
Distributed Computing Column 47
Distributed Computability

Idit Keidar
Dept. of Electrical Engineering, Technion

Haifa, 32000, Israel
idish@ee.technion.ac.il

Today’s column deals with the theory of computability in a distributed system. It features
a tutorial on this topic by Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. The tutorial
focuses on a canonical asynchronous computation model, where processes communicate by writing
to and reading from shared memory. It studies which distributed tasks can be solved in this model
in the presence of process failures and communication delays, and which cannot.

The tutorial highlights two powerful techniques for obtaining computability results: First, the
abstraction of an iterated write-snapshot model is used in order to simplify algorithms, and reduce
the complexity of the solutions space one needs to explore for impossibility proofs. Second, concepts
from combinatorial topology provide an understanding of the mathematical structure induced by
possible executions of a protocol in this model.
Many thanks to Maurice, Sergio, and Michel for their contribution!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

87

Computability in Distributed Computing: a Tutorial

Maurice Herlihy Sergio Rajsbaum Michel Raynal
Dept. of Computer Science Instituto de Matemáticas IRISA, Univ. Rennes 1

Brown University UNAM 35042 Rennes
USA Mexico City, D.F. 04510, Mexico France

mph@cs.brown.edu rajsbaum@math.unam.mx raynal@irisa.fr

Abstract

What can and cannot be computed in a distributed system is a complex function of the
system’s communication model, timing model, and failure model. This tutorial surveys some
important results about computability in the canonical distributed system model, where pro-
cesses execute asynchronously, they communicate by reading and writing shared memory, and
they fail by crashing. It explains the fundamental role that topology plays in the distributed
computability theory.

Keywords: Agreement, Asynchronous system, Concurrency, Crash failure, Distributed com-
putability, Distributed computing model, Fault-Tolerance, Iterated model, Liveness, Model
equivalence, Recursion, Resilience, Shared memory system, Snapshot, Task, Topology, Wait-
freedom.

1 Introduction

In sequential systems, computability is understood through the Church-Turing Thesis: anything
that can be computed, can be computed by a Turing Machine. In distributed systems [8, 33, 42, 46,
48], where computations require coordination among multiple participants, computability questions
have a different flavor. Here, too, there are many problems which are not computable, but these
limits to computability reflect the difficulty of making decisions in the face of ambiguity, and have
little to do with the inherent computational power of individual participants.

If the participants could reliably and instantaneously communicate with one another, then each
one could assemble the complete system state, and the computation could proceed sequentially. In
any realistic model of distributed computing, however, each participant initially knows only part
of the global system state and uncertainties caused by failures and unpredictable timing limit each
participant to an incomplete picture of the global system state.

ACM SIGACT News 88 September 2012 Vol. 43, No. 3

mph@cs.brown.edu
rajsbaum@math.unam.mx
raynal@irisa.fr

Distributed computing is concerned with certain kinds of functions, called tasks, that may be
computable even in the presence of failures and communication delays. This model yields a rich
mathematical structure closely tied to notions of combinatorial topology. Specifically:

1. There are Turing-computable functions that are not computable even in the presence of a
single failure. For example, solving the consensus task is trivial if there are no failures, but
impossible even if only one process may crash.

2. The question whether a task is 1-resilient computable can be reduced to a question of graph
connectivity, and is therefore decidable [9, 18].

3. However, the question whether a task is computable in the presence of more complex fail-
ure models is reducible to the question whether an associated geometric structure, called a
simplicial complex has higher dimensional “holes,” which is known to be undecidable [20, 26].

4. Finally, similar to the oracles of classic computability, there are tasks which are computable
only when given access to a distributed oracle for other tasks, leading to infinite hierarchies
of tasks, e.g. [19, 27, 40].

The rest of this paper is organized as follows. Section 2 discusses the range of models in dis-
tributed computing, and why we choose to focus on the wait-free read-write model. Section 3
describes this model in detail. Section 4, introduces the notion of a task, the basic unit of con-
current computation. The standard model, while intuitively appealing, can be cumbersome, so
Section 5, describes the iterated write-snapshot model which provides nicer abstractions, and yet
is computationally equivalent to the standard model. Section 6 introduces concepts from combi-
natorial topology that can be used to reveal some elegant aspects of this model. Finally, Section 7
reviews the safe agreement task, a problem that can be solved simply and elegantly in the iterated
write-snapshot model.

2 Overview

Our model, like any such model, is an abstraction. As with Turing machines, our aim is not to
try to represent faithfully in detail the way a distributed or concurrent system works. Instead,
by starting with a clean, basic abstraction, we can focus on the essential properties of distributed
computation.

A distributed system is a set of communicating state machines called processes. We need not
assume that each process is a Turing machine. The inherent limits to computability are unchanged
even if each process were an infinite-state automaton capable of computing non Turing-computable
functions.

Processes can fail. Here, we consider only crash failures: a faulty process simply halts and
takes no further steps. In other models, not considered here, processes can display Byzantine
failures [38], in which they can display arbitrary behavior, including malicious behavior. For now,
we will assume a wait-free model where any proper subset of the set of processes may crash in any
execution. Later, we will consider a more general adversary model where only certain subsets of
processes may fail.

There are many possible communication models for distributed computation. Here, we assume
the processes communicate simply by reading and writing a shared memory. Other popular models,

ACM SIGACT News 89 September 2012 Vol. 43, No. 3

such as message-passing, or various networking models that limit direct process-to-process connec-
tivity, are essentially equivalent or less powerful than shared memory. Models that make use of
atomic synchronization primitives such as “compare-and-swap” are more powerful. We choose the
shared-memory communication model because its simplicity highlights the fundamental properties
of distributed computation. Moreover, modern multiprocessor systems usually provide some kind
of shared-memory abstraction, so the shared-memory model reflects current practice, although in
a highly idealized way. (Many results about other models can be obtained from this one, via
reductions and simulations [13, 30].)

There are several possible timing models. In a synchronous model, processes take steps at
exactly the same time, while in the asynchronous model, their relative execution speeds may be
unrelated. In between, there are semi-synchronous models that place a bound on processes’ relative
speeds. Here, we will be concerned primarily with the asynchronous model, which is more realistic
than the synchronous model, and yet easier to analyze than semi-synchronous models.

Notice that failures and asynchrony interact: if one process fails to receive a message from
another, it may be that the other process has crashed, or it may be that the sender is just slow.
This ambiguity lies at the heart of computability problems in distributed computing.

In sequential computing, the study of functions is a central concern. A Turing machine starts
with a single input, computes for a finite duration, and halts with a single output. In distributed
computing, the analog of a function is called a task. Here, the input is split among the processes:
initially each process knows its own input value, but not the others’. As each process computes, it
communicates with the others, and eventually it halts with its own output value. (We can think
of each process as having its own tape, which initially holds its part of the input and eventually
holds its output.) Collectively, the individual output values form the task’s output. Unlike a
function, which deterministically carries a single input value to a single output value, interesting
task specifications are typically non-deterministic to accommodate the non-determinism introduced
by failures and asynchrony.

See [3, 19, 32] for a more complete discussion of this model, and related models. We will now
examine some components of the model in more detail.

