autonomous control, large data centers have
adopted a standard model resembling the well-known Recovery-Oriented Computing (ROC) paradigm [24,
5]. In this model, every application must be designed with a form of automatic fault handling mechanism.
In short, this mechanism suspects an application if any other component complains that it is misbehaving.
Once suspected by a few components, or suspected strenuously by even a single component, the offending
application is rebooted — with no attempt to warn its clients or ensure that the reboot will be graceful or
transparent or non-disruptive. The focus apparently is on speed: just push the reboot button. If this doesn’t
clear the problem, James described a series of next steps: the application might be automatically reinstalled
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on a fresh operating system instance, or even moved to some other node — again, without the slightest effort
to warn clients.

What do the clients do? Well, they are forced to accept that services behave this way, and developers
code around the behavior. They try and use idempotent operations, or implement ways to resynchronize
with a server when a connection is abruptly broken.

Against this backdrop, Hamilton pointed to the body of research on transparent task migration: tech-
nology for moving a running application from one node to another without disrupting the application or its
clients. His point? Not that the work in question isn’t good, hard, or publishable. But simply that cloud
computing systems don’t need such a mechanism: if a client can (somehow) tolerate a service being abruptly
restarted, reimaged or migrated, there is no obvious value to adding “transparent online migration” to the
menu of options. Hamilton sees this as analogous to the end-to-end argument: if a low level mechanism
won’t simplify the higher level things that use it, how can one justify the complexity and cost of the low
level tool?

Interestingly, although this wasn’t really our intention when we organized LADIS 2008, Byzantine
Consensus turned out to be a hot topic. It was treated, at least in passing, by surprisingly many LADIS re-
searchers in their white papers and talks. Clearly, our research community is not only interested in Byzantine
Consensus, but also perceives Byzantine fault tolerance to be of value in cloud settings.

What about our keynote speakers? Well, the quick answer is that they seemed relatively uninterested in
Consensus, let alone Byzantine Consensus. One could imagine many possible explanations. For example,
some industry researchers might be unaware of the Consensus problem and associated theory. Such a person
might plausibly become interested once they learn more about the importance of the problem. Yet this turns
out not to be the case for our four keynote speakers, all of whom have surprisingly academic backgrounds,
and any of whom could deliver a nuanced lecture on the state of the art in fault-tolerance.

The underlying issue was quite the opposite: the speakers believe themselves to understand something
we didn’t understand. They had no issue with Byzantine Consensus, but it just isn’t a primary question
for them. We can restate this relative to Chubby. One of the LADIS attendees commented at some point
that Byzantine Consensus could be used to improve Chubby, making it tolerant of faults that could disrupt
it as currently implemented. But for our keynote speakers, enhancing Chubby to tolerate such faults turns
out to be of purely academic interest. The bigger — the overarching — challenge is to find ways of trans-
forming services that might seem to need locking into versions that are loosely coupled and can operate
correctly without locking [17] — to get Chubby (and here we’re picking on Chubby: the same goes for any
synchronization protocol) off the critical path.

The principle in question was most clearly expressed by Randy Shoup, who presented the eBay system
as an evolution that started with a massive parallel database, but then diverged from the traditional database
model over time. As Shoup explained, to scale out, eBay services started with the steps urged by Jim
Gray in his famous essay on terminology for scalable systems [13]: they partitioned the enterprise into
multiple disjoint subsystems, and then used small clusters to parallelize the handling of requests within
these. But this wasn’t enough, Shoup argued, and eventually eBay departed from the transactional ACID
properties entirely, moving towards a decentralized convergence behavior in which server nodes are (as
much as possible) maintained in loosely consistent but transiently divergent states, from which they will
converge back towards a consistent state over time.

Shoup argued, in effect, that scalability and robustness in cloud settings arises not from tight synchro-
nization and fault-tolerance of the ACID type, but rather from loose synchronization and self-healing con-
vergence mechanisms.

Shoup was far from the only speaker to make this point. Hamilton, for example, commented that when
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a Microsoft cloud computing group wants to use a strong consistency property in a service... his executive
team had the policy of sending that group home to find some other way to build the service. As he explained
it, one can’t always completely eliminate strong ACID-style consistency properties, but the first principle
of successful scalability is to batter the consistency mechanisms down to a minimum, move them off the
critical path, hide them in a rarely visited corner of the system, and then make it as hard as possible for
application developers to get permission to use them. As he said this, Shoup beamed: he has the same role
at eBay.

The LADIS audience didn’t take these “fighting words” passively. Alvisi and Guerraoui both pointed
out that Byzantine fault-tolerance protocols are more and more scalable and more and more practical, cit-
ing work to optimize these protocols for high load, sustained transaction streams, and to create optimistic
variants that will terminate early if an execution experiences no faults [10], [20]. Yet the keynote speakers
pushed back, reiterating their points. Shoup, for example, noted that much the same can be said of modern
transaction protocols: they too scale well, can sustain extremely high transaction rates, and are more and
more optimized for typical execution scenarios. Indeed, these are just the kinds of protocols on which eBay
depended in its early days, and that Hamilton “cut his teeth” developing at Oracle and then as a technical
leader of the Microsoft SQL server team. But for Shoup performance isn’t the reason that eBay avoids these
mechanisms. His worry is that no matter how fast the protocol, it can still cause problems.

This is a surprising insight: for our research community, the prevailing assumption has been that Byzan-
tine Protocols would be used pervasively if only people understood that they no longer need to be perfor-
mance limiting bottlenecks. But Shoup’s point is that eBay avoids them for a different reason. His worry
involves what could be characterized as “spooking correlations” and “self-synchronization”. In effect, any
mechanism capable of “coupling” the behavior of multiple nodes even loosely would increase the risk that
the whole data center might begin to thrash.

Shoup related stories about the huge effort that eBay invested to eliminate convoy effects, in which large
parts of a system go idle waiting for some small number of backlogged nodes to work their way through a
seemingly endless traffic jam. Then he spoke of feedback oscillations of all kinds: multicast storms, chaotic
load fluctuations, thrashing. And from this, he reiterated, eBay had learned the hard way that any form of
synchronization must be limited to small sets of nodes and used rarely.

