
ACM SIGACT News Distributed Computing Column 24

Sergio Rajsbaum∗

Abstract

The Distributed Computing Column covers the theory of systems that are composed of a number of
interacting computing elements. These include problems of communication and networking, databases,
distributed shared memory, multiprocessor architectures, operating systems, verification, Internet, and
the Web. This issue consists of:

• “Security and Composition of Cryptographic Protocols: A Tutorial (Part II)” by Ran Canetti.

The first part appeared in the previous SIGACT News, the September 2006 issue. Many thanks to Ran
for his contributions to this column.

Request for Collaborations: Please send me any suggestions for material I should be including in this
column, including news and communications, open problems, and authors willing to write a guest column
or to review an event related to theory of distributed computing.

Security and Composition of Cryptographic Protocols: A Tutorial
(Part II)

Ran Canetti1

Abstract

What does it mean for a cryptographic protocol to be “secure”? Capturing the security require-
ments of cryptographic tasks in a meaningful way is a slippery business: On the one hand, we
want security criteria that prevent “all potential attacks” against a protocol; on the other hand,
we want our criteria not to be overly restrictive and accept those protocols that do not succumb
to attacks.

The first part of this two-part tutorial presented a general methodology for defining security of
cryptographic protocols. The methodology, often dubbed the “trusted party paradigm”, allows
for defining the security requirements of a large variety of cryptographic tasks in a unified and
natural way. We also reviewed a basic formulation of this paradigm. The second part, presented
here, concentrates on the often subtle security concerns that arise underprotocol composition,
namely when a protocol runs alongside other protocols in a larger system. We first assert the
limitations of the basic formulation from Part I in this setting; Next we present a stronger
formulation and study its security-preserving composability properties.

∗Instituto de Mateḿaticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510.rajsbaum@math.unam.mx .
1IBM T.J. Watson Research Center,canetti@watson.ibm.com. Supported by NSF CyberTrust Grant #0430450.

1

1 Introduction

We briefly summarize the first part of the tutorial [C06] and review the contents of the second part.

Summary of Part I. The first part has motivated the need for a general framework for specifying the
security requirements of cryptographic tasks, and for representing and analyzing cryptographic protocols. It
also presented a definitional methodology, thetrusted party paradigm,that enables specifying the security
requirements of practically any cryptographic task in an intuitively satisfying way. This paradigm (which
originates in [GMW87]) proceeds essentially as follows:

In order to determine whether a given protocol is secure for some cryptographic task, first envision an
ideal process for carrying out the task in a secure way. In the ideal process all parties secretly hand their
inputs to an externaltrusted party who locally computes the outputs according to the specification, and
secretly hands each party its prescribed outputs. This ideal process can be regarded as a “formal specifi-
cation” of the security requirements of the task. The protocol is said tosecurely realize a task if running
the protocol amounts to “emulating” the ideal process for the task, in the sense that any damage that can be
caused by an adversary interacting with the protocol can also be caused by an adversary in the ideal process
for the task.

Finally, a basic formalization of the trusted party paradigm was given, along with a number of examples
for how to use the general paradigm to specify the security requirements of common tasks. The basic
feasibility results were also reviewed. These assert that practically any cryptographic task can be in principle
realized according to this notion,

Part II. The second part concentrates on the goal of guaranteeing security of protocols in settings where
different protocol instances run alongside each other in the same system. As demonstrated within, this
setting turns out to be vastly different than the basic setting, discussed in Part I, where the entire system
consists of a single execution of a single protocol.

Section 2 gives a general introduction to the concept of security-preserving protocol composition, with
as little as possible discussion of specific notions of security. After exemplifying the security pitfalls in
protocol composition, it describes the common ways in which protocols are often composed together in
systems. It then addresses the question of what it means for a protocol to be “securely composable” with
respect to a certain composition method.

Section 3 investigates the composability properties of the notion of security presented in Part I of this
tutorial. (This is essentially the notion of [C00], extended to deal with reactive tasks.) It turns out that this
notion guarantees that security is preserved under composition, as long as no two protocol instances run
concurrently. As long as eventwoprotocol instances run concurrently, security is no longer guaranteed.

Section 4 then presents and discusses a stronger notion of security, calleduniversally composable
(UC) security. The main advantage of this notion is that it guarantees security under essentially any type of
composition. The main feasibility results for this notion are then reviewed, along with some directions for
relaxing this notion. (In contrast with the basic notion, here some far-reaching impossibility results hold.)
The tutorial is then concluded with some high-level remarks.

Finally, the Appendix contains a brief survey of the main works that contributed to our understanding of
the trusted party definitional paradigm an its composability properties.

2

2 Security preserving protocol composition

In Part I of this tutorial, we have only considered security in a setting where the protocol in question is
executed once, in isolation. This setting is indeed appropriate as a first one to consider when the goal is
to understand the basic security properties of a protocol. However, analyzing security of a protocol in this
stand-alone setting does not allow discovering potential weaknesses that come to play when the protocol
runs alongside other protocols, or even alongside other executions of the same protocol. Consequently, so
far the only method we have for analyzing security of some system is to model the entire system as a single
protocol and analyze it as an atomic unit.