3 Model

There are n+ 1 sequential processes, denoted p0, . . . , pn, that communicate by reading and writing
a shared memory. Each memory location, sometimes called an atomic register [39], is written
by a single process and read by all processes. Read and write operations to a single register are
linearizable [34]: each operation appears to take place instantaneously at some instant between
when the operation is called and when it returns. As noted, processes can fail by crashing: the
process halts and takes no further steps. A non-faulty process is one that does not crash. If a process
crashes before taking any steps, we say that it does not participate in the execution. A protocol is
a finite program in which each process starts with a private input, repeatedly communicates with
the others, and halts with an output. A protocol is wait-free if every non-faulty process eventually
completes [25].

While processes may crash, we assume that the memory itself is reliable. Others [24, 46] have
considered models where it is necessary to build a reliable memory from unreliable components.

The basic unit of distributed computation is called a task, and fills the same role as a function is
sequential computation (see Figure 1). In a task T , each of the n+ 1 processes is initially assigned

ACM SIGACT News 90 September 2012 Vol. 43, No. 3

an input value, and each non-faulty process must irrevocably choose an output value. The task
specification determines which outputs are permitted for which inputs. Each process is initially
unaware of the others’ input values. Our formal definition of a task uses elementary notions taken
from combinatorial topology [3, 19, 32].

Figure 1: Function vs task

Consider an execution in which each process pi has input value xi. We can characterize the
initial state of each process by a pair, (pi, xi), which we will call a vertex. If only the processes
pi0 , . . . , pik participate, then the initial state of the system is characterized by the set of pairs
associated with the participating processes:

s = {(pi0 , xi0), . . . , (pik , xik)}.

We call such a set of pairs a simplex. (Note that the initial values assigned to non-participating
processes are irrelevant, since they can have no effect out the values chosen by the participating
processes.) We denote by names(s) the set of processes in s, and views(s) the set of its values. Note
that if s is a simplex representing the start of an execution, so is any s′ ⊆ s, because s′ describes
the start of an execution where fewer processes participate. A simplicial complex (or complex) K
is a set of simplices closed under inclusion: if s ∈ K and s′ ⊆ s, then s′ ∈ K. The set of all possible
input value assignments for a task forms a complex. In distributed computing, each vertex v of a
simplex is typically labeled with a distinct process pi. We often say that a complex consisting of
such simplexes is colored with those process names.

The dimension of a simplex s is |s| − 1, one less than the size of the set. The dimension of
a complex is the largest dimension of any of is simplices, and a complex is pure if every maximal
simplex in that complex has the same dimension. A simplex of dimension d is sometimes called a
d-simplex, and similarly for complexes.

A simplex of dimension one is sometimes called an edge, dimension two a triangle, and dimension
three a tetrahedron. A simplicial complex that contains only vertices and edges is called a graph.

A subdivision of a geometric complex A is constructed by “dividing” the simplexes of A into
smaller simplexes. See Figure 2.

ACM SIGACT News 91 September 2012 Vol. 43, No. 3

Figure 2: Complex (top) and subdivided complex (bottom)

4 Tasks

Formally, an (n + 1)-process task is defined by a triple, (I,O,∆). I is a pure n-dimensional
complex that defines the possible input value assignments: if {(pi0 , xi1), . . . , (pik , xik)} is a simplex
of I, then it is possible for an execution to start with each pij assigned input value xij , for 0 ≤ j ≤ k.
Similarly, O is a pure n-dimensional complex that defines the possible choices of output values: if
{(pi1 , yi1), . . . , (pik , yik)} is a simplex of O, then it is possible for an execution to finish with each
pij having chosen output value yij , for 0 ≤ j ≤ k. ∆ is a map that assigns each input simplex s in
I a subcomplex ∆(s) ⊆ O, with the following interpretation: if the system begins in state s ∈ I,
then every execution must finish in some state t ∈ ∆(s).

The map ∆ satisfies certain formal properties. Every process that finishes an execution must
have started, so ∆ must be color-preserving : for each t ∈ ∆(s),names(t) ⊆ names(s). Consider
an execution in which the processes in s ∈ I participate, but a subset s′ ⊂ s finish before the rest
start. The late-starting processes must be able to choose values compatible with the values already
chosen by the early-starting processes. This is captured by the following carrier map requirement

If s′ ⊆ s, then ∆(s′) ⊆ ∆(s).

A protocol solves task (I,O,∆) if, for every input simplex s ∈ I, and every execution of the protocol
starting from s, every non-faulty process chooses an output value, and the simplex t defined by
these choices is in ∆(s).

4.1 Example of Tasks

The ε-agreement task, for ε > 0, is defined as follows [17]. Each process starts with a value from
{0, 1}. Processes must decide values which are at most ε from each other, and if all start with the

ACM SIGACT News 92 September 2012 Vol. 43, No. 3

Figure 3: Approximate ε-agreement task for two processes and ε = 1/2

Figure 4: Binary input complex for 3 processes.

same value, they must all decide that value. We consider the case where ε = 1
2x , for an integer

x > 0. Figure 3 (from [19]) illustrates the binary approximate agreement task [17] for two processes,
where ε = 1/2. The set of possible input values is {0, 1}. A vertex (pi, j), i, j ∈ {0, 1}, is represented
in the figure as a circle, white for p0 and black for p1, labeled with value j. The input complex is on
the left, and the output complex on the right. Each input value is either 0 or 1. If both start with
the same value, they must both decide that value. In the figure, this requirement corresponds to an
edge labeled b or d. The two edges where processes start with distinct values, are labeled a. In this
case, ∆ allows a process to decide any of

{
0, 12 , 1

}
, as long as the difference between the decided

values is at most 1
2 . In particular, ∆ of an input edge labeled a includes any output edge labeled

a. Executions in which only one process participates are captured by defining ∆(pi, j) = (pi, j), for
i, j ∈ {0, 1}.

The input complex for three processes is depicted in Figure 4. Each input simplex for 3 processes
corresponds to a triangle, where processes start with either 0 or 1. The ε-agreement task has a
wait-free protocol, for any ε > 0, as described in Section 6.2.2.

While processes can agree on values arbitrarily close to each other, using a wait-free ε-agreement
protocol, they cannot reach perfect agreement. When ε is set to zero, this problem is known as
consensus (Figure 5), which has no wait-free protocol in this model [18, 41]. The consensus task can
be relaxed to the k-set agreement task, where each process chooses an input value, but as many as
k distinct values may be chosen [16]. This task can be solved if and only if the number of processes

ACM SIGACT News 93 September 2012 Vol. 43, No. 3

Outputs

Δ

Inputs

a

b
a

d a,b a,d

0 1

0 1

0 1

0 1

Figure 5: Consensus task for two processes

Outputs

Δ

Inputs

a

b
c

d

a

b
c d a

b

cd0 0

1 1

0 1

3 2

0 1

3 2

Outputs

Inputs

a

b
c

d

a

b

c
d

a

b

c

d

0 0

1 1

p

Figure 6: A two-cover task

that may crash is less than k [10, 32, 47]. In particular, consensus, which is 1-set agreement, has a
protocol only if no process may crash.