In fact, the three of us are aware of this phenomenon from projects on which we’ve collaborated over
the years. We know of many episodes in which data center operators have found their large-scale systems
debilitated by internal multicast “storms” associated with publish/subscribe products that destabilized on a
very large scale, ultimately solving those problems by legislating that UDP multicast would not be used as
a transport. The connection? Multicast storms are another form of self-synchronizing, destructive behavior
that can arise when coordinated actions (in this case, loss recovery for a reliable multicast protocol) are
unleashed on a large scale.

Thus for our keynote speakers, “fear of synchronization” was an overarching consideration that in their
eyes, mattered far more than the theoretical peak performance of such-and-such an atomic multicast or Con-
sensus protocol, Byzantine-tolerant or not. In effect, the question that mattered wasn’t actually performance,
but rather the risk of destabilization that even using mechanisms such as these introduces.

Reflecting on these comments, which were echoed by Cuomo and Hamilton in other contexts, we find
ourselves back in that room with the elephant. Perhaps as researchers focused on the performance and
scalability of multicast protocols, or Consensus, or publish/subscribe, we’re in the position of mistaking the
tail of the beast for the critter itself. Our LADIS keynote speakers weren’t naive about the properties of the
kinds of protocols on which we work. If anything, we’re the ones being naive, about the setting in which
those protocols are used.
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To our cloud operators, the overarching goal is scalability, and they’ve painfully learned one overarching
principle of scale: decoupling. The key is to enable nodes to quietly go about their work, asynchronously
receiving streams of updates from the back-office systems, synchronously handling client requests, and
avoiding even the most minor attempt to interact with, coordinate with, agree with or synchronize with
other nodes. However simple or fast a consistency mechanism might be, they still view such mechanisms
as potential threats to this core principle of decoupled behavior. And thus their insistence on asynchronous
convergence as an alternative to stronger consistency: yes, over time, one wants nodes to be consistent. But
putting consistency ahead of decoupling is, they emphasized, just wrong.

5 Towards a Cloud Computing Research Agenda

Our workshop may have served to deconstruct some aspects of the traditional research agenda, but it also
left us with elements of a new agenda — and one not necessarily less exciting than the one we are being
urged by these leaders to shift away from. Some of the main research themes that emerge are:

1. Power management. Hamilton was particularly emphatic on this topic, arguing that a ten-fold reduc-
tion in the power needs of data centers may be possible if we can simply learn to build systems that
are optimized with power management as their primary goal, and that this savings opportunity may
be the most exciting way to have impact today [14]. Examples of ideas that Hamilton floated were:

• Explore ways to simply do less during surge load periods.

• Explore ways to migrate work in time. The point here was that load on modern cloud platforms
is very cyclical, with infrequent peaks and deep valleys. It turns out that the need to provide
acceptable quality of service during the peaks inflates costs continuously: even valley time is
made more expensive by the need to own a power supply able to handle the peaks, a number of
nodes adequate to handle surge loads, a network provisioned for worst-case demand, etc. Hamil-
ton suggested that rather than think about task migration for fault-tolerance (a topic mentioned
above), we should be thinking about task decomposition with the goal of moving work from
peak to trough. Hamilton’s point was that in a heavily loaded data center coping with a 95%
peak load, surprisingly little is really known about the actual tasks being performed. As in any
system, a few tasks probably represent the main load, so one could plausibly learn a great deal
— perhaps even automatically. Having done this, one could attack those worst-case offenders.
Maybe they can precompute some data, or defer some work to be finished up later, when the
surge has ended. The potential seems to be very great, and the topic largely unexplored.

• Even during surge loads, some machines turn out to be very lightly loaded. Hamilton argued that
if one owns a node, it should do its share of the work. This argues for migrating portions of some
tasks in space: breaking overloaded services into smaller components that can operate in parallel
and be shifted around to balance load on the overall data center. Here, Hamilton observed that
we lack software engineering solutions aimed at making it easy for the data center development
team to delay these decisions until late in the game. After all, when building an application it
may not be at all clear that, three years down the road, the application will account for most of
the workload during surge loads that in turn account for most of the cost of the data center. Thus,
long after an application is built, one needs ways to restructure it with power management as a
goal.
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• New models and protocols for convergent consistency, perhaps along the lines of [28] or [5]. As
noted earlier, Shoup energetically argued against traditional consistency mechanisms related to
the ACID properties, and grouped Consensus into this technology area. But it was not so clear
to us what alternative eBay would prefer, and in fact we see this as a research opportunity.

• We need to either adapt existing models for convergent behavior (self-stabilization, perhaps, or
the forms of probabilistic convergence used in some gossip protocols) to create a formal model
that could capture the desired behavior of loosely coupled systems. Such a model would let
us replace “loose consistency” with strong statements about precisely when a system is indeed
loosely consistent, and when it is merely broken!

• We need a proof methodology and metrics for comparison, so that when distinct teams solve this
new problem statement, we can convince ourselves that the solutions really work and compare
their costs, performance, scalability and other properties.

• Conversely, the Byzantine Consensus community has value on the table that one would not wish
to sweep to the floor. Consider the recent, highly publicized, Amazon.com outage in which that
company’s S3 storage system was disabled for much of a day when a corrupted value slipped into
a gossip-based subsystem and was then hard to eliminate without fully restarting the subsystem
— one needed by much of Amazon, and hence a step that forced Amazon to basically shut
down and restart. The Byzantine community would be justified, we think, in arguing that this
example illustrates not just a weakness in loose consistency, but also a danger associated with
working in a model that has never been rigorously specified. It seems entirely feasible to import
ideas from Byzantine Consensus into a world of loose consistency; indeed, one can imagine a
system that achieves “eventual Byzantine Consensus.” One of the papers at LADIS (Rodrigues
et al. [26], [27]) presented a specification of exactly such a service. Such steps could be fertile
areas for further study: topics close enough to today’s hot areas to publish upon, and yet directly
relevant to cloud computing.

2. Not enough is known about stability of large-scale event notification platforms, management tech-
nologies, or other cloud computing solutions. As we scale these kinds of tools to encompass hundreds
or thousands of nodes spread over perhaps tens of data centers, worldwide, we as researchers can’t
help but be puzzled: how do our solutions work today, in such settings?