Analyzing security of systems in this way is challenging even for modest-size systems. When consid-
ering security of modern, multi-party, complex systems, the above one-shot approach becomes completely
impractical. Furthermore, in open systems (such as today’s Internet) whose makeup may change dynam-
ically, and arbitrary new protocols might be added after the time of analysis, the above notion does not
provide an adequate security guarantee to begin with.

Instead, we would like to be able to carve out pieces of a large system, analyze the security of each piece
as if it were stand-alone, and then use the security of the individual pieces to deduce security properties of
the overall system. Furthermore, this should be doable even when the overall system is not fully known at
the time of analysis. To do that, we need to be able to argue about the behavior and security of protocols
when running alongside, orcomposed with, other protocols. It turns out that this is a non-trivial task.

This section provides an introduction to the security issues associated with protocol composition. We
start (in Section 2.1) with some examples that demonstrate various ways in which security might be com-
promised when composing together protocols that would be secure when run in isolation. We then proceed
(in Section 2.2) to provide a brief taxonomy of the main types of composition operations considered in the
literature. Finally, we motivate and present the concept of security-preserving composition (Section 2.3).

2.1 What might go wrong

To get some feel for the potential security pitfalls in protocol composition, we sketch three examples that
demonstrate different ways in which protocols that are arguably secure in a stand-alone setting become
insecure when run in conjunction with other protocols. In all the examples the problem is the same: The
attacker uses information learned in one execution to “break” the security of another execution. In each
example, this attack takes on a different form. The presentation is very informal throughout this section;
indeed, the problems discussed are basic ones, and do not depend on the details of a specific definition of
security.

Key Exchange and Secure Communication. This example demonstrates how two protocols can interact
badly in settings where the parties usessecret local outputsobtained from one protocol as input for the other.
It highlights the subtleties involved in maintaining overall security of a system that is designed in a modular
way and consists of different interacting protocols.

Consider the task of Key Exchange, discussed in Section 4.3 of Part I. Recall that here two parties, an
initiator I and a responderR wish to jointly generate a key that remains unknown to an external adver-
sary. This key is typically used in order to encrypt and authenticate messages betweenI andR. Let π be
key-exchange protocol that’s proven to be secure in a stand-alone setting (say, with unauthenticated commu-
nication), and consider the protocolπ′ that’s identical toπ except that the following instruction is added to
the code ofI andR: “If the key has already been generated, and the incoming message includes the correct
value of the key, then send a messageyes . Else sendno .”

3

We first claim that, in a stand-alone setting,π′ is just as secure asπ. Indeed, sinceπ is a secure
protocol, then certainly it does not instruct any party to send the generated key in the clear. Furthermore, the
adversary will be unable to figure out the value of the key just by interacting with the protocol. Thus, the
added instruction will never be activated (except perhaps with negligible probability), andπ′ is effectively
identical toπ.

On the other hand, consider a setting whereπ runs in conjunction with a protocol that uses the key
to encrypt messages. Furthermore, assume that the message takes one out of two possible values (say,
either “sell” or “buy”), and furthermore that the encryption scheme in use is one-time-pad. That is, the
encryption protocol obtains the keyk from π′, and has one party (say,I) send a ciphertextc which is
eitherk ⊕ “sell” or k ⊕ “buy”. (Here⊕ stands for bitwise exclusive or.) We claim that now an adversary
can usec in order to find out bothk and the plaintext. In fact, all the adversary has to do is to compute
c′ = c⊕ “buy” and send it to the other party as a message ofπ′. Now, if the encrypted message was “buy”,
thenc′ = c ⊕ “buy” = k ⊕ “buy” ⊕ “buy” = k andR will respond withyes . If the encrypted message
was “sell”, thenR will respond withno.

The point of this example (which is a variant of an observation of Rackoff from ’95), is thatπ′ allows
the attacker to use the legitimate parties as “oracles” for testing guesses regarding the value of the key. As
long as the system runs onlyπ′, and the key is neverused,this “weakness” has no effect. However, as soon
as the key is used and some values of the key become more plausible than others, the weakness becomes
devastating. Finally, we remark that some prominent definitions of security for key-exchange in the literature
(e.g., that of [BR93]) do not rule out this deceivingly simple weakness.

Parallel composition of Zero-Knowledge protocols. This example shows how certain protocols may be
secure when run in a stand-alone setting, but lose their basic security properties as soon as eventwo instances
of thesameprotocol are executed concurrently in the same system. This holds even if the system involves no
other protocols. (Examples of a similar nature are given in [LLR02] for authenticated Byzantine Agreement
protocols, and in [KLR06]. An interesting aspect of the [KLR06] example is that it remains valid even when
all parties are computationally unbounded.)

Recall the task of Zero-Knowledge (ZK), discussed in Section 4.3 of Part I. Here we have a public binary
relationR. The proverP transmits a valuex to a verifierV , and in addition wants to convinceV that it (P)
has a secret “witness”w such thatR(x,w) holds. This should be done so thatV learns nothing more than
the fact thatP has such a witness.