Locality-preserving tasks [19] have a different nature. It is known that they do not have wait-
free protocols in this model [32]. Figure 6 (from [19]) shows a two-process example. Processes start
with binary inputs. On the left side of the figure, the task specification says that if both start with
the same value, they must decide the same value: if they start with 0, decide either 0 or 2; if they
start with 1, decide 1 or 3. If they start with different values, the valid outputs are defined in the
figure, via edge labels b or d. The relation ∆ also defines the possible outputs when only one process
runs: for example, when the white process starts with 0, it can decide 0 or 2, while if it starts with
1, it can decide 1 or 3. Notice that O, a cycle of length 8, locally looks like I, a cycle of length
4, in the sense that the 1-neighborhood of each vertex v in I is identical to the 1-neighborhood of
a corresponding vertex in ∆(v). The right side of the figure shows how O covers I, by wrapping
around it twice, where p identifies edges with the same label. Informally, O covers I means that
there is a map p from O to I, such that for each vertex v in I, if one considers the vertexes wi,
with p(wi) = v, the the neighborhoods around each wi look identically to the neighborhood around
v.

Other tasks include loop agreement [27] (see description below), k-simultaneous consensus [4],
locality preserving tasks [19], renaming [6], (see [15] for an introductory survey), weak symme-
try breaking, and generalized symmetry breaking tasks [35] (a family of tasks that that includes
renaming and weak symmetry breaking).

Locality preserving tasks lead to infinite hierarchies of tasks, where tasks are computable only

ACM SIGACT News 94 September 2012 Vol. 43, No. 3

0

11

1

00

Figure 7: Weak symmetry breaking output complex for two processes

when given access to a distributed oracle for other tasks, e.g. [19, 27, 40].

4.2 Colored vs Colorless Tasks

Many of the tasks previously studied, such as consensus, set agreement, approximate agreement and
loop agreement are colorless in the sense that they can be defined only in terms of sets of possible
input and output values, without having to specify which process can be assigned or choose which
value. In a colorless task, a process may adopt the input or output value of another process, without
violating the task’s specification.

One example of a task that is not colorless is the renaming task [6]. In this task, processes start
with unique names taken from a large name space, and must halt with unique names taken from
a smaller name space. Here, a process cannot adopt another’s output name because the output
names would not be unique. A similar remark holds for the weak symmetry-breaking task, which
requires that if all processes participate, at least one must decide 0 and at least one must decide
1. The output complex for three-processes weak symmetry-breaking is illustrated in Figure 7 (the
inner white triangle is a forbidden state where all processes choose the same output value).

A colorless task (Ĩ, Õ, ∆̃) is defined in terms of complexes which are not colored with process
names, and may be of any dimension, unrelated to the number of processes. Indeed, a colorless
task specifies a family of tasks, one for each number of processes n > 1.

Definition 4.1. A colorless task T̃ is a triple (Ĩ, Õ, ∆̃) where Ĩ and Õ are complexes and ∆̃ is a
carrier map from Ĩ to Õ.

Each vertex of Ĩ and Õ is just a value, not a process name, value pair as in the colored case.
Because ∆̃ is a carrier map (as defined at the beginning of Section 4), ∆̃(s̃′) ⊆ ∆̃(s̃) for every
s̃′, s̃ ∈ Ĩ, such that s̃′ ⊆ s̃.

If s̃ is a simplex of Ĩ, then there is an initial system state where s̃ is the processes’ set of input
values. Symmetrically, a set of output values t̃ is a simplex in Õ if there is a final system state where
t̃ is the process set of the output values. Operationally, the processes are initially assigned (not
necessarily distinct) vertices from a simplex s̃ in Ĩ, and they halt after choosing (not necessarily

ACM SIGACT News 95 September 2012 Vol. 43, No. 3

Outputs

Δ̃

Inputs

a a a0 1 0 11/2

Outputs

Δ̃

Inputs

a a a0 1 0 11/3 2/3 a

Figure 8: Two colorless ε-agreement tasks for two processes and ε = 1/2, 1/3

Outputs

Δ̃

Inputs

0

1

2
0

1

2

Figure 9: Colorless 2-set agreement task

distinct) vertices from a simplex t̃ in Õ, where t̃ ∈ ∆̃(s̃).
Formally, for each n, a colorless task T̃ = (Ĩ, Õ, ∆̃) induces a task T = (I,O,∆) for n processes,

as follows. An input simplex s is in I if the names in s are distinct, and the set of values of s form
a simplex s̃ ∈ Ĩ. Similarly for an output simplex t in O, t̃ ∈ Õ with Õ ∈ ∆(s̃). We say s̃ is obtained
from s by projecting out the names. Now, t ∈ ∆(s) if (s, t) is an input-output pair, and there are
projections s̃, t̃, with t̃ ∈ ∆̃(s̃).

The approximate agreement task with ε = 1/2 of Figure 3 is more succinctly represented as a
colorless task, in Figure 8, where the case of ε = 1/3 is also depicted. Notice that tasks for any
number of processes are implied. That is, processes start with input value 0 or 1. If they all start
with the same value, they all decide that same value. Otherwise, they all decide values at most
ε apart from each other: values that form an output simplex (a vertex or an edge in the output
complex).

A 2-set agreement task is succinctly represented as a colorless task, in Figure 9. Any number
of processes, n, start with values from the set {0, 1, 2} and decide values from the same set. The
values decided must belong to the values proposed in the execution. At most two different values
can be decided. Thus, the input complex is induced by a colorless solid triangle, while the output
complex is induced by a colorless triangle without the interior. Formally, ∆̃ is defined:

• if s̃ = {v} then ∆̃(s̃) = {v};
• if s̃ = {u, v} then ∆̃(s̃) = {{u, v}, {u}, {v}};
• if s̃ = {u, v, w} then ∆̃(s̃) = {{u, v}, {u,w}, {v, w}, {u}, {v}, {w}}.

Intuitively, solving a colorless task should be easier, because the algorithm can be anonymous.
Since the task is defined by possible sets of input and output values without specifying process
names, a process solving a colorless task should not have to use its id.

ACM SIGACT News 96 September 2012 Vol. 43, No. 3

f0

f1

Figure 10: A loop agreement task

4.3 Colorless Tasks as Convergence Problems

One can think of colorless task (Ĩ, Õ, ∆̃) as a kind of convergence task, where processes must
rendez-vous on a simplex in Õ.

For example, consider the following loop agreement task [27], illustrated in Figure 10. A edge
loop K = ~k0, . . .~kk is a sequence of vertices such that each ~ki and ~ki+1 form an edge of K, and all
vertices are distinct except that ~k0 = ~kk. Let K be a finite (uncolored) 2-dimensional simplicial
complex, K a simple loop of K, and k0, k1, k2 three distinguished vertexes in K. For distinct i, j,
and k, let Kij be the sub-path of K linking ki to kj without passing through kk. Each of n + 1
processes has an input value in {0, 1, 2}. For each input simplex s, define ∆(s) by:

views(s) ∆(s),

{i} all decide ~ki,
{i, j} vertexes span simplex in Kij ,
{0, 1, 2} vertexes span simplex in K.

In other words, the processes converge on a simplex in K. If all processes have the same input
value, they converge on the corresponding vertex. If they have only two distinct input vertexes,
they converge on some simplex along the path linking their vertexes. Finally, if the processes have
all three input vertexes, they converge to any simplex of K.

For instance, 2-set agreement is specified by the loop agreement task where K consists of the
three edges of the triangle with vertices k0, k1, k2, which is “hollow”, namely with no 2-dimensional
simplexes. In this version of set agreement, processes decide on at most two of the values k0, k1, k2.