• Very large-scale eventing deployments are known to be prone to destabilizing behavior — a
communications-level equivalent of thrashing. Not known are the conditions that trigger such
thrashing, the best ways to avoid it, the general styles of protocols that might be inherently robust
or inherently fragile, etc.

• Not very much is known about testing protocols to determine their scalability. If we invent a
solution, how can we demonstrate its relevance without first taking leave of our day jobs and
signing on at Amazon, Google, MSN or Yahoo? Today, realistically, it seems nearly impossible
to validate scalable protocols without working at some company that operates a massive but
proprietary infrastructure.

• Another emerging research direction looks into studying subscription patterns exhibited by the
nodes participating in a large-scale publish/subscribe system. Researchers (including the au-
thors of this article) are finding that in real-world workloads, the subscription patters associated
with individual nodes are highly correlated, forming clusters of nearly identical or highly similar
subscriptions. These structures can be discovered and exploited (through e.g., overlay network
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clustering [9], [16], or channelization [31]). LADIS researchers reported on opportunities to
amortize message dissemination costs by aggregating multiple topics and nodes, with the poten-
tial of dramatically improving scalability and stability of a pub/sub system.

3. Our third point leads to an idea that Mahesh Balakrishnan has promoted: we should perhaps begin to
treat virtualization as a first-class research topic even with respect to seemingly remote questions such
as the scalability of an eventing solution or a tolerating Byzantine failures. The point Mahesh makes
runs roughly as follows:

• For reasons of cost management and platform management, the data center of the future seems
likely to be fully virtualized.

• Today, one assumes that it makes no sense to talk about a scalable protocol that was actually
evaluated on 200 virtual nodes hosted on 4 physical ones: one presumes that internal scheduling
and contention effects could be more dominant than the scalability of the protocols per se. But
perhaps tomorrow, it will make no sense to talk about protocols that aren’t designed for virtu-
alized settings in which nodes will often be co-located. After all, if Hamilton is right and cost
factors will dominate all other decisions in all situations, how could this not be true for nodes
too?

• Are there deep architectural principles waiting to be uncovered — perhaps even entirely new
operating systems or virtualization architectures — when one thinks about support for massively
scalable protocols running in such settings?

4. In contrast to enterprise systems, the only economically sustainable way of supporting Internet scale
services is to employ a huge hardware base consisting entirely of cheap off-the-shelf hardware com-
ponents, such as low-end PC’s and network switches. As Hamilton pointed out, this reflects simple
economies of scale: i.e., it is much cheaper to obtain the necessary computational and storage power
by putting together a bunch of inexpensive PC’s than to invest into a high-end enterprise level equip-
ment, such as a mainframe. This trend has important architectural implications for cloud platform
design:

• Scalability emerges as a crosscutting concern affecting all the building blocks used in cloud
settings (and not restricted to those requiring strong consistency). Those blocks should be either
redesigned with scalability in mind (e.g., by using peer-to-peer techniques and/or dynamically
adjustable partitioning), or replaced with new middleware abstractions known to perform well
when scaled out.

• As we scale systems up, sheer numbers confront us with growing frequency of faults within the
cloud platform as a whole. Consequently, cloud services must be designed under assumption
that they will experience frequent and often unpredictable failures. Services must recover from
failures autonomously (without human intervention), and this implies that cloud computing plat-
forms must offer standard, simple and fast recovery procedures [17]. We pointed to a seeming
connection to recovery oriented computing (ROC) [24], yet ROC was proposed in much smaller
scale settings. A rigorously specified, scalable form of ROC is very much needed.

• Those of us who design protocols for cloud settings may need to think hard about churn and
handling of other forms of sudden disruptions, such as sudden load surges. Existing protocols
are too often prone to destabilized behaviors such as oscillation, and this may prevent their use
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in large data centers, where such events run the risk of disrupting even applications that don’t
use those protocols directly.

We could go on at some length, but these points already touch on the highlights we gleaned from the
LADIS workshop. Clearly, cloud computing is here to stay, and poses tremendously interesting research
questions and opportunities. The distributed systems community, up until now at least, owns just a portion
of this research space (indeed, some of the topics mentioned above are entirely outside of our area, or at best
tangential).

6 LADIS 2009

In conclusion, LADIS 2008 seems to have been an unqualified success, and indeed, a far more thought-
provoking workshop than we three have attended in some time. The key was that LADIS generated spirited
dialog between distributed systems researchers and practitioners, but also that the particular practitioners
who participated shared so much of our background and experience. When researchers and system builders
meet, there is often an impedance mismatch, but in the case of LADIS 2008 we managed to fill a room with
people who share a common background and way of thinking, and yet see the cloud computing challenge
from very distinct perspectives.

LADIS 2009 is now being planned running just before the ACM Symposium on Operating Systems in
October 2009, at Big Sky Resort in Utah. In contrast to the two previous workshops, this year’s event is
officially sponsored by ACM SIGOPS, and the papers are being solicited through both an open Call For
Papers, and targeted solicitation. If SOSP 2009 isn’t already enough of an attraction, we would hope that
readers of this essay might consider LADIS 2009 to be absolutely irresistible! You are most cordially invited
to submit a paper and attend the workshop. More information about the upcoming LADIS workshop can be
found on its website 5 and in the call for papers 6. The first LADIS was held at IBM Haifa Research Lab in
2007 7.
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Abstract

More and more users store data in “clouds” that are accessed remotely over the Internet. We survey
well-known cryptographic tools for providing integrity and consistency for data stored in clouds and
discuss recent research in cryptography and distributed computing addressing these problems.

Storing data in clouds

Many providers now offer a wide variety of flexible online data storage services, ranging from passive
ones, such as online archiving, to active ones, such as collaboration and social networking. They have
become known as computing and storage “clouds.” Such clouds allow users to abandon local storage and use
online alternatives, such as Amazon S3, Nirvanix CloudNAS, or Microsoft SkyDrive. Some cloud providers
utilize the fact that online storage can be accessed from any location connected to the Internet, and offer
additional functionality; for example, Apple MobileMe allows users to synchronize common applications
that run on multiples devices. Clouds also offer computation resources, such as Amazon EC2, which can
significantly reduce the cost of maintaining such resources locally. Finally, online collaboration tools, such
as Google Apps or versioning repositories for source code, make it easy to collaborate with colleagues
across organizations and countries, as practiced by the authors of this paper.