The example is essentially the one in [GK89, F91]. It uses a combinatorial gadget, which we describe
here only very informally. Assume we have a “puzzle system” where both the prover and the verifier
can generate puzzlesp that have the following properties. First, the prover can solve any given puzzle.
Second, the verifier cannot feasibly solve puzzles; in fact, the verifier cannot even verify the validity of a
solution. That is, even for puzzles generated by the verifier, the verifier cannot distinguish between a valid
solution or a random, invalid one. (Such a gadget can be shown to exist, either via allowing the prover to be
computationally unbounded, as in [GK89], or based on some trapdoor information held by the prover, as in
[F91].)

Now, let π be a ZK protocol (for some relationR). Construct the protocolπ′ where the parties first
run π, and then continue with the following interaction. First,P sends a random puzzlep to V . Then,V
responds with a purported solutions for p, plus a puzzlep′. If s is a correct solution, thenP reveals the
secret witnessw. Otherwise,P sends toV a solutions′ for the puzzlep′ provided byV .

We first argue that ifπ is ZK in a stand-alone setting, thenπ′ satisfies the ZK requirement. Intuitively,
this holds since, by assumption,V cannot solve puzzles, thus in a stand-alone execution ofπ P never reveals
w (except perhaps with negligible probability). Furthermore, the fact thatP providesV with a solutions′

4

to the puzzlep′ is not really a problem in a stand-alone setting, sinceV cannot distinguishs′ from a random
value (whichV could have generated by itself).

However, when a proverP runs two concurrent executions ofπ′ with V (say, on the same input(x,w)),
then a cheatingV can easily extract the witness:V first waits to receive the puzzlesp1 andp2 from P in the
two sessions. It then sends(s, p2) to P in the first session, for some arbitrarys. In response,V gets fromP
a solutions2 to p2, which it returns toP in the second session. Sinces2 is a correct solution,P will now
disclosew.

Malleability of commitment. The following example highlight two issues. First, it demonstrates that a
multi-execution system brings forth entirely newsecurity concernsthat do not exist in a stand-alone setting.
Second, it highlights the difficulty in arguing security of a protocol with respect toarbitrary other protocols,
especially protocols that have been designed specifically so as to “interact badly” with the analyzed protocol.

Recall the task of commitment, discussed in Section 4.3 of Part I. This is a two-stage task, where in the
commit stage a committerC provides a receiverR with a “commitment value”c to a secret valuex. In the
opening stageC disclosesx. (For simplicity, we assume here that both stages consist of a single message
from C to R.) There are essentially two security requirements: Asecrecy requirement, thatx remains
completely secret throughout the commit stage, and abinding requirement, that there is at most one value
x thatR will accept as a valid opening for a commitment valuec.

Consider the following natural sealed-bid auction protocol: Each party commits to its bid (say, over
a broadcast channel). Once the bidding stage is over, all parties open their commitments and the winner
is decided. It is tempting to deduce that any secure commitment protocol would suffice here. It turns
out, however, that there exist natural commitment protocols that satisfy both secrecy and binding (and in
fact satisfy the definition from Section 4.3 of Part I), but which are susceptible to the following attack:
An attacker might use a commitmentc, that was generated by an honest committerC that commits to a
valuex, to generate a commitmentc′; later, whenC opensc to valuex, the attacker is able to “open”c′

to a valuex′ that is related tox (say,x′ = x + 1).2 Of course, this attack is devastating for the auction
protocol, in spite of the fact that neither secrecy nor binding of the commitment protocol were violated here.
Rather, a new concern arises, namely the need to maintain “independence” between the committed values
in different executions of the protocol. This concern (which is callednon-malleability in the literature,
following [DDN00] who pointed out this concern and showed how to address it) does not come to play in a
stand-alone execution.

Several non-malleable commitment schemes have been constructed, using different set-up and network
assumptions. Indeed, these schemes are not susceptible to the above attack. However, notice that this attack
captures only a limited aspect of the “independence” problem, where there are onlytwo executions, and
more importantly the executions are of thesame protocol.What about independence between an execution
of a commitment protocolπ and an execution of another protocol,π′? This seems like a hopeless goal,
especially whenπ′ is designed specifically to interact withπ. To see this, consider the following example.
Letπ be any (even non-malleable) commitment protocol, and letπ′ be the protocol where in order to commit
to a valuex, one runsπ on committed valuex − 1. Assume thatC commits using protocolπ, and that a
maliciousC ′ announces that it commits using protocolπ′. Now, whenC sends its commitment stringc, all

2For instance, consider Pedersen’s commitment scheme [P91]: Let G be an algebraic group of large prime order, and assume
that two random generatorsg, h of G are publicly known (say, they are announced by the auctioneer). In the commit stage,C sends

c = gx · hr, wherex ∈ G is the committed value, andr
R← G. To open,C sendsx andr andR accepts ifc = gx · hr. Here

secrecy is perfect (and unconditional). Binding holds under the assumption that computing discrete logarithms inG is infeasible.
In fact, a somewhat augmented variant also realizesFCOM as in Definition 3 in Part I. Still, consider a malicious committerC′ that
wishes to commit to the value committed byC, plus one. Then allC′ has to do is to generatec′ = c · g. WhenC′ sees a valid
opening(x, r) of c, it can generate the valid opening(x + 1, r) of c′.