5 The Iterated Write-Snapshot Model

The base read-write model is natural, in the sense that it roughly captures the behavior of modern
multiprocessors, but it can be difficult to work with directly. Here, we show how this model can
be recast into a more manageable form, by defining a write-snapshot abstraction on top of the
read-write model. The two models are equivalent, in the sense that any task that is computable in

ACM SIGACT News 97 September 2012 Vol. 43, No. 3

one is computable in the other. We do not consider complexity issues here, and indeed the iterated
model may be less efficient.

It is often convenient to structure asynchronous computations as round-based executions [14,
31, 43]. In each round, processes communicate through a shared memory that can be accessed
only in that round. In the simplest case the shared memory for each round consists of an array of
single/writer multi/reader registers. In each round each process writes to its register and then reads
one by one all the registers. A more structured iterated model is obtained if the shared memory at
each round provides a snapshot operation.

5.1 The Snapshot Abstraction

A snapshot object provides the programmer with a convenient, high-level shared memory abstrac-
tion, but provides no additional computational power. In Section 6.2.1 we will show how one can
construct and use a high-level snapshot object from read-write memory, e.g. [5]. This has been
done in [1], but our construction will be recursive.

A snapshot transforms an array X of individually readable and writable memory locations,
with one entry per process, into an array that provides an additional operation: X.snapshot(). The
X.snapshot() operation returns the current value of the entire arrayX. A snapshot object is lineariz-
able: each write or snapshot operation appears as if it has been executed instantaneously between
when it is called and when it returns. The most efficient implementations of wait-free snapshots
on top of linearizable read/write known so far has O(n log n) time complexity [2]. Constructions
for the case of partial snapshots have been proposed in [5, 7, 36].

5.2 The Iterated Write-Snapshot Model

A one-shot write-snapshot object[11] is an array WS [0..n], initialized to [⊥, . . . ,⊥], which can be
accessed by a single write snapshot() operation that each process invokes at most once. That oper-
ation pieces together the write() and snapshot() operations. Intuitively, when a process pi invokes
write snapshot(v), it is as if it instantaneously executes a write WS [i]← v operation followed by a
WS .snapshot() operation. If several WS .write snapshot() operations are executed simultaneously,
then their corresponding writes are executed concurrently, and then their corresponding snapshots
are also executed concurrently. Each concurrent snapshot sees the values written by the concurrent
writes. These operations are set-linearizable [44], meaning that each operation appears as if it has
been executed instantaneously between its start event and its end event, and if operations appear
to happen at the same time, each sees the value written by the others.

A write snapshot() operation invoked by pi behaves as follows. Let vi be the value written by
pi, and smi the value (or view) pi gets back from the operation. A view smi is a set of pairs (k, vk),
where vk corresponds to the value in pk’s entry of the array. If WS [k] = ⊥, the pair (k,⊥) is not
placed in smi. Moreover, we assume that smi = ⊥ if pi never invokes WS .write snapshot(). Every
invocation of WS .write snapshot() by a non-faulty process returns with a value.

Definition 5.1. A write-snapshot object is a one-shot object whose single operation write snapshot()
is such that, if a process invokes write snapshot(vi), it obtains a smi satisfying the following prop-
erties:

• Self-inclusion. ∀i : (i, vi) ∈ smi.

• Containment. ∀i, j : smi ⊆ smj ∨ smj ⊆ smi.

ACM SIGACT News 98 September 2012 Vol. 43, No. 3

• Immediacy. ∀i, j : [(i, vi) ∈ smj ∧ (j, vj) ∈ smi] ⇒ (smi = smj).

The self-inclusion property states that a process sees its write, while the containment prop-
erties states that the views obtained by processes are totally ordered. Finally, the immediacy
property states that if two processes “see each other”, they obtain the same view (the size of which
corresponds to the concurrency degree of the corresponding write snapshot() invocations), and ex-
tends snapshots to immediate snapshots also called block executions [10, 47]. (Implementations are
described in [11, 15, 46].)

The Iterated write-snapshot model The iterated write-snapshot model (IWS) is made up of
an unbounded number of one-shot write-snapshot objects. These objects, denoted WS [1],WS [2], . . .,
are accessed sequentially and asynchronously by each process, according to the round-based pattern
illustrated in Figure 11.

vi ← input; ri ← 0;
loop forever ri ← ri + 1;

smi ←WS [ri].write snapshot(vi);
vi ← smi;

end loop.

Figure 11: Generic algorithm for the iterated write-snapshot model

Initially, pi stores its input in its local variable vi. In each round ri, pi writes its current value
vi in the ri − th write-snapshot object, and stores the result in smi. This is the value vi (called its
view) that it will write in the next iteration. A process thus writes everything “it knows” in each
iteration, because we are interested in computability results. If efficiency is a concern, pi could
write in the next round a value computed from smi.

Solving Tasks To solve a task T = (I,O,∆) in the IWS model, we split the algorithm into two
parts. In the first, each process repeatedly writes its view to a shared memory and then constructs
a new view by reading the memory, as in the generic algorithm. This part is generic, in the sense
that it could be part of any algorithm for any task. In the second part, however, each process
decides how many iterations to execute, and then applies a task-specific decision map to its final
view to determine its (irrevocable) decision value. The number of iterations, and the decision map
depend on the task being solved. For the task T , the initial views of the processes form an input
simplex s ∈ I, and the decision values form an output simplex t, such that t ∈ O.

5.3 On the Power of the Iterated Model

Let us observe that the IWS model requires each non-faulty process to execute an infinite number
of rounds (although a decision is taken in a finite number of rounds). However, it is possible that a
non-faulty process p1 is unable to receive information from another non-faulty process p2. Consider
a execution where both execute an infinite number of rounds, but p1 is scheduled before p2 in every
round. Thus, p1 never reads a value written to a write-snapshot object by p2. Of course, in the
usual (non-iterated read/write shared memory) asynchronous model, two non-faulty processes can
always eventually communicate with each other. Thus one might think that the base read/write
model and the IWS model have different computability power. The fundamental result associated
with the IWS model is captured by the following theorem, which shows they are, in fact, equivalent.

ACM SIGACT News 99 September 2012 Vol. 43, No. 3

Definition 5.2. A task is bounded if its set of input vectors I is finite.

The following theorem appeared first in [12]. (A new simulation from the snapshot model to
the iterated model is described in [22], which can be extended to work with stronger models.)

Theorem 5.3. A bounded colorless task can be wait-free solved in the base read-write model model
if and only if it can be wait-free solved in the IWS model.

The appeal of the IWS model comes from its simple round-by-round iterative structure. Its
executions have an elegant recursive structure: the structure of the global state after r + 1 rounds
is obtained from the structure of the global state after r rounds, which eases the analysis of wait-
free asynchronous computations to prove impossibility results [28, 29]. The recursive of execution
structure also facilitates the design and analysis of algorithms [15, 21].

6 The Protocol Complex

6.1 The Protocol Complex and its Recursive Structure

Consider the generic algorithm of Figure 11, and the possible views vi, at every iteration, r, r ≥ 0.
The view vi of pi at r is denoted viewr

i . Characterizing the possible views yields a characterization
of which tasks can be computed in the iterated write-snapshot model.

Assume the generic algorithm is used to solve a task T defined by the triple (I,O,∆). Recall
that each input simplex I in I, is a set of pairs

I = {(pi, xi)}

for some subset of the processes, {pi}, each one with input value xi. Therefore, each input simplex
corresponds to a possible set of initial views, where view0

i = xi. The set of all possible initial views
is thus equal to the input complex I.