What can go wrong?

Although the advantages of using clouds are unarguable, there are many risks involved with releasing control
over your data. One concern that many users are aware of is loss of privacy. Nevertheless, the popularity of
social networks and online data sharing repositories suggests that many users are willing to forfeit privacy,
at least to some extent. Setting privacy aside, in this article we survey what else “can go wrong” when your
data is stored in a cloud.
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Availability is a major concern with any online service, as such services are bound to have some down-
time. This was recently the case with Google Mail1, Hotmail2, Amazon S33 and MobileMe4. Users must
also understand their service contract with the storage provider. For example, what happens if your payment
for the storage is late? Can the storage provider decide that one of your documents violates its policy and
terminate your service, denying you access to the data? Even the worst scenarios sometimes come true —
a cloud storage-provider named LinkUp (MediaMax) went out of business last year after losing 45% of
stored client data due to an error of a system administrator5. This incident also revealed that it is some-
times very costly for storage providers to keep storing old client data, and they look for ways to offload this
responsibility to a third party. Can a client make sure that his data is safe and available?

No less important is guaranteeing the integrity of remotely stored data. One risk is that data can be
damaged while in transit to or from the storage provider. Additionally, cloud storage, like any remote service,
is exposed to malicious attacks from both outside and inside the provider’s organization. For example, the
servers of the Red Hat Linux distribution were recently attacked and the intruder managed to introduce
a vulnerability and even sign some packages of the Linux operating-system distribution6. In its Security
Advisory about the incident, Red Hat stated:

. . . we remain highly confident that our systems and processes prevented the intrusion from
compromising RHN or the content distributed via RHN and accordingly believe that customers
who keep their systems updated using Red Hat Network are not at risk.

Unauthorized access to user data can occur even when no hackers are involved, e.g., resulting from a
software malfunction at the provider. Such data breach occurred in Google Docs7 during March 2009 and led
the Electronic Privacy Information Center to petition8 with the Federal Trade Commission asking to “open
an investigation into Google’s Cloud Computing Services, to determine the adequacy of the privacy and
security safeguards. . . ”. Another example, where data integrity was compromised as a result of provider
malfunctions, is a recent incident with Amazon S3, where users experienced silent data corruption9. Later
Amazon stated in response to user complaints10:

We’ve isolated this issue to a single load balancer that was brought into service at 10:55pm
PDT on Friday, 6/20. It was taken out of service at 11am PDT Sunday, 6/22. While it was in
service it handled a small fraction of Amazon S3’s total requests in the US. Intermittently, under
load, it was corrupting single bytes in the byte stream . . . Based on our investigation with both
internal and external customers, the small amount of traffic received by this particular load
balancer, and the intermittent nature of the above issue on this one load balancer, this appears
to have impacted a very small portion of PUTs during this time frame.

A further complication arises when multiple users collaborate using cloud storage (or simply when
one user synchronizes multiple devices). Here, consistency under concurrent access must be guaranteed.

1http://googleblog.blogspot.com/2009/02/current-gmail-outage.html
2http://www.datacenterknowledge.com/archives/2009/03/12/downtime-for-hotmail
3http://status.aws.amazon.com/s3-20080720.html
4http://blogs.zdnet.com/projectfailures/?p=908
5http://blogs.zdnet.com/projectfailures/?p=999
6https://rhn.redhat.com/errata/RHSA-2008-0855.html
7http://blogs.wsj.com/digits/2009/03/08/1214/
8http://cloudstoragestrategy.com/2009/03/trusting-the-cloud-the-ftc-and-google.html
9http://blogs.sun.com/gbrunett/entry/amazon_s3_silent_data_corruption

10http://developer.amazonwebservices.com/connect/thread.jspa?threadID=22709
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A possible solution that comes to mind is using a Byzantine fault-tolerant replication protocol within the
cloud (e.g., [14]); indeed this solution can provide perfect consistency and at the same time prevent data cor-
ruption caused by some threshold of faulty components within the cloud. However, since it is reasonable to
assume that most of the servers belonging to a particular cloud provider run the same system installation and
are most likely to be physically located in the same place (or even run on the same machine), such protocols
might be inappropriate. Moreover, cloud-storage providers might have other reasons to avoid Byzantine
fault-tolerant consensus protocols, as explained by Birman et al. [3]. Finally, even if this solves the prob-
lem from the perspective of the storage provider, here we are more interested in the users’ perspective. A
user perceives the cloud as a single trust domain and puts trust in it, whatever the precautions taken by the
provider internally might be; in this sense, the cloud is not different from a single remote server. Note that
when multiple clouds from different providers are used, running Byzantine-fault-tolerant protocols across
several clouds might be appropriate (see next section).

What can we do?

Users can locally maintain a small amount of trusted memory and use well-known cryptographic methods
in order to significantly reduce the need for trust in the storage cloud. A user can verify the integrity of
his remotely stored data by keeping a short hash in local memory and authenticating server responses by
re-calculating the hash of the received data and comparing it to the locally stored value. When the volume
of data is large, this method is usually implemented using a hash tree [25], where the leaves are hashes of
data blocks, and internal nodes are hashes of their children in the tree. A user is then able to verify any
data block by storing only the root hash of the tree corresponding to his data [4]. This method requires a
logarithmic number of cryptographic operations in the number of blocks, as only one branch of the tree from
the root to the hash of an actual data block needs to be checked. Hash trees have been employed in many
storage-system prototypes (TDB [22] and SiRiUS [13] are just two examples) and are used commercially in
the Solaris ZFS filesystem11. Research on efficient cryptographic methods for authenticating data stored on
servers is an active area [26, 28].