5

C ′ has to do is to copyc as its own commitment. WhenC opensc to a valuex, C ′ can use the same opening
to openc to the valuex + 1. Note thatC ′ can useπ′ in a completely different context, say with a set of
parties that do not know aboutC or π. This will make the attack hard to detect.

Indeed, guaranteeing security against these “chosen protocol attacks” seems intuitively impossible.
However, contrary to this intuition, Section 4 demonstrates that such attackscan be protected against in
most cases, via appropriate use of some set-up assumptions.

2.2 How can protocols be composed

This section provides a brief taxonomy of the different types of protocol composition operations considered
in the literature, namely the various ways of combining together protocols in a single system. Taking another
point of view, these operations naturally correspond to different ways of de-composing a complex system
into separate pieces, which we would like to view as individual “protocols.”

We first list some salient parameters for composition operations. Next we discuss some well-studied
settings in terms of these parameters. Finally, we show how all these settings can be cast as special cases of
a single, general composition operation.

Timing coordination: This parameter refers to the possible ways in which the messages of the individual
executions can interleave with each other. Salient options include:

Sequential composition: Here no two messages of different protocol executions may interleave.
That is, when ordering the events of sending and receiving of messages in the system along
a common time axis, then all the events related to each protocol execution must form an unin-
terrupted sequence.

Enforcing global sequentiality requires each party to locally coordinate the different executions
in terms of the timing of message sending. It also requires some level of global coordination
among the parties, to guarantee that no party “gets ahead of the pack” and starts sending mes-
sages of a new execution before other parties completed prior executions.

Non-concurrent composition: This is a somewhat more general variant that allows “nesting” of
protocol executions, as long as there is no “interleaving” of messages. That is, assume some
message of executione1 was delivered, and at a later point a message of executione2 was
delivered. Then, once another message of executione1 is delivered, messages of executione2

can no longer be delivered. Also here, guaranteeing global non-interleaving requires global
coordination.

Parallel composition: Here it is assumed that the messages in each protocol execution are naturally
associated with “rounds”, where a “roundi message” is sent only in response to receiving a
“round i − 1 message”. The composed execution of a given set of protocol executions allows
any interleaving of protocol messages, as long as all the “roundi messages” of all the executions
are delivered before any “roundi + 1 message” is delivered.

While this composition method is also quite restrictive and requires global timing coordination
among the executions, it is natural in synchronous systems where messages are naturally asso-
ciated with rounds.

Concurrent composition: Here any interleaving of messages from different protocol executions is
allowed. Clearly, concurrent composition allows both sequential and parallel composition as
special cases. It also allows many other special types of interleaving, such as the common case
where various executions wait for an external global event to proceed. Concurrent composition

6

is very powerful in that it requires no timing coordination among the various executions. Indeed,
the timing of events may of course be adversarially coordinated.

We note that the level of timing coordination between executions is in principle unrelated to the syn-
chrony guarantees of the underlying communication network. For instance, different executions can
be composed concurrently and “asynchronously” even when each execution is synchronous within
itself. Also, sequential or non-concurrent composition can be sometimes guaranteed even in a com-
pletely asynchronous communication network.

Input coordination: This parameter refers to the possible relations between the input values to the various
protocol executions. We distinguish three variants:

Same input: Here each party has the same input value for all the executions. Taking the role of
a party in a protocol as part of its input, this means that each party has the same role in all
the executions it participates in. Still, different executions may include different parties. (A
somewhat more restrictive case is where the same set of parties participate in all executions.)

Fixed inputs: Here the inputs to different executions can be arbitrarily different from each other. In
particular, a party may have different roles in different executions. (For instance a party may be
a receiver in one execution of a commitment protocol, and a committer in a different execution.)
Still, all inputs, including the set of participants in each execution, are fixed in advance before
the execution of the composed system starts.

Adaptively chosen inputs: Here each input to each party in each execution can be determined adap-
tively based on the current state of the composed system. This is of course the most general
setting of this parameter, and includes the above two settings as special cases. Variants of this
setting depend on the amount of information available to the entities that choose the inputs; for
instance, the inputs of a given party may be determined only based on the information available
to that party, or alternatively based on the current global state of the system.

Protocol coordination: This parameter refers to the possible relations between theprograms,or codes,
executed in different executions. We distinguish two main cases:

Self composition: Here all executions run the same program. A closely related case is where different
executions may run different programs, but the set of programs is fixed and known in advance.
(Indeed, running a fixed number of programs is equivalent to running a single program that
multiplexes between the many programs depending on the input.)