In general, the set of views at round r, is always a complex, Kr, called the protocol complex,
because if s is a set of views of some processes at round r, then any subset of s is also a set of
views at r. More precisely, a simplex s ∈ Kr consists of a set of pairs {(pi, vi)}, corresponding to a
subset of the processes, and an execution of the generic algorithms, where each vi is a view that pi
can obtain at iteration r of the execution.

What is the complex of views at round r = 1? It is defined by the write-snapshot properties
of Definition 5.1: Self-inclusion, Containment, and Immediacy. All views possible at the first round
form a subdivision of the input simplex. In Figure 12 the case where I is the binary input complex
of consensus or approximate agreement is depicted. Each vertex of a process pi is labeled with its
view vi. Notice that the 4 vertices at the corners of the square, correspond to executions where a
process sees only itself. The other vertices correspond to views where a process sees both its own
value and the value of the other process.

We can think of the algorithm itself as a carrier map P(·) that carries each simplex of the input
complex to a subcomplex of the protocol complex. Each input vertex goes to the solo execution in
which that process alone participates, and each input simplex goes to the subcomplex of all possible
executions starting with those inputs.

The protocol complex is related to the output complex by the decision map δ(·), a map that
sends each vertex v in the protocol complex to a vertex w in the output complex labeled with the
same process name, and such that δ(s) is a simplex in O. The value attached to w is the value

ACM SIGACT News 100 September 2012 Vol. 43, No. 3

Outputs

Δ

Inputs

a

b
a

d

0 1

0 1

a

a,b
a a

a,da

a0 1

0 1

1/2

1/2

{0} {1}

{1}{0}

{0,0}

{0,0}

{1,1}

{1,1}

{0,1} {0,1}

{1,0} {1,0}

δP

0
0
0
0

1
1
1
1

1/2 1/2

1/2 1/2

Figure 12: Approximate agreement task for two processes is below. The protocol complex after
one round is on top (views on the left, decisions on the right).

which process id(v) takes as its output value when its final view in the execution is view(v). The
map δ is simplicial because it preserves simplexes: if vertices vi form a simplex in the protocol
complex, then the vertices δ(vi) form a simplex in the output complex.

The algorithm is correct if the composition of the decision map δ with the carrier map P is a
carrier map F such that, for any s ∈ I, F (s) ⊆ ∆(s).

Recursive structure The iterated model has the advantage that each round is independent of
previous rounds. The outputs of round r become the inputs to round r + 1. This is why one can
reason recursively in this model, and the complex at round r + 1 is obtained by replacing each
simplex by the same complex.

For the case of two processes, let us consider in Figure 12. Each edge in the input complex
(complex at round 0) is replaced by a path of three edges in the complex at round 1. Notice
that whenever there is a vertex contained in two edges, in round 1, there is a situation in which
the process corresponding to that vertex, does not distinguish between two executions, the ones
represented by the two edges.

In general, the complex at round r + 1 is obtained by replacing each edge of the complex at
round r by a path of three edges in the complex at round r. Think of the algorithm as “stretching”
each input edge to a path by inserting new vertices between the endpoints. The case of three
processes, represented in Figure 13, will be explained below.

Next, think of the decision map as carrying this stretched path to the matching path in the
output graph, in a way that respects ∆. This idea is used to prove the following result. It is a
special case of a more general manifold property that is preserved from round to round, e.g. [23],
and even the more general property of higher dimensional connectivity e.g. [28].

Lemma 6.1. Let r be any round. If the input complex I (= K0) for the generic iterated write-

ACM SIGACT News 101 September 2012 Vol. 43, No. 3

snapshot algorithm is connected, then the complex made up of the views at round r, is also
connected.

As a corollary of this lemma, we obtain that the consensus task is not solvable by the generic
iterated write-snapshot algorithm. Let us consider the case of two processes, for concreteness, but
the general argument is the same. Assume for contradiction that consensus can be solved, say
after r rounds. Consider the corresponding complex of views Kr. It is a subdivision of the input
simplex, and hence it consists of a graph of four paths joined at the corners of a square. This graph
is presented at the top left part of Figure 12, for r = 1. These four corners correspond to executions
where a process sees only itself, in every iteration. In this complex, each process decides either 0 or
1. The decision colors each vertex with a binary value. The graph with binary values is at the top
right part of Figure 12 for approximate agreement; in the case of consensus decisions of 1/2 would
be replaced by either 0 or 1.

Finally, we use Sperner’s Lemma to complete the proof. Consider the path at at the top of the
square Kr, the one that connects the corner vertex where the white process starts with 0 and the
vertex where the black process starts with 1. The decision of the white process in the corner is 0
while the decision of the black process in the corner is 1. There must be an edge in the path whose
vertices are colored with different binary values, because the path is connected and its endpoints
have different colors. This edge corresponds to an execution where two different values are decided,
contradicting the agreement requirement of the consensus task.

The case of three processes is represented in Figure 13 (from [45]). The highlighted 2-simplex
on the left represents an execution where p1 and p3 access the object concurrently, each sees the
other, but not p2, who accesses the object later, and observes all 3 values. But p2 cannot tell
the order in which p1 and p3 accessed the object. The execution in which p1 saw only itself, and
the execution in which p3 saw only itself are indistinguishable to p2. These two executions are
represented by the 2-simplexes at the bottom corners of the left picture. Thus, the vertices at the
corners of the complex represent the executions where only one process pi accesses the object, and
the edges connecting two vertices on a border of an input simplex represent executions where only
two processes access the object. The triangle in the center of the complex represents the execution
where all three processes access the object concurrently, and get back the same view.

p1 p1

p3

p2

p3

p2

p3

p1

p3

p2

p2

p1

Figure 13: One, two and three rounds in the iterated write-snapshot (IWS) model

Hence, the state of an execution after the first round (with which the write-snapshot object

ACM SIGACT News 102 September 2012 Vol. 43, No. 3

WS [1] is associated), is represented by one of the internal triangles of the left picture (e.g., the one
discussed previously that is represented by the bold triangle in the pictures). Then, the state of
that execution after the second round (with which the write-snapshot object WS [2] is associated),
is represented by one of the small triangles inside the bold triangle in the picture in the middle,
etc. More generally, as shown in Figure 13, one can see that, in the write-snapshot iterated model,
at every round, a new complex is constructed recursively by replacing each simplex by a one-round
complex.

6.2 Programming in the Iterated Model and Distributed Recursion

6.2.1 A Recursive Write-Snapshot Algorithm

Recall that the IWS model is an iterated model where processes communicate in each round via
write snapshot() operations. In this section we show how to implement these operations from
single/writer multi/reader registers. Figure 14 presents a read/write algorithm that implements
the write snapshot() operation. Interestingly, this algorithm is recursive [15, 21] (see [15] for a
proof). To allow for a recursive formulation, an additional recursion parameter is used. More
precisely, in a round r, a process invokes SM .write snapshot(n, v) where the initial value of the
recursion parameter is n and SM stands for WS [r].

SM is a shared array of size n + 1 initialized to [⊥, . . . ,⊥] and such that each SM [x] is an
array of n single-writer n-reader atomic registers. The atomic register SM [x][i] can be read by all
processes but written only by pi.