Although these methods permit a user to verify the integrity of data returned by a server, they do not
allow a user to ascertain that the server is able to answer a query correctly without actually issuing that
particular query. In other words, they do not assure the user that all the data is “still there”. As the amount
of data stored by the cloud for a client can be enormous, it is impractical (and might also be very costly)
to retrieve all the data, if one’s purpose is just to make sure that it is stored correctly. In recent work, Juels
and Kaliski [18] and Ateniese et al. [2] introduced protocols for assuring a client that his data is retrievable
with high probability, under the name of Proofs of Retrievability (PORs) and Proofs of Data Possession
(PDP), respectively. They incur only a small, nearly constant overhead in communication complexity and
some computational overhead by the server. The basic idea in such protocols is that additional information
is encoded in the data prior to storing it. To make sure that the server really stores the data, a user submits
challenges for a small sample of data blocks, and verifies server responses using the additional information
encoded in the data. Recently, some improved schemes have been proposed and prototype systems have
been implemented [29, 6, 5].

The above tools allow a single user to verify the integrity and availability of his own data. But when
multiple users access the same data, they cannot guarantee integrity between a writer and multiple readers.
Digital signatures may be used by a client to verify integrity of data created by others. Using this method,
each client needs to sign all his data, as well as to store an authenticated public key of the others or the

11http://blogs.sun.com/bonwick/entry/zfs_end_to_end_data
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root certificate of a public-key infrastructure in trusted memory. This method, however, does not rule out all
attacks by a faulty or malicious storage service. Even if all data is signed during write operations, the server
might omit the latest update when responding to a reader, and even worse, it might “split its brain,” hiding
updates of different clients from each other. Some solutions use trusted components in the system [11, 31]
which allow clients to audit the server, guaranteeing atomicity even if the server is faulty. Without additional
trust assumptions, the atomicity of all operations in the sense of linearizability [16] cannot be guaranteed; in
fact, even weaker consistency notions, like sequential consistency [19], are not possible either [9]. Though
a user may become suspicious when he does not see any updates from a collaborator, the user can only be
certain that the server is not holding back information by communicating with the collaborator directly; such
user-to-user communication is indeed employed in some systems for this purpose.

If not atomicity, then what consistency can be guaranteed to clients? The first to address this problem
were Mazières and Shasha [24], who defined a so-called forking consistency condition. This condition
ensures that if certain clients’ perception of the execution becomes different, for example if the server hides
a recent value of a completed write from a reader, then these two clients will never again see each other’s
newer operations, or else the server will be exposed as faulty. This prevents a situation where one user sees
part of the updates issued by another user, and the server can choose which ones. Moreover, fork-consistency
prevents Alice from seeing new updates by Bob and by Carol, while Bob sees only Alice’s updates, where
Alice and Bob might think they are mutually consistent, though they actually see different states. Essentially,
with fork consistency, each client has a linearizable view of a sub-sequence of the execution, and client
views can only become disjoint once they diverge from a common prefix; a simple definition can be found
in [7]. The first protocol of this kind, realizing fork-consistent storage, was implemented in the SUNDR
system [20].

To save cost and to improve performance, several weaker consistency conditions have been proposed.
The notion of fork-sequential-consistency, introduced by Oprea and Reiter [27], allows client views to vio-
late real-time order of the execution. The fork-* consistency condition due to Li and Mazières [21] allows
the views of clients to include one more operation without detecting an attack after their views have diverged.
This condition was used to provide meaningful service in a Byzantine-fault-tolerant replicated system, even
when more than a third of the replicas are faulty [21].

Although consistency in the face of failures is crucial, it is no less important that the service is unaffected
in the common case by the precautions taken to defend against a faulty server. In recent work [8, 7], we
show that for all previously existing forking consistency conditions, and thus in the protocols that implement
them with a single remote server, concurrent operations by different clients may block each other even if
the provider is correct. More formally, these consistency conditions do not allow for protocols that are wait-
free [15] when the storage provider is correct. We have also introduced a new consistency notion, called
weak fork-linearizability, that does not suffer from this limitation, and yet provides meaningful semantics to
clients [7].

One disadvantage of forking consistency conditions is that they are not so intuitive to understand as
atomicity, for example. Aiming to provide simpler guarantees, we have introduced the notion of a Fail-
Aware Untrusted Service [7]. Its basic idea is that each user should know which of his operations are seen
consistently by each of the other users, and in addition, find out whenever the server violates atomicity.
When all goes well, each operation of a user eventually becomes “stable” with respect to every other correct
user, in the sense that they have a common view of the execution up to this operation. Thus, in all cases,
users get either positive notifications indicating operation stability, or negative notifications when the server
violates atomicity. Our Fail-Aware Untrusted Services rely on the well-established notions of eventual
consistency [30] and fail-awareness [12], and adapt them to this setting. The FAUST protocol [7] implements
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this notion for a storage service, using an underlying weak fork-linearizable storage protocol. Intuitively,
FAUST indicates stability as soon as additional information is gathered, either through the storage protocol,
or whenever the clients communicate directly. However, all complete operations, even those not yet known
to be stable, preserve causality [17]. Moreover, when the storage server is correct, FAUST guarantees strong
safety (linearizability) and liveness (wait-freedom).

Obviously, if the cloud provider violates its specification or simply does not respond, not much can be
done other than detecting this and taking one’s business elsewhere in the future. It is, however, possible
to be more prudent, and use multiple cloud providers from the outset, and here one can benefit from the
fruitful research on Byzantine-fault-tolerant protocols. One possibility is running Byzantine-fault-tolerant
state-machine replication, where each cloud maintains a single replica [10, 14]. This approach, however,
requires computing resources within the cloud, as provided, e.g., by Amazon EC2, and not only storage.
When only a simple storage interface is available, one can work with Byzantine Quorum Systems [23], e.g.,
by using Byzantine Disk Paxos [1]. However, in order to guarantee the atomicity of user operations and to
tolerate the failure of one cloud, such protocols must employ at least four different clouds.

Summary

Though clouds are becoming increasingly popular, we have seen that some things can “go wrong” when one
trusts a cloud provider with his data. Providing defenses for these is an active area of research. We presented
a brief survey of solutions being proposed in this context. Nevertheless, these solutions are, at this point in
time, academic. There are still questions regarding how well these protections can work in practice, and
moreover, how easy-to-use they can be. Finally, we have yet to see how popular storing data in clouds will
become, and what protections users will choose to use, if any.
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1 Introduction

Analyzing web-scale datasets has become a key routine for all leading Internet companies. For example,
machine-learning of search relevance results from web query logs provides vital feedback for improving the
quality of Internet search. Consider, for example, the task of ingesting the events generated by online users.
Billions of interesting events (e.g., web queries and ad clicks) happening daily translate to multi-terabyte
data collections. Real-time capturing, storage, and analysis of this data are common needs of all high-end
online applications.

