
Distributed Computing Column 45
What Theory for Transactional Memory?

Idit Keidar
Dept. of Electrical Engineering, Technion

Haifa, 32000, Israel
idish@ee.technion.ac.il

In this issue, we have a short column. It features a review of WTTM 2011, the third Workshop
on the Theory of Transactional Memory, by Petr Kuznetsov and Srivatsan Ravi. This annual work-
shop focuses on developing theory for understanding transactional memory systems. It discusses
recent achievements as well as remaining challenges. Petr and Srivatsan review the most recent
instance of the workshop, which was co-located with DISC in September 2011 in Rome.

Many thanks to Petr and Srivatsan for their contribution.

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

86



WTTM 2011
The Third Workshop on the Theory of Transactional Memory∗

Petr Kuznetsov Srivatsan Ravi
TU Berlin/Deutsche Telekom Laboratories

petr.kuznetsov@tu-berlin.de ravi@net.t-labs.tu-berlin.de

Transactional Memory (TM) is a programming paradigm which promises to make concurrent
programming tractable and efficient. A lot of work is currently done on the design and implementa-
tion of TM systems. However, a sound theoretical framework to reason about the TM abstraction
is yet to come.

In conjunction with DISC 2011, the TransForm project (Marie Curie Initial Training Network)
and EuroTM (COST Action IC1001) supported the 3rd edition of the Workshop on the Theory
of Transactional Memory (WTTM 2011). The objective of WTTM was to discuss new theoretical
challenges and recent achievements in the area of transactional computing.

The workshop took place on September 22-23, 2011, in Rome, Italy. Below we give highlights
of the topics discussed during these two days.

1 Semantics and Models

In the first talk of WTTM3, Michael Scott argued that researchers in the area of concurrent
systems and transactional memory have now a rare (and possibly brief!) privilege of “making the
semantics right.” Michael listed a few points that he believed to be crucial for the semantics of TM:
(1) atomicity is central, (2) strong atomicity is a non-issue, (3) small transactions are what matter,
and (4) privatization is essential, since it solves the problem of legacy synchronization. Among the
research challenges inspired by this view, Michael mentioned handling non-transactional memory
accesses, long transactions, and understanding the relationship between atomicity and determinism.

Maurice Herlihy presented a periodic table of progress conditions that unifies various progress
conditions, from lock-based ones, such as deadlock- and starvation-freedom, to non-blocking (lock-
free) ones, such as obstruction-freedom and wait-freedom. This is a joint work with Nir Shavit,
more detail in the forthcoming paper [11].

∗The workshop has received funding from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement N 238639, ITN project TRANSFORM and EuroTM (COST Action IC1001).

ACM SIGACT News 87 March 2012 Vol. 43, No. 1



In a somewhat provocative talk, Nir Shavit proposed to reconsider the traditional optimistic
approach in STM design, that allows a transaction to execute speculatively with an option to
abort when run into inconsistencies. It is believed that the optimistic approach gives significant
performance benefits. Surprisingly, however, Nir showed that a simple fully pessimistic STM in
which no transaction ever aborts may exhibit performance that is comparable to the most efficient
optimistic STMs. As a bonus, the proposed pessimistic STM also provides full privatization. This
is a joint work with Alex Matveev.

STM is often believed to be an application of techniques devised in the database community to
concurrent systems. Is this a right perspective? Or is the very term transaction a misnomer for an
STM operation? Sandeep Hans presented a comparison on STM and DB consistency conditions,
highlighting important similarities and differences. This is a joint work with Hagit Attiya.

2 Synchronization Techniques

In the context of blocking (i.e., lock-based) linearizable implementations of concurrent data struc-
tures, Panagiota Fatourou proposed to reconsider the recently proposed combining approach [10].
Roughly, the approach assumes a single thread, called the combiner, holding a coarse-grain lock on
the implemented object and serving requests announced by other (locally spinning) threads. Pana-
giota described two extensions of this idea optimized for models with coherent caches and cache-less
Non-Uniform Memory Access (NUMA) models. Experiments show that the resulting implemen-
tations outperform all previous state-of-the-art combining based and fine-grain synchronization
algorithms. This is a joint work with Nikolaos D. Kallimanis, more detail in the forthcoming
PPoPP paper [9].

Idit Keidar discussed the locality aspects in STM running on NUMA multi-cores. She reported
that a locality-conscious approach for maintaining versioned locks in TL2 [7] resulted in double
speedup on STAMP benchmark. This speedup can be explained by the following factors: 1)
improved spacial and temporal locality, 2) reduced false sharing and 3) lower false conflicts. This
is a joint work with Elad Gidron and Dmitri Perelman.

3 Universal Constructions and Transaction-Friendliness

STM can be seen as a universal data structure that can be accessed with abstract operations,
i.e., arbitrary sequences of reads and writes. In case of a conflict (however defined), an operation
may abort and leave the structure untouched, but all successful operations should constitute a
linearizable history. Faith Ellen presented a construction that employs this approach to transform
any sequential data structure into a concurrent one. The resulting implementation is efficient
and allows for a high degree of parallelism. This is a joint work with Phong Chuong and Vijaya
Ramachandran, extending the recent SPAA paper [5].