General composition: Here a given execution of a protocol may be running alongside arbitrary other
protocols (i.e., programs) that may not be known in advance. Furthermore, these programs may
be determined adaptively, depending on the protocol in question and potentially even on the
current state of the composed system. This is indeed a highly adversarial setting. Still, it seems
to adequately model the situation in open and unregulated networks such as the global Internet.

State coordination: This parameter refers to the amount and type of information that is shared among
different executions. We distinguish the following cases:

Independent states:This is the “classic” case of protocol composition where different executions
have no shared state. That is, The local variables of each execution within each participant are
seen only by that execution. Also, the random choices made within each execution are inde-
pendent from those in other executions. (Of course, different executions can still have related
inputs.)

7

Joint state: Here some variables or random choices may be visible to multiple protocol executions.
One salient example of such a setting is a protocol where the same secret signing key for a
signature scheme is used in multiple protocol executions (say, for generating multiple session
keys). Another example is a “common random string”, namely a public string that is drawn
from some distribution and is assumed to be globally available in the system. Here the “joint
part” is typically modeled as a “subroutine protocol” that takes input from and provides output
to multiple protocol executions. We note that, although this type of composition is somewhat
non-traditional, without it it would not be possible to de-compose such systems into smaller
components — such as a single exchange of a key in a key-exchange protocol.

Number of executions: This parameter determines the number of protocol executions that run together in
the composed system. It is crucial, in the sense that, for most settings of the rest of the parameters and
for eachi, it is possible to construct protocols that “compose securely” as long as at mosti executions
run together, but break as soon as the system involvesi + 1 executions. Three salient settings are:

Fixed number of executions: Here the number of executions is fixed in advance. In particular, it is
does not depend on the input, nor on a security parameter.

Bounded number of executions:The maximum number of executions may depend on public infor-
mation, such as the security parameter or some global input, but is known when designing the
protocol. In particular, the complexity of the protocol may depend on this bound.

Unbounded number of executions:The number of executions is chosen adversarially in an adaptive
way, and is limited only by the runtime of the adversary. In particular, it may depend on the
execution, and remain unknown to any or some of the parties.

Some studied settings. Almost any combination of the above parameters yields a meaningful setting for
the study of security-preserving protocol composition. Yet, some settings have been the focus of much
dedicated study, both in the context of specific primitives such as key-exchange, zero-knowledge or com-
mitment, and in more general contexts. We briefly mention some of these settings. (For sake of conciseness
and brevity, we do not expand here on the specific contributions of the works mentioned below, nor on the
notions of security that are obtained in each of these settings.)

Perhaps the simplest setting to consider is that of sequential self-composition with same input. This
setting is studied in the context of zero-knowledge in [GO94] and general function evaluation in [B91]. In
the case of parallel and concurrent composition, it was demonstrated in Section 2.1 that zero-knowledge
is not preserved under same-input self-composition of eventwo executions [GK89, F91]. Still, protocols
that remain zero-knowledge in this setting exist [GO94]. This primitive case of concurrent composition
is generalized in a number of directions. One direction is that of multiple concurrent instances, while
keeping the restriction to same input. Obtaining zero-knowledge in this case, especially when the number
of executions isunboundedand not known a priori, turns out to be a non-trivial problem that requires new
protocol techniques [F91, DNS98, RK99, PRS02].

Another extension is to the case of concurrent self-composition when parties can have different inputs
in different executions. The case oftwocopies andfixedinputs, studied in [DDN00] and its many follow-up
papers, brings about the concern ofmalleability, or input independence.Generalizing to adaptively chosen
inputs and a bounded number of concurrent instances, or else to fixed inputs and an unbounded number
of sessions, requires yet another set of techniques (e.g. [P04]), while a general solution for the case of
adaptively chosen inputs and an unbounded number of instances requires either some initial set-up [L04] or
some relaxation of the notion of security [BS05].

8

So far, we discussed the case of self-composition. General composition was first studied in the non-
concurrent case, where it was shown to preserve some general ideal-model based notions of security for
function evaluation [MR91, C00]. Notions of ideal-model based security that are preserved under con-
current general composition were subsequently developed, e.g. [DM00, PW00, C01, MRST06]. Methods
for arguing about composition with joint state were developed in the context of general composition, e.g.
[CR03, CDPW07].

Universal composition. Next we describe a single composition operation (namely, a way of combining
several protocols into a single protocol) that can be used to express all the settings discussed above. Having
such a generic composition operation is convenient in that composability properties proven with respect to
this operation apply to all settings. Furthermore, this specific operation seems to closely correspond to the
structure of actual protocols. It also meshes nicely with the trusted party paradigm (we’ll see this in the next
section).

The composition operation, which we calluniversal composition, is a natural extension of the “sub-
routine composition” operation on sequential algorithms to distributed protocols. That is, letρ be a protocol
(i.e., a set of instructions for the participants), where the instructions of each party include an instruction
to provide input to some “subroutine program,” denotedφ, as well as instructions on what to do when the
subroutine programφ generates output. (Using the formalism of Section 3.1 in Part I, the system contains
ITIs running the codeρ, alongside ITIs running the codeφ; the ITIs runningρ write in the input tapes of
ITIs runningφ, and the ITIs runningφ write on the subroutine output tapes of ITIs runningρ.)