Let us consider the invocation SM .write snapshot(x, v) issued by pi. Process pi first writes
SM [x][i] and reads (not atomically) the array SM [x][1..n] that is associated with the recursion
parameter x (Lines 01-02). Process pi then computes the set of processes that have already attained
the recursion level x (line 03; let us note that recursion levels are decreasing from n to n− 1, etc.).
If the set of processes that have attained the recursion level x (from pi’s point of view) contains
exactly x processes, pi returns this set as a result (lines 04-05). Otherwise less than x processes
have attained the recursion level x. In that case, pi recursively invokes SM .write snapshot(x − 1)
(line 06) in order to attain and stop at the recursion level y attained by exactly y processes.

operation SM .write snapshot(x, v):
% x (n ≥ x ≥ 1) is the recursion parameter %

(01) SM [x][i]← v;
(02) for 1 ≤ j ≤ n do auxi[j]← SM [x][j] end for ;
(03) pairsi ← {(j, v′) | ∃j such that auxi[j] = v′ 6= ⊥};
(04) if (|pairsi| = x)
(05) then smi ← pairsi
(06) else smi ← SM .write snapshot(x− 1, v)
(07) end if;
(08) return(smi).

Figure 14: A recursive write-snapshot algorithm (code for pi)

Consider two extremes examples of executions of the algorithm, a fully concurrent execution
and a fully sequential execution. In the concurrent execution, all n processes invoke at the same
time SM .write snapshot(x, v), with x = n, then at the same time write their values v to the shared
memory (Line 01), and then at the same time read the shared memory (Line 02). Thus, they all see

ACM SIGACT News 103 September 2012 Vol. 43, No. 3

each other, and they all have pairs i with the same value (Line 03), and they all see |pairs i| = x = n
in Line 04, and end the algorithm in the next line with the same output.

In a fully sequential execution, only one process terminates in each recursive invocation of the
algorithm, say pi terminates in the i-th invocation. In the first invocation, p1 writes its value last to
the shared memory in Line 01, after all other process have read it in Line 02. Thus process p1 sees
|pairs i| = x = n in Line 04 and terminates the algorithm, while all other process see |pairs i| < x = n
in Line 04 and invoke the algorithm recursively in Line 06 (with x = n− 1). The same pattern is
repeated in the second invocation, with p2, etc.

The cost of a shared memory distributed algorithm is usually measured by the number of shared
memory accesses, called step complexity. The step complexity of pi’s invocation is O(n(n− |smi|+
1)).

It is interesting to observe that the iterative structure that defines the IWS model and the
recursion-based formulation of the previous algorithm are closely related notions. In one case
iterations are at the core of the model while in the other case recursion is only an algorithmic tool.
However, the executions of a recursion-based algorithm are of an iterated nature: in each iteration
only one array of registers is accessed, and the array is accessed only in this iteration.

6.2.2 A Recursive Approximate Algorithm

Figure 15 presents an algorithm that implements the x-approx Agreement operation. Again, this
algorithm is recursive. Moreover, it uses as a subroutine the recursive write snapshot algorithm.
That is, the algorithm runs in the IWS model. The idea of the algorithm is simple. In each iteration
the following occurs: processes propose at most two different values, and decide on at most two
different values, such that the difference between them is divided by two. Thus, if processes start
with input values in {0, 1}, after x iterations, x ≥ 0, processes decide on values which are at most
1/2x apart from each other.

The processes communicate with each other their values, v, via a snapshot operation. Process
pi stores the result of the snapshot in its local variable pairsi. Consider the iteration with value
x. If x = 0, nothing will be done, and the output of each process is equal to its input. Otherwise,
assume x ≥ 1. Process pi sees at most two different process values in pairsi, let us call them p1, p2
(not necessarily different). Then, pi invokes recursively the algorithm, with x − 1, and value v
equal to (v1 + v2)/2. There are only two possibilities, either all see both values, or some see one
value, say v1, and the others see both. At least the last processes to take a snapshot sees both.
It is impossible that some processes see only one and some only the other, due to the snapshot
operation. Thus, in the recursive invocation will be with at most two different values, and these
are half apart from each other.

operation approx Agreement(x, v):
% x is the recursion parameter (x ≥ 0) %

(01) pairsi ← SM .write snapshot(x, v) ;
(02) if (x = 0)
(03) then outi ← v
(04) else outi ← approx Agreement(x− 1,mid(pairsi))
(05) end if;
(06) return(outi).

Figure 15: A recursive x-approximate algorithm (code for pi)

ACM SIGACT News 104 September 2012 Vol. 43, No. 3

The step complexity of the algorithm is x times the step complexity of a snapshot operation.

7 Safe Agreement

This section gives one more example of a problem solved elegantly in the iterated model, specifically
in the IWS model, namely the implementation of a safe agreement object.

A safe agreement object provides two operations, denoted sa propose(v) and sa decide(), where
v is a value. Each process can call each operation at most once, and must call sa propose(v) before
sa decide(). These operations satisfy the following properties, which define a kind of consensus
object with fail-free termination.

• Termination. If no process crashes while executing sa propose(v), then any non-faulty process
that invokes sa decide() returns from that invocation.

• Agreement. At most one value is decided.

• Validity. A decided value is a proposed value.

Simple implementations of the safe agreement object type are described in [13, 37]. We introduce
here an alternative implementation that works in the IWS model, where the sa propose() and
sa decide() operations use two iterations of the IWS model.

operation sa propose(vi):
(01) sm1

i ←WS [1].write snapshot(vi);
(02) sm2

i ←WS [2].write snapshot(sm1
i).

Figure 16: Operation sa propose(vi) in the iterated model (code for qi)

Figure 16 shows one way to implement sa propose(). When a process qi invokes sa propose(vi),
it writes the proposed value vi to WS [1], and stores the snapshot of WS [1] into a local variable
sm1

i (Line 01). It then writes sm1
i to WS [2], and stores the snapshot of WS [2] in a local variable

sm2
i (Line 02).
An important point here is that qi writes atomically into WS [2] (note that the snapshot of

WS [2] is simply discarded). Note also that sm1
i is a set of pairs (k, vk) (where vk is the value

proposed by qk) that must contain the pair (i, vi) written by qi. However, WS [2] is a set of pairs
(x, viewx) where viewx is the value of sm1

x, that is, the set of pairs obtained from WS [1] by qx.
Finally after qi calls WS [2].write snapshot(), WS [2] must contain the pair (i, sm1

i).

operation sa decide():
(03) repeat sm3

i ←WS [2].scan()
(04) until

(
∀ k : (k,−) ∈ sm1

i ⇒ (k, viewk) ∈ sm3
i

)
(05) end repeat;
(06) sm3

i ← {(k, viewk) ∈ sm3
i | (k,−) ∈ sm1

i };
(07) (−,min viewi)← (k, viewk) ∈ sm3

i such that ∀(x, viewx) ∈ sm3
i : |viewk| ≤ |viewx|;

(08) let deci = min{vx | (x, vx) ∈ min viewi}
(09) return(deci).

Figure 17: Operation sa decide() in the iterated model (code for qi)

ACM SIGACT News 105 September 2012 Vol. 43, No. 3

Implementing the operation sa decide() Figure 17 shows a two-part implementation of sa decide().