The efficiency of STM-based concurrent implementation may depend on the data structure
being implemented. Tyler Crain proposed a design for a transaction-friendly binary search tree
that allows for highly efficient STM-based implementations. The trick is to transiently trade off
balanced structural invariants for efficiency. This is a joint work with Vincent Gramoli and Michel
Raynal, more detail in the forthcoming PPoPP paper [6].

ACM SIGACT News 88 March 2012 Vol. 43, No. 1



4 Disjoint-Access-Parallelism, Snapshot Isolation, and Nesting

It is often believed desirable for a TM to allow operations accessing disjoint sets of locations to
progress concurrently. The property called disjoint-access-parallelism captures this by requiring
that different operations do not access the same base object unless they operate on some common
part of the data structure. Is this property compatible with the ability of individual operations to
make progress independently of each other (wait-freedom)? Alessia Milani presented a taxonomy of
conventional definitions of disjoint-access-parallelism, showed that all these definitions are provably
incompatible with wait-freedom, and proposed a new definition that resolves this issue. This is a
joint work with Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, and Corentin Travers.

Masoud Saeida Ardekani looked at the popular consistency criterion proposed for message-
based STMs, called snapshot isolation (SI). It turns out that SI cannot be combined with another
desirable property, Genuine Partial Replication (GPR). To circumvent this impossibility result, a
weaker consistency criterion is proposed that trades off monotonicity of snapshots for efficiency.
This is a joint work with Pierre Sutra and Marc Shapiro.

An important STM functionality, called nesting, allows a transaction to invoke other transac-
tions. But how do we specify correctness for an aborted nested transaction? What do we mean
when we say that two nested transactions conflict? Sathya Peri proposed a new conflict notion
nbConf (non-blocking conflict) that facilitates non blocking implementation of the read operation
for nested transactions. Using this conflict notion does not cause a scheduler to block, in contrast to
the previous conflict notion for nested transactions. The definition of a conflict is generic enough so
that it can be used with other correctness criteria as well. This is a joint work with Krishnamurthy
Vidyasankar.

5 Contention Management, Virtual Machines, and Speculation

The logic for resolving conflicts between concurrent transactions (contention management) is cru-
cial. Danny Hendler gave a survey on scheduling-based contention management techniques [15, 8, 1]
that intend to improve throughput under high contention.

Annette Bienussa summarized her recent work [2, 3] on virtual machines for clusters of many-
core processors or networks of embedded processors. The consistency model in the proposed virtual
machine is transactional memory, but it offers backwards compatibility and integration with classi-
cal Java synchronization techniques. To this end, she proposed a methodology for handling monitors
and volatiles transactionally, yet following the Java memory specification [4]. This is a joint work
with Thomas Fuhrmann.

Paolo Romano proposed speculation as an approach to boost performance of STM-based replica-
tion [14]. He presented a survey of speculative STM replication protocols that have been published
so far [12, 13], illustrating how the existing solutions fit in the whole design space of speculative
replication protocols, and identifying which regions of this design space are currently unexplored
in order to stimulate further research in this challenging area. This is a joint work with Roberto
Palmieri, Francesco Quaglia, Nuno Carvalho and Lúıs Rodrigues.

ACM SIGACT News 89 March 2012 Vol. 43, No. 1



6 Practical TM Specifications and Verification

Torvald Riegel presented a draft specification that was recently proposed by contributors from
several companies (IBM, Intel, Oracle, as well as HP and Red Hat) to equip C++ with transaction
statements. He gave an overview of the new transactional language constructs and discussed how
transactions integrate with the C++0x memory model, and why it makes sense to specify C++
transactions based on this model.

Maged Michael noticed that, though non-blocking progress was an essential requirement of the
earliest proposals for transactional memory systems, almost all recent TM implementations do not
support non-blocking transactions. Michael described the challenges of incorporating non-blocking
transactions in a practical TM specification in combination with other useful features, with a focus
on the aforementioned draft specification for transactional language constructs for C++.

Victor Luchangco summarized the (unique so far!) experience he gained in formal machine-
checked verification of a real transactional memory algorithm. The process involved precise formal
specifications for transactional memory, precise formal models of TM algorithms, and rigorous
proofs that algorithms meet specifications.

7 Discussion: What Are the Coming Challenges?

The workshop gave rise to long discussions on the future of TM research. The idea of using transac-
tional memory for tractable concurrency has been actively entertained by the research community
for more than eight years now. However, TM has not yet become a mainstream programming
paradigm. Moreover, there is still no convergence on the very foundations of TM models. So how
can we change the situation? Below we sketch some important points of these discussions (in the
chronological order):

- Michael Scott: there are many interesting problems, but we should not lose the original goal of
the TM idea: make life of a mainstream programmer simpler.

- Victor Luchangco: we should gain better understanding of how to specify relaxed transactions
(e.g., in C++).