Let π be another protocol. Then the composed protocol, denotedρπ/φ, is the protocol where the code
of each party is the same as that ofρ, with the exception that the instance ofφ is replaced by an instance of
π. That is, each instruction to provide input toφ is replaced by an instruction to provide the same input to
π, and the instructions to be carried out upon receipt of an output fromφ are now carried out upon receipt
of an output fromπ. It is stressed that the replacement is done separately within each party runningρ. In
particular, an execution ofρπ/φ involves an entire distributed instance of protocolπ, where the different
parties of this instance exchange messages among themselves.

The case whereρ uses multiple (potentially unboundedly many) instances ofφ is defined analogously.
That is, each instance ofφ is replaced by an instance ofπ. It is assumed that protocolρ has some mechanism
to distinguish among the various instances ofφ; this mechanism remains the same with respect to distin-
guishing among the instances ofπ. While in principle there is no need to specify a particular mechanism,
for sake of concreteness we assume thatρ associates a uniquesession identifier (SID) with each instance
of φ, where the SID is included in all inputs to and outputs from this instance. Then the composed protocol
ρπ/φ keeps the same SIDs as inρ.

Now, the various settings described above for protocol composition can be captured via different codes
for the “high-level protocol”,ρ. For instance, concurrent self composition with same input is captured by the
protocolρ that simply runs multiple instances of its subroutineφ on the same input, and outputs whatever
these subroutines output. To capture fixed or adaptively chosen inputs modifyρ accordingly, to obtain the
inputs for the various instances in advance or during the course of the execution. General composition is
captured by allowingρ to be arbitrary.

Sequential self composition in a synchronous execution setting is captured by the protocolρ that runs
multiple instances of its subroutineφ, one after the other in a sequential way, either with the same input or
with different inputs, as may be the case, and outputs whatever these subroutines output. To capture parallel
composition,ρ runs all instances ofφ together and in each round delivers all the current messages of all
instances. in lockstep. Non-concurrent general composition allowsρ to be arbitrary, as long as all parties
start and end each instance ofφ at the same global round, and only messages of this instance ofφ are sent

9

while this instance is active.
Finally, we note that the above description of universal composition treats the protocolφ merely as a

formal “placeholder” in the description of protocolρ. Yet, as seen in the next section, protocolφ can have a
central role in specifying the security properties required from protocol composition.

2.3 Security preserving composition

So far, we have treated the security requirements from cryptographic protocols under composition in an
informal way. That is, we have expressed the desire to have protocols that “maintain their security prop-
erties” when run alongside other protocols. We have also observed, in Section 2.1, that some desirable
security properties may no longer hold in such settings. How can we formalize the security requirements
from protocols under composition?

One way, of course, is to list a set of specific properties that we would like to guarantee, and demonstrate
that these properties hold. For instance, for protocols that evaluate some function of the inputs of the parties,
we can require thatcorrectnessis preserved, in the sense that in all instances the outputs of the parties agrees
with the value of the function at their inputs. If the evaluated function is probabilistic then we can also require
that the randomness used in each execution is in some sense “independent” of the randomness used in other
executions. We can also require that secrecy of certain values is preserved even in the composed system.
(An example of a setting where such a specific requirement is made is that of concurrent zero-knowledge,
mentioned above.) An additional specific requirement is that ofinput independence, or non-malleability,
namely that the outputs of a protocol execution will not depend in “illegitimate ways” on secret inputs to
another execution.

However, in the spirit of Section 2 in Part I, we prefer to make a single, unified security requirement that
would imply all of the specific requirements mentioned above, as well as other potential requirements. And,
again, in the spirit of Section 2 in Part I, we use the ideal-model paradigm to do so.

Recall that, by this paradigm, a protocolπ is considered a secure implementation for a given task if it
behaves in essentially the same way as an ideal protocolφ for that task, where the ideal protocol instructs
all parties to privately hand their inputs to a trusted party which computes the desired outputs and hands
them back to the parties. Furthermore, the requirement “π behaves in essentially the same way asφ” is
formalized to mean “π emulatesφ” as in Definition 2 in Part I. The compositionality requirement we make
is analogous: Consider a task that is represented via an ideal protocolφ, and letπ be a protocol that uses
(potentially multiple instances of)φ. We say thatπ implements the task in a composable way with respect
to π, if π continues to behave essentially the same when the instances ofφ are replaced by instances ofπ.
In the language of universal composition and emulation, we want that the protocolρπ/φ will emulate the
original protocolρ.

Definition 1 Protocolπ emulates an ideal protocolφ with ρ-composable security if it holds thatρπ/φ emu-
latesρ.