• In the first part (Lines 03-05), qi repeatedly reads WS [2] until a closure property (explained
below) is satisfied). The value read from the write-snapshot object WS [2] is saved in the
local variable sm3

i . Hence, sm3
i is a set of pairs (x, viewx) including (i, sm1

i) (and in turn sm1
i

includes (i, vi)).

Here is the closure property that allows qi to exit the loop: for any pair (k, vk) ∈ (i, sm1
i),

(k, viewk) ∈ sm3
i . From qi’s point of view, each qk that has written to WS [1] has also written

to WS [2] (more precisely, it has written the view sm1
k that it obtained from WS [1]).

• Process qi examines then the value of sm3
i when exiting the loop (Line 06) and selects from

it the view that has the smallest size: one of the views viewk such that

for all (x, viewx) ∈ sm3
i , |viewk| ≤ |viewx|.

As we will see in the proof, for any qi and qj that exit the loop, min viewi = min viewj .
Consequently, any deterministic rule (such as min()) that extracts a decided value from such
a set of pairs (x, vx) can be used to compute the value deci decided by the safe agreement
object (lines 08-09).

Theorem 7.1. The algorithms described in Figure 16 for the operation sa propose() and in Figure
17 for the operation sa decide() are a correct implementation of the safe agreement object type.

Proof Recall that if qi calls sa decide(), then it has previously called sa propose().
Proof of termination: we must show that, if no process crashes while executing sa propose(),

then any non-faulty process that invokes sa decide() returns from its invocation.
If no process crashes while executing sa propose(), then any process that executes this operation

executes both WS [1].write snapshot() and WS [2].write snapshot(). Hence, as any qi that executes
sa decide() repeatedly reads WS [2], eventually

for all (k,−) ∈ sm1
i : (k, viewk) ∈ sm3

i ,

if (k,−) ∈ sm1
i then pk invoked WS [1].write snapshot() and, since pk does not crash, it eventually

invokes WS [2].write snapshot(). Eventually, (k, viewk) ∈ sm3
i), and qi exits the loop. Moreover,

since (i, sm1
i) ∈ sm3

i and (i, vi) ∈ sm1
i , it follows that the minimum operations of Lines 07 and 09

terminate. Consequently qi eventually returns from sa decide().
Proof of validity: we must show that a decided value was proposed. Let v be the value decided

by qi and view = min viewi (computed at Line 06). It follows from lines 07-08 that there exists
(x, v) ∈ min viewi = view and (−, view) ∈ sm3

i , from which we conclude that some process qj has
executed WS [2].write snapshot(sm1

j) where sm1
j = view. Hence, qj has obtained sm1

j = view from
its invocation WS [1].write snapshot(). It follows from the validity property of the write-snapshot
object WS [1] and the fact that (x, v) ∈ view, that the value v was proposed by some process.

Proof of agreement: we must show that no two processes decide different values. Let qi and qj
be two processes that decide. We show that the sets min viewi and min viewj of pairs computed
at Line 07 are equal (implying agreement).

First observe that, due to containment of WS [1], any two pairs (x, sm1
x) and (y, sm1

y) written
in WS [2] (Line 02) are such that sm1

x ⊆ sm1
y ∨ sm1

y ⊆ sm1
x (Observation O1). Moreover, the

self-inclusion and containment properties of WS [1] imply that

((x, vx) /∈ sm1
y) implies (sm1

y (sm1
x)

ACM SIGACT News 106 September 2012 Vol. 43, No. 3

(Observation O2).
Let sm3

i and sm3
j denote the last values of the corresponding local variables obtained at line 06.

As a process writes only once in both WS [1] and WS [2], we have sm3
i = {(k, viewk) | (k,−) ∈ sm1

i }
and sm3

j = {(k′, viewk′) | (k′,−) ∈ sm1
j}. If sm1

i = sm1
j we have sm3

i = sm3
j which implies

min viewi = min viewj and agreement follows. Hence, due to observation O1, the remaining case
is sm1

i (sm1
j or, equivalently, sm1

j (sm1
i . Without loss of generality let us assume sm1

i (sm1
j ,

from which we have sm3
i (sm3

j . To show min viewi = min viewj when sm1
i (sm1

j , we show

that, for each (`, sm1
`) ∈ (sm3

j \ sm3
i) (i.e., a view seen by pj but not by pi), exists (`′, sm1

`′) ∈ sm3
j

such that sm1
`′ (sm1

` . Then we will have |sm1
`′ | < |sm1

` | and, as sm3
i (sm3

j , it will follow that the

smallest view in sm3
j is the smallest view in sm3

i .

To show that there is `′ such that (`′, sm1
`′) ∈ sm3

j and sm1
`′ (sm1

` , let us consider `′ = i.

As (`, sm1
`) ∈ (sm3

j \ sm3
i) we have (`, v`) ∈ sm1

j \ sm1
i , i.e., (`, v`) /∈ sm1

i . It then follows from

Observation O2 that sm1
i (sm1

` from which we have |sm1
i | < |sm1

` | and concludes the proof of the
agreement property. 2Theorem 7.1

8 Conclusion

We reviewed a number of tasks in the wait-free read-write model, some solvable, some not. We
showed how placing a layer of abstraction on top of this model, in the form of the iterated write-
snapshot model, yields a model of equivalent computational power, but more convenient for algo-
rithm design, and with a nicer mathematical structure.

Acknowledgment. We thank Idit Keidar for the many comments on an earlier version of this
paper.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots of Shared
Memory. Journal of the ACM, 40(4):873-890, 1993.

[2] Attiya H., Rachman O., Atomic Snapshots in O(n log n) Operations. SIAM Journal of Com-
puting, 27(2): 319–340, 1998.

[3] Attiya H., Rajsbaum S., The Combinatorial Structure of Wait-Free Solvable Tasks. SIAM
Journal of Computing, 31(4): 1286–1313, 2002.

[4] Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C., The k-Simultaneous Consensus
Problem. Distributed Computing, 22(3):185-195, 2010.

[5] Anderson J., Multi-writer Composite Registers. Distributed Computing, 7(4):175-195, 1994.

[6] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an Asynchronous
Environment. Journal of the ACM, 37(3):524-548, 1990.

[7] Attiya H., Guerraoui R. and Ruppert E., Partial Snapshot Objects. Proc. 20th ACM Sympo-
sium on Parallel Architectures and Algorithms (SPAA’08), ACM Press, pp. 336-343, 2008.

ACM SIGACT News 107 September 2012 Vol. 43, No. 3

[8] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced
Topics (2d Edition), Wiley-Interscience, 414 pages, 2004.

[9] Biran O., Moran S., and Zaks S., A combinatorial characterization of the distributed tasks
which are solvable in the presence of one faulty processor. PODC ’88: Proceedings of the
seventh annual ACM Symposium on Principles of distributed computing (PODC’88), pages
263–275, 1988.

[10] Borowsky E. and Gafni E., Generalized FLP Impossibility Result for t-Resilient Asynchronous
Computations. Proc. 25-th Annual ACM Symposium on Theory of Computing (STOC’93),
ACM Press, pp. 91-100, 1993.

[11] Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming. Proc. 12th ACM
Symposium on Principles of Distributed Computing (PODC’93), ACM Press, pp. 41-51, 1993.