Grid computing technologies that emerged in recent years (e.g. [5, 16, 17, 20, 21]) address these require-
ments, thus enabling data-intensive supercomputing at web scale. They allowed establishing data centers
with hundreds of thousands of CPU cores, terabytes of RAM, and petabytes of disk space (e.g., [1]), in
which multiple data processing applications share a common infrastructure. Typically, these data centers
harness commodity hardware – off-the-shelf PCs with directly-attached storage1. Grid computing software
lets developers easily write, deploy, and run data-intensive applications, which commonly require:

1. Storage management of petabytes.

2. Parallel high-speed access to the stored data.

3. Reliability of (1) and (2) in the face of hardware, software, and networking failures.

While the first generation of grid middleware was mainly proprietary (e.g., [17, 21]), the open-source com-
munity is rapidly catching up with its own technology, Apache Hadoop [5], which allows much wider ex-
posure and faster innovation. Hadoop was started by Doug Cutting in 2005, and became a top-level Apache
project in 2008. Nowadays, Hadoop is embraced by a variety of academic and industrial users, including (in
alphabetical order) Amazon A9, Cornell University, ETH, Facebook, IBM, Microsoft, Yahoo!, and many
others [4].

1Recently, Google unveiled a custom server design which uses standard components [1].
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Hadoop Core, the most mature part of this technology, provides two main abstractions: a distributed
file system, HDFS (Section 2), and a MapReduce programming framework for processing large datasets
(Section 3). Higher levels in the software stack feature Pig [8] and Hive [7], user-friendly parallel data
processing languages, Zookeeper (Section 4), a high-availability directory and configuration service, and
HBase [6], a web-scale distributed column-oriented store modeled after its proprietary predecessors [13, 14].

Parts of the Hadoop ecosystem emerged from original research [22, 25]. Researchers and developers in
the open-source community are working on a variety of open problems, ranging from new paradigms for
large-scale information processing to systems-related issues like fault tolerance, task scheduling, and power
management. Section 5 discusses some of these efforts.

2 HDFS

The Hadoop distributed file system is designed for batch processing applications that need streaming access
to very large files across multiple machines (nodes). These objectives lead to a few clear design choices:

1. Moving computation closer to the data. Experience in developing high-performance computing sys-
tems teaches that moving computation is more efficient than moving data. This is why HDFS does
not separate data nodes from computation nodes (as many enterprise storage systems do). Instead, it
opts for storing data on inexpensive directly-attached disks, and provides API-level visibility into data
placement, thus enabling data-driven application migration.

2. Relaxed file access semantics. Datasets stored in HDFS are typically accessed in a write-once-read-
many pattern, in contrast with a mixed read/write access which in traditional multi-user file systems.
For this reason, some hard consistency requirements of the traditional POSIX API can be sacrificed
for the sake of improved performance. For example, writes can be lost (and redone prior to the first
read), and there is no need in locking for concurrency control.

3. Large read-only files. HDFS’s performance is tuned to large sequential scans, which affects the disk
layout and access optimizations (e.g., local caching).

4. Handling hardware failures. Finally, the file system overcomes a constant fraction of computer, disk,
and network failures through checksums and data replication.

The HDFS architecture distinguishes between namenodes, which host the file system’s metadata, and datan-
odes, which store data blocks. An HDFS cluster consists of a single namenode and multiple datanodes. A
namenode performs file system management operations (allocating block storage, manipulating files han-
dles, etc.). A datanode manages its disk as per the master namenode’s instructions, and serves the clients’
datapath (read/write) requests. Thus, the namenode is a single point of control but not an I/O bottleneck.
Namenodes keep persistent logs of committed control operations to enable fast recovery. The Bookkeeper
project (Section 4) introduces additional fault-tolerance features for namenodes, e.g., reliable remote log-
ging.

HDFS replicates the data blocks for resilience. The API allows independent control of the replication
factor of each file – i.e., the number of copies of each block within the file. Optimizing replica placement
distinguishes HDFS from most other distributed file systems. I/O-efficient replica placement policies must
deal with multiple constraints like the data center’s topology, LAN speeds versus disk speeds, etc. The
currently adopted rack-aware policy is a first effort in this direction. It exploits the fact that datanodes are
organized into hardware racks interconnected by switches. The policy employs a replication factor of 3.
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It places two replicas within the same rack, and one more in a remote rack. Reads are served from the
closest replica to reduce latency, whereas writes are pipelined among replicas to increase throughput. Each
HDFS namenode monitors the liveness of the managed datanodes, as well as their disk utilization. It can
initiate re-distribution of data within the cluster, e.g., re-replication in case some replicas fail, or automatic
re-partitioning in case of uneven use of storage. Adaptive allocation policies are subject for future research.

Large datasets tend to be written once by a single user, mostly in streaming mode [17]. A typical block
size in HDFS is 64 MB (compared to 4KB for mainstream Linux file systems). The namenode tries to
spread multiple blocks of the same file to different datanodes. The write-once-read-many semantics allow
relaxing some of the traditional POSIX consistency requirements. For instance, HDFS does not implement
advisory locks for concurrent updates, neither does it support random writes. Another example in which
HDFS deviates from traditional file systems is its staging optimization, which trades client side caching for
durability guarantees. Under this policy, a file creation request does not reach the namenode immediately.
Instead, the HDFS client creates a temporary local file. Only when enough data has been written to fill a data
block, the client contacts the namenode, which inserts the file into the HDFS namespace. The namenode
allocates a datanode to store the block (and more datanodes for more data). If the namenode crashes in the
interim, the file is lost.

3 MapReduce

Map-reduce frameworks (e.g., [21]) proved to be very natural for processing large datasets in streaming
mode, e.g., web index building or training email spam filters. A map-reduce job usually splits the input
dataset into independent chunks, which are processed by the map tasks in parallel. A map task executes a
user function to transform input (key,value) pairs into a new set of (key,value) pairs. The framework sorts
the outputs of the maps, and forwards them to the reduce tasks. A reduce task combines all (key,value) pairs
with the same key into new (key,value) pairs. Finally, the reduced outputs are stored in a file system.