We observe that the notion of composable security indeed guarantees all the compositionality require-
ments listed above. Indeed, whenρ makes subroutine calls to the various instances of the ideal protocolφ, it
is guaranteed that each instance ofφ returns a correct function value, regardless of the activity in the rest of
the system. The definition of emulation guarantees thatρ continues to exhibit essentially the same behavior
when the instances ofφ are replaced with instances ofπ. Similarly, since the trusted parties operate inde-
pendently of each other, their outputs are computed using independent random choices. Also, the secrecy
of data in each individual execution is guaranteed regardless of the rest of the system. Input independence
is guaranteed since each party has to explicitly provide its inputs to each instance ofφ, based only on its

10

legitimate outputs from the various instances ofφ. Again, the definition of emulation guarantees thatρ
continues to exhibit essentially the same behavior when the instances ofφ are replaced with instances ofπ.

The above line of reasoning considers a single “calling protocol”,ρ. Secure composability with respect
to different types of composition operations are captured by considering the corresponding classes of the
calling protocol, as described in Section 2.2.

One potential shortcoming of Definition 1 is that the notion of emulation, as defined so far, does not
necessarily imply composable security. This means that Definition 1 does not necessarily guarantee that
security is preserved under “iterated composition”. That is, the fact thatπ emulatesφ with ρ-composable
security does not necessarily imply thatρπ/φ emulatesρ with ρ′-composable security for an arbitraryρ′ (or
even forρ′ = ρ). See more discussion on this point in Section 4.

3 The composability properties of basic security

Intuitively, the trusted-party definitional paradigm as formalized in Section 4 in Part I appears to be “inher-
ently compositional”. In particular, the notion of protocol emulation seems to almost immediately guarantee
— at least in spirit — that no external process will be able to distinguish between the emulating protocol
and the emulated one. Thus it seems natural to expect that basic security will implyρ-composable security
with respect toanypolytime protocolρ. That is, it is natural to expect that if protocolπ realizes an ideal
functionalityF with basic security (as in Definition 3 in Part I), thenρπ/φ would emulateρ for any polytime
protocolρ.

It turns out that this this intuition can indeed be formalized for some types of composition, namely
non-concurrentgeneral composition. However, as soon as the non-concurrency condition is violated this
intuition is incorrect. Details follow.

Recall that innon-concurrentcomposition it is guaranteed that no two protocol instances run concur-
rently with each other, except for simple nesting (see Section 2.2). More precisely, say that a protocolρ is
non-concurrent if any execution ofρπ, with any subroutine protocolπ, has the following property: Order
all messages sent in the system along a single time axis, and Lete1 ande2 be two protocol executions where
the first message ofe1 was sent before the first message ofe2. Then, once the firste2-message is sent, no
e1-messages are sent until the laste2 message is delivered. Then we have:

Theorem 2 ([C00]) Let π andφ be protocols such thatπ emulatesφ as in Definition 2 in Part I. Then,π
emulatesφ with ρ-composable security for anynon-concurrent protocolρ.

Proof idea. We very briefly sketch the main idea behind the proof. For simplicity we concentrate on
the case whereρ uses only a single instance ofφ. Since no two instances ofφ run concurrently, it is
straightforward to extend the proof to the case whereρ uses multiple instances ofφ.

Let A be an adversary that interacts with parties runningρπ. We need to construct an adversaryAρ,
such that no environmentE will be able to tell whether it is interacting withρπ/phi andA or with ρ and
Aρ. The idea is to constructAρ in two steps: First “cut out” ofA a real-life adversary, denotedAπ, that
operates against protocolπ as a stand-alone protocol. The fact thatπ emulatesφ guarantees that there exist
an adversary (“simulator”)Aφ, such that no environment can tell whether it is interacting withπ andAπ or
with φ andAφ. Next, constructAρ out ofA andAφ.

We sketch the above steps. Essentially,Aπ represents the “segment” ofA that interacts with protocol
π. That is,Aπ expects to receive in its input (coming from the environmentE) a configuration ofA, and
simulates a run ofA starting from this configuration. Once the execution of this instance ofπ has completed,
Aπ outputs the current configuration of the simulatedA.

11

AdversaryAρ is essentially the adversaryA, where the segment that interacts withπ is replaced by the
simulatorAφ. That is,Aρ starts by invoking a copy ofA and followingA’s instructions, up to the point
where the first message ofπ is sent. At this point,A expects to interact withπ, whereasAρ interacts with
φ. To continue runningA, adversaryAρ runsAφ, with input that describes thecurrent state ofA. The
interaction betweenAφ andφ is emulated byAρ, usingAρ’s own access toφ. Recall that the output ofAφ

is a (simulated) internal state ofA at the completion of protocolπ. Once protocolπ completes its execution
and the parties return to runningρ, adversaryAρ returns to runningA (starting from the state inAφ’s output)
and follows the instructions ofA.

The validity of the construction is demonstrated by reduction: Assume that there is an environmentE
that distinguishes between an interaction withρ andAρ, and an interaction withρπ/φ andA. Then one
constructs an environment,Eπ, that distinguishes between an interaction withφ andAφ, and an interaction
with π andAπ. Essentially,Eπ runsE , where the interaction betweenE , ρ, and the segment ofA that does
not interact with the subroutine, is simulated internally. The interaction with the subroutine (eitherπ or
φ) and its adversary (eitherAπ or Aφ) is taken to be the interaction with the actual external protocol and
adversary.