- Torvald Riegel: it is good to have precise specifications, but we also need simple explanations.
Without them mainstream programmers will never adopt the model.

- Panagiota Fatourou: perhaps STM is a bit oversold? We are still unclear which properties of a
TM system are the most important. Is it simplicity? Performance gains? Composability?

- Lisa Higham: what is the consistency model of TM? What is the consistency model of a machine
on which it runs? The model should be simple (otherwise do not call it transactions!), and it
should avoid double synchronization: one in the TM and the other in the underlying memory.

- Maurice Herlihy: it is crucial at this point to formulate formal programming language semantics
for the transactional concurrency model and determine the class of applications that would be
benefitted from the transactional concurrency model.

- Nir Shavit: we can expect modifications in processors to support running small scale transactions
as well as support for optimistic multi-word CAS primitives. The question then is, how to design

ACM SIGACT News 90 March 2012 Vol. 43, No. 1



STM’s to backup the hardware transactional primitives when larger transactions are issued and
efficiently utilize such hardware features for implementing relaxed transactions. Consequently,
this raises the question of how to reason about performance of such hybrid TMs.

- Victor Luchangco: it is unlikely that we shall ever have a fully transactional system and the
success of TM will depend on our understanding the interaction between transactional and non-
transactional code. Privatization will hence be crucial.

Victor also emphasized the need to develop transaction-friendly data structures (á la binary
search tree implementation described by Tyler).

- Michael Scott: the compiler issues relating to STMs are important, specifically on the amount of
state required to rollback and program slicing.

- Torvald Riegel: how do we specify the progress conditions provided by practical TM specifications,
and how do they depend on the guarantees provided by the OS scheduler (along the lines of [11]).

- Rachid Guerraoui: theoretical research in transactional memory must be treated as a first-class
citizen. In particular, intellectually challenging TM-related question should not be discarded
purely on the relevance basis. After all, the discussion shows that there is no consensus on the
very notion of relevance here. Torvald and Victor agreed but insisted that, among interesting
theoretical questions, we should prioritize those that are believed to be important to the engineers.

Abstracts and slides of the talks can be found at http://transform.t-labs.tu-berlin.de/

tw11/.

References

[1] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. C. Kirkham, and I. Watson. Steal-on-abort:
Improving transactional memory performance through dynamic transaction reordering. In
HiPEAC, pages 4–18, 2009.

[2] A. Bieniusa, J. Eickhold, and T. Fuhrmann. The architecture of the DecentVM: towards a
decentralized virtual machine for many-core computing. In Virtual Machines and Intermediate
Languages, VMIL ’10, pages 5:1–5:10, New York, NY, USA, 2010. ACM.

[3] A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A fully decentralized stm algorithm.
In Proceedings of the 2010 IEEE International Symposium on Parallel Distributed Processing,
IPDPS 2010, pages 1–12, 2010.

[4] A. Bieniusa and T. Fuhrmann. Lifting the barriers: Reducing latencies with transparent trans-
actional memory. In Proceedings of the 13th international conference on Distributed computing
and networking, ICDCN’12, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] P. Chuong, F. Ellen, and V. Ramachandran. A universal construction for wait-free transac-
tion friendly data structures. In Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures, SPAA ’10, pages 335–344, New York, NY, USA, 2010. ACM.

ACM SIGACT News 91 March 2012 Vol. 43, No. 1

http://transform.t-labs.tu-berlin.de/tw11/
http://transform.t-labs.tu-berlin.de/tw11/


[6] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’12), 2012.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In In Proc. of the 20th Intl. Symp.
on Distributed Computing, 2006.

[8] S. Dolev, D. Hendler, and A. Suissa. Car-stm: scheduling-based collision avoidance and resolu-
tion for software transactional memory. In Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, PODC ’08, pages 125–134, 2008.

[9] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization technique. In
PPoPP (to appear), 2012.

[10] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In SPAA, pages 355–364, 2010.

[11] M. Herlihy and N. Shavit. On the nature of progress. In Proceedings of the 15th International
Conference on Principles of Distributed Systems, OPODIS ’1, 2011.

[12] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting stm replication via aggressively
optimistic transaction processing. In NCA, pages 20–27, 2010.

[13] R. Palmieri, F. Quaglia, and P. Romano. Osare: Opportunistic speculation in actively repli-
cated transactional systems. In SRDS, pages 59–64, 2011.

[14] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues. Brief announcement: on
speculative replication of transactional systems. In SPAA, pages 69–71, 2010.

[15] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional memory sys-
tems. In Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures, SPAA ’08, pages 169–178, 2008.

ACM SIGACT News 92 March 2012 Vol. 43, No. 1


	Introduction
	WTTM 2011
	Semantics and Models
	Synchronization Techniques
	Universal Constructions and Transaction-Friendliness
	Disjoint-Access-Parallelism, Snapshot Isolation, and Nesting
	Contention Management, Virtual Machines, and Speculation
	Practical TM Specifications and Verification
	Discussion: What Are the Coming Challenges?