The word-count computer program, which outputs the number of instances of each word within a col-
lection of files, is often used to demonstrate the paradigm. In this context, each map task processes a subset
of files. For each file, it emits a sequence of (term, "1") pairs for each word term in the file. All pairs
with the the same term key are mapped to the same reduce task, which summarizes the count of "1"s, and
outputs it. A slight variation of this example builds term posting lists, which contain all locations of each
term within a document corpus. This document inversion operation is the base of building an efficient web
search index.

Hadoop implements a map-reduce Java API, and the supporting runtime system. For non-Java program-
mers, it offers Hadoop Streaming – a utility that allows users to create and run jobs with arbitrary executables
(e.g., shell utilities) as the mapper and the reducer. Programmers looking for higher-level data processing ab-
stractions can resort either to Pig [8, 25], a procedural yet powerful query language, or Hive [7], a SQL-like
declarative language.

Hadoop map-reduce tasks store their final and intermediate outputs in HDFS. Data compression is used
aggressively to reduce the required I/O bandwidth. The runtime system exploits the visibility of data place-
ment within HDFS to move computation tasks closer to their data. The framework takes care of scheduling
tasks, monitoring them, and re-executing the failed ones. Task granularity is configurable, which allows
trading fine-grained load balancing and fast recovery for I/O efficiency. Hadoop supports speculative execu-
tion – it runs duplicates of slow tasks, and picks those that finish first. This alleviates the need for accurate
failure detectors, and suppresses the job latencies’ long tail.

Yahoo!’s Webmap application is an example of successful deployment of map-reduce. This system
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maintains a gigantic table of information about every web site, page, and link the search engine knows
about. Webmap provides infrastructure for various algorithms for e.g., ranking, de-duplication, region clas-
sification, and spam detection. Porting Webmap to Hadoop allowed researchers focus on these applications
rather than on the platform. The new system achieved 33% improvement in job latency compared to a
similar-size cluster built with the previous technology. Its largest jobs perform above 100K maps and 10K
reduces, handling 300 TB of data, and producing 200 TB of compressed output [10].

4 ZooKeeper and BookKeeper

ZooKeeper [9] is a coordination service for distributed applications. It exposes a simple set of primitives that
distributed applications can use to share data reliably, e.g., implement a distributed configuration repository.
ZooKeeper is optimized for read-dominated access to small objects (e.g., application metadata). It leverages
in practice many achievements of the distributed algorithms community.

ZooKeeper provides to its clients the abstraction of a set of data objects (znodes), organized in a hi-
erarchical namespace resembling a file system structure. The client API includes object manipulation
(create/delete), data access (read/write), and change notifications (watch). For fault-tolerance,
all znodes are replicated across multiple servers.

Znodes are essentially distributed shared read/write registers [23], extended with the watch abstraction.
ZooKeeper provides sequential consistency [23], i.e., all clients observe the same order of writes, but reads
may return stale data. This approach allows for local reads – i.e., a server can reply to a client request
without coordinating with the other servers. A client that wishes to receive fresh data can force its server to
synchronize (sync) with the rest of the cluster.

ZooKeeper servers implement a leader-based atomic broadcast protocol to guarantee agreement on the
order of writes. This implementation is not wait-free (i.e., some write requests may theoretically block
forever [23]). However, to optimize for read-dominated workload, it has been preferred over a wait-free
implementation of a linearizable shared register [11] in which reads cannot be served locally.

The service implements watches to avoid frequent probes for changes on znodes. The order of change
notifications received by watch clients is identical to the order of writes. Servers manage their watches
locally, i.e., a server notifies its clients upon learning about a change. Therefore, some clients might not
receive notifications in realtime. Similarly to reads, a client must explicitly sync in order to receive fresh
notifications.

The ZooKeeper API allows building a variety of synchronization primitives on top of the shared object
API - e.g., a distributed lock service like Chubby [12]. It offers a neat mechanism of ephemeral nodes to
track group membership changes, e.g., for systems that wish to implement leader election [23].

ZooKeeper is successfully deployed within production systems, e.g., Web crawlers and publish-subscribe
platforms. The project’s roadmap includes new optimizations for read and write scaling, dynamic cluster
re-configuration [18], and replacing atomic broadcast with quorum systems [23].

BookKeeper BookKeeper is a service for reliable storage of write-ahead logs. Many critical systems, e.g.,
relational databases and journal file systems, employ write-ahead logging (WAL) to guarantee recoverabil-
ity [19]. With WAL, a transaction appends a state change record to the persistent log; this change may be
applied to the main storage asynchronously after the transaction’s completion. In case of system crash, re-
covery is achieved through replaying changes committed to the log. WAL also reduces transaction latencies,
because it replaces random I/O with sequential writes to the log.
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The remote BookKeeper service replicates the log across multiple servers, or bookies. It can handle
arbitrary (Byzantine) failures of less than 1

4 of all bookies, as well as Byzantine clients. BookKeeper employs
a read-write quorum system for accessing bookies [15], and stores its metadata in ZooKeeper. As a proof
of concept, BookKeeper has been integrated into the HDFS namenode (Section 2), in which it replaced the
non-fault-tolerant logging to a local file. Experiments show that this change boosts the nodename throughput
by 30% in typical configurations.

5 What Next?

Hadoop’s resource management is still in its infancy. For example, the system can successfully control,
through its job tracker component, the execution of multiple tasks within a single job on a dedicated cluster.
The Hadoop-on-demand (HOD) technology [2] allows provisioning such isolated virtual clusters within a
data center. However, this approach makes resource sharing among multiple jobs problematic. More recent
research and development target a variety of issues, like:

1. Better scheduling policies (e.g., job pooling by size, and fair scheduling within the pools [26]).

2. Improving the scheduling policies in heterogeneous environments, e.g., virtualized instances deployed
within a remote grid infrastructure like Amazon EC2 [27].