[12] Borowsky E. and Gafni E., A Simple Algorithmically Reasoned Characterization of Wait-
free Computations. Proc. 16th ACM Symposium on Principles of Distributed Computing
(PODC’97), ACM Press, pp. 189-198, 1997.

[13] Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algorithm.
Distributed Computing, 14(3):127-146, 2001.

[14] Charron-Bost B. and Schiper A., The Heard-Of Model: Computing in Distributed Systems
with Benign Faults. Distributed Computing, 22(1), 49–71, 2009.

[15] Castañeda A., Rajsbaum S. and Raynal M., The Renaming Problem in Shared Memory Sys-
tems: an Introduction. Computer Science Review, 5(3): 229–251, 2011.

[16] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105(1):132-158, 1993.

[17] Dolev D., Lynch N., Pinter S., Stark E. and Weihl W., Reaching Approximate Agreement in
the Presence of Faults. Journal of the ACM 33(3):499–516 (1986).

[18] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

[19] Fraigniaud P., Rajsbaum S., Travers C., Locality and Checkability in Wait-Free Comput-
ing. Proc. 25th Int’l Symposium on Distributed Computing (DISC’11), Springer, LNCS 6950,
pp. 333–347, 2011.

[20] Eli Gafni and Elias Koutsoupias. Three-Processor Tasks Are Undecidable. SIAM J. Comput.,
28(3):970–983, 1999.

[21] Gafni E. and Rajsbaum S., Recursion in Distributed Computing. Proc. 12th Int’l Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS’10), Springer-Verlag, LNCS
6366, pp. 362-376, 2010.

[22] Gafni E. and Rajsbaum S., Distributed Programming with Tasks. Proc. 14th Int’l Conference
on Principles of Distributed Systems (OPODIS’10), Springer, LNCS 6490, pp. 205-218, 2010.

ACM SIGACT News 108 September 2012 Vol. 43, No. 3

[23] Gafni E., Rajsbaum S., Herlihy M., Subconsensus Tasks: Renaming Is Weaker Than Set
Agreement. Proc. 20th Int’l Symposium on Distributed Computing (DISC’06), Springer, LNCS
4167, pp. 329-338, 2006.

[24] Guerraoui R. and Raynal M., From Unreliable Objects to Reliable Objects: the Case of atomic
Registers and Consensus. 9th Int’l Conference on Parallel Computing Technologies (PaCT’07),
Springer, LNCS 4671, pp. 47-61, 2007.

[25] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):124-149, 1991.

[26] Maurice Herlihy and Sergio Rajsbaum. The Decidability of Distributed Decision Tasks (ex-
tended abstract). Proc. 29th annual ACM Symposium on Theory of Computing (STOC’97),
ACM Press, pp.589–598, 1997.

[27] Herlihy M. P. and Rajsbaum S., A Classification of Wait-free Loop Agreement Tasks. Theo-
retical Computer Science, 291(1):55-77, 2003.

[28] Herlihy M. P. and Rajsbaum S., The Topology of Shared Memory Adversaries. Proc. 29th
ACM Symposium on Principles of Distributed Computing (PODC’10), ACM Press, pp. 105-
113, 2010.

[29] Herlihy M.P. and Rajsbaum S., Concurrent Computing and Shellable Complexes. Proc. 24th
Int’l Symposium on Distributed Computing (DISC’10), Springer, LNCS 6343, pp. 109-123,
2010.

[30] Herlihy M. P. and Rajsbaum S., Simulations and Reductions for Colorless Tasks. Proc. 31st
ACM Symposium on Principles of Distributed Computing (PODC’12), ACM Press, pp. 253-
260, 2012.

[31] Herlihy M.P., Rajsbaum S., and Tuttle, M., Unifying Synchronous and Asynchronous
Message-Passing Models. Proc. 17th ACM Symposium on Principles of Distributed Computing
(PODC’98), ACM Press, pp. 133–142, 1998.

[32] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Jour-
nal of the ACM, 46(6):858-923, 1999.

[33] Herlihy M.P. and Shavit N., The Art of Multiprocessor Programming, Morgan Kaufman Pub.,
San Francisco (CA), 508 pages, 2008.

[34] Herlihy M.P. and Wing J.L., Linearizability: a Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

[35] Imbs D., Rajsbaum S., Raynal M., The Universe of Symmetry Breaking Tasks. Proc. 18th
Int’l Colloquium on Structural Information and Communication Complexity (SIROCCO’11),
Springer LNCS 6796, pp. 66–77, 2011.

[36] Imbs D. and Raynal M., Help when Needed, but no More: Efficient Read/Write Partial Snap-
shot. Journal of Parallel and Distributed Computing, 72(1): 1-12, 2012.

ACM SIGACT News 109 September 2012 Vol. 43, No. 3

[37] Imbs D. and Raynal M., A Liveness Condition for Concurrent Objects: x-Wait-freedom. Con-
currency and Computation: Practice and experience, 23(17):2154-2166, 2011.

[38] Lamport L., Shostak R., and Pease M., The Byzantine Generals Problem. ACM Transactions
Programming Languages Systems, 4(3):382–401, 1982.

[39] Lamport. L., On Interprocess Communication, Part 1: Basic formalism, Part II: Algorithms.
Distributed Computing, 1(2):77-101,1986.

[40] Liu X., Xu Z., and Pan J., Classifying Rendezvous Tasks of Arbitrary Dimension. Theoretical
Computer Science, 410(21-23):2162-2173, 2009.

[41] Loui M.C., and Abu-Amara H.H., Memory Requirements for Agreement Among Unreliable
Asynchronous Processes. Parallel and Distributed Computing: vol. 4 of Advances in Computing
Research, JAI Press, 4:163-183, 1987.

[42] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages,
1996.

[43] Moses Y. and Rajsbaum S., A Layered Analysis of Consensus. SIAM Journal Computing 31(4):
989-1021, 2002.

[44] Neiger G., Set Linearizability. Brief Announcement, Proc. 13th ACM Symposium on Principles
of Distributed Computing (PODC’94), ACM Press, page 396, 1994.

[45] Rajsbaum S., Raynal M. and Travers C., The Iterated Restricted Immediate Snapshot (IRIS)
Model. 14th Int’l Computing and Combinatorics Conference (COCOON’08), Springer, LNCS
5092, pp.487-496, 2008.

[46] Raynal M., Concurrent Programming: Algorithms, Principles, and Foundations. Springer, 450
pages, 2012 (ISBN: 978-3-642-32026-2).

[47] Saks M.E. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal of Computing 29(5): pp. 1449-1483, 2000.

[48] Taubenfeld G., Synchronization Algorithms and Concurrent Programming. Pearson Prentice-
Hall, 423 pages, 2006 (ISBN 0-131-97259-6).

ACM SIGACT News 110 September 2012 Vol. 43, No. 3

	Introduction
	Computability in Distributed Computing: a Tutorial
	Introduction
	Overview
	Model
	Tasks
	Example of Tasks
	Colored vs Colorless Tasks
	Colorless Tasks as Convergence Problems

	The Iterated Write-Snapshot Model
	The Snapshot Abstraction
	The Iterated Write-Snapshot Model
	On the Power of the Iterated Model

	The Protocol Complex
	The Protocol Complex and its Recursive Structure
	Programming in the Iterated Model and Distributed Recursion
	A Recursive Write-Snapshot Algorithm
	A Recursive Approximate Algorithm

	Safe Agreement
	Conclusion