3. Sharing tasks among multiple map-reduce jobs, to run common computations once.

At the data processing side, supporting interactive queries over Web-scale data is the next challenge. For
example, batch queries over gigantic datasets like Webmap (Section 3) can take hours to evaluate. Recent
research [24] suggests splitting the querying process into two stages: first supply a query template, and later
supply specific instantiations of the template. With this approach, the pre-processing stage, which needs not
be realtime, can pre-compute and cache the (partial) results of instantiations that incur high query latencies.

Hadoop’s wiki [3] outlines many more interesting research directions. These include enhanced data
placement, map-reduce performance modeling, improvement of parallel sort algorithms, HDFS namespace
expansion, integration with external resource management services, and more.

6 Conclusion

Innovation in leading Internet companies revolves around analyzing huge datasets. Modern grid technolo-
gies offer tools for building scalable and reliable web-scale data centers for this purpose. We surveyed the
recent achievements in this multidisciplinary area, focusing on the open-source Hadoop suite. We reviewed
the fundamentals of the Hadoop technology, and focused on selected research projects in distributed com-
puting, ZooKeeper and BookKeeper, which emerged around it. Finally, we outlined some open research
problems that await resolution to support next-generation web data center infrastructure.
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Background

Over the past decade, scientific and engineering research via computing has emerged as the third pillar of the
scientific process, complementing theory and experiment. Several studies have highlighted the importance
of computational science as a critical enabler of scientific discovery and competitiveness in the physical
and biological sciences, medicine and health care, and design and manufacturing. The ability to create
rich, detailed models of natural and artificial phenomena and to process large volumes of experimental
data, itself created by a new generation of scientific instruments that are themselves powered by computing,
makes computing a universal intellectual amplifier, advancing all of science and engineering and powering
the knowledge economy. This revolution has been enabled by the availability of inexpensive, powerful
processors; low cost, large capacity storage devices; and flexible software tools, each driven by a vibrant
consumer and industry marketplace.

The explosive growth of research computing systems has created major management, technical and fiscal
challenges for both funding agencies and research universities. Typically, faculty members acquire research
computing systems, usually small to medium (32–256 nodes) clusters, via research grants and contracts and
departmental funds. This distributed acquisition of research computing and inadequate plans for long-term
sustainability and technology refresh, mean that universities and funding agencies that support university
research, are now struggling to create and maintain compute and data centers to house these systems and to
operate and maintain them reliably, in energy-efficient, environmentally friendly ways. Moreover, university
budget constraints make efficiency ever more necessary. A growing challenge is satisfying the ever rising
demand for research computing and data management - the enabler of scientific discovery. Fortuitously, the
emergence of cloud computing- software and services hosted by networks of commercial data centers and
accessible over the Internet - offers a solution to this conundrum.

Cloud Computing

The explosive growth and rapid development of cloud services are driven by technology and business eco-
nomics. Consolidating computing and storage in very large data centers creates economies of scale in facility
design and construction, equipment acquisition and operations and maintenance that are not possible when
the elements are distributed. However, the benefits of cloud services extend far beyond economies of scale.

First, optimized and consolidated facilities reduce total energy consumption, and they can be designed
to exploit environmentally friendly and renewable energy sources. Second, cloud computing enables a “pay
only for use” strategy where users bear no cost unless they use the cloud services, and then pay only for
the number of service units consumed. Third, groups can deploy and expand services rapidly - in minutes,
rather than the weeks or months needed to procure and install local infrastructure - to meet rising demand
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or to address time-critical needs. Finally, the elasticity of cloud services means that time and computing are
interchangeable - the user cost to use 10,000 processors for one hour is the same as using ten processors
for 1,000 hours. This is a transformative equivalence; even individuals and small companies can exploit
computing resources at a scale heretofore accessible only to large companies and governments.

By outsourcing computing, data management and business intelligence services to cloud software plus
services providers, businesses are increasing operational efficiencies and decreasing costs, allowing them to
focus on their core competencies. Similar opportunities exist in academic and research computing, but these
opportunities are not being exploited.

DISC’09 Tutorial Description

The goal of this tutorial is to demonstrate how clouds can augment traditional supercomputing by expanding
access to data and tools to a broader community of users than are currently served by the conventional HPC
centers. Supercomputers provide the capability to conduct massive simulation and analysis computations for
a few users at a time. They are not designed for on-demand access by hundreds or thousands of simultaneous
users. In addition, supercomputers are not configurable by their users. Thus supercomputer applications
must be modified and, in some cases, refactored as hardware and systems software is upgraded. Clouds
offer the ability for each user to customize the execution environment, and to archive that customization
for future use independently of the infrastructure’s lifecycle. Currently, a number of publically accessible
computational platforms provide instant access to cloud-hosted services such as web search, maps, photo
galleries and social networks. There are now hundreds of cloud-based services we use in our everyday
life and we are starting to see some of them also touch our scientific lives. For example, Google and Live
maps have been used to gain insight from geo-distributed sensor data and the Sloan Digital Sky Survey
and the SkyServer have provided scientific data and tools to thousands of astronomy users. We are now at
an important inflection point in the capability of cloud computing to serve the research community. Not
only has the total capacity of the commercial data centers exceeded that of supercomputing centers, we now
have the software infrastructure in place to allow anybody to build scalable scientific services for broad
classes of users, without having to deploy, maintain and upgrade dedicated and expensive compute and data
servers. This tutorial will introduce the attendees to this new technology. This tutorial will be of value to
those interested in exposing data and services to a broader audience of users without incurring the costs
of acquiring and maintaining scalable infrastructure. This tutorial will introduce the attendees to the key
concepts and technologies used to build and deploy scientific data analysis applications on cloud platforms.
The tutorial begins with general concepts of data center architecture including the use of virtualization; the
role of low power, multicore and packaging; and web service architectures. We will look at the cloud storage
models with a detailed look at the Azure XStore and a brief look at Google’s BigTable and GFS. We will then
focus on models of application programming. We will describe both commercial and open source tools for
“map reduce” computation including Hadoop and Dryad and workflow tools for orchestrating remote data
services. Following this we will examine cloud application frameworks by looking at Google’s App Engine
and Microsoft Azure. Throughout the tutorial we will use scientific examples to illustrate the potential
applications. The tutorial concludes with a view of the future for the cloud in science.
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