Finally, it is shown that the view ofE , when simulated by environmentEπ that interacts with adversary
Aπ and parties runningπ, is distributed identically to the view ofE that interacts with adversaryA and
parties runningρπ/φ. Similarly, the view ofE , when simulated by environmentEπ that interacts with ad-
versaryAφ and parties runningφ, is distributedidentically to the view ofE that interacts with adversary
A and parties runningρ. (These two equivalences are essentially standard bisimulation arguments from the
distributed systems community.) It is stressed that the bisimulation is exact and the distributions over the
views are identical. Consequently, the “loss in security” incurred by the theorem is zero.

Basic security under concurrent composition. Can these composability results be extended to concur-
rent protocol composition? It turns out that the answer is strongly negative. In fact, we have already seen a
counter-example: As argued in Section 4.3 of Part I, the set of protocols that realizefR

ZK , the zero-knowledge
function with relationR, roughly corresponds to a class of zero-knowledge protocols for the languageLR.
Furthermore, as seen in section 2.1, it is possible to construct zero-knowledge protocols (for any given lan-
guage) where running even two instances of the protocol in parallel allows the verifier to extract the entire
witness. Indeed, this example can be easily extended to come up with a protocolπ and a relationR such
that π realizesfR

ZK , but ρπ/φ does not emulateρfR
ZK whereρ is the protocol that runs two instances of its

subroutine concurrently, on the same input. Similarly, it can be demonstrated that basic security does not
guarantee non-malleability. Further discussion on why this is the case appears in the next section.

4 Universally Composable Security

In spite of the intuitive appeal and expressive power of the basic notion of security developed in Sections 3
and 4 in Part I, we have seen in Section 3 that this notion provides only limited compositionality guarantees:
As soon as protocols are allowed to run concurrently — as they often do in actual composed systems — no
security guarantees are given. Furthermore, we have seen examples where security breaks down completely.

Universally Composable (UC) security is a strengthening of the basic notion of security, that comes
to address the issue of preserving security under concurrent composition. The goal is to have a notion of
security that guarantees security under all commonplace types of protocol composition, and in particular the
ones described in Section 2.2. This should be done without losing on the intuitive appeal and expressive
power, and with as mild as possible additional requirements from protocols.3 This section is organized as

3The termuniversally composable securitymight be somewhat confusing, given that the termuniversal compositionwas used

12

follows. Section 4.1 presents and motivates the notion of UC security and its relation to the basic notion
from previous sections. Section 4.3 very briefly presents the known results regarding the realizability of this
notion. Finally, Section 4.3.2 touches upon directions for relaxing UC security while retaining some of its
security and composability guarantees.

4.1 The definition

Why does the basic definition of security from Sections 3 and 4 in Part I fail to guarantee security under
concurrent composition? When reviewing the definition in an attempt to answer this question, one notices
that the model of protocol execution as defined there allows the environment, which models the “external
world”, to exchange information with the adversary, which models a coordinated attack against a single
protocol execution, only once at the beginning of the execution, where the environment provides information
to the adversary, and once at the end, where the adversary provides output to the environment. In a way, this
modeling treats an execution of a protocol as an “atomic step,” where there is no “information flow” between
the protocol execution and the external environment during the protocol execution. (Some protocols may
indeed allow the adversary and environment to exchange additional information via the inputs and outputs
to the parties, but such exchanges are protocol-dependent and cannot be used in general arguments on the
model.)

This modeling is indeed appropriate in a system where only a single protocol execution is active at
any given point in time. However, it seems insufficient for capturing the often “circular” information flow
among protocol executions that runconcurrently.In particular, it fails to capture situations such as the ones
described in Section 2.1, where an attacker uses information gathered in one execution in order to extract
information in another execution, and then uses the extracted information back in the first execution.

UC security is aimed at correcting this shortcoming of the basic definition. The idea is to modify the
model of protocol execution so as to allow the environment and the adversary to interact freely throughout
the course of the computation. That is, whenever the environment is activated, it is allowed to provide input
not only to the parties running the protocol, but also to the adversary. Similarly, whenever the adversary is
activated, it can provide output to the environment. This means that the environment and the adversary can
communicate before and after each activation of a party running the protocol; in other words, the “atomic
unit” of uninterrupted execution is now a single activation of a party, rather than an entire execution of a
protocol. As seen below, this change to the model turns out to suffice for proving general composability. It
also changes the set of acceptable protocols in a radical way.

Another, more technical modification of the model from Section 4 in Part I is to add more structure to
the communication model in order to facilitate the distinction between protocol instances in a composite
system. A more detailed description follows.

The system model. We use the system model from Section 4.1 in Part I, with one change. To facilitate
the distinction among different protocol executions in a system, we assume that the identity of each party
(i.e., the contents of the identity tape) consists of two fields: asession ID (SID) and aparty ID (PID). The
SID is used to specify the “session”, or “protocol instance” to which the ITI “belongs”, and is joint to all the
ITIs in a session. The PID distinguishes the ITI from other ITIs in that protocol instance. It can also be used
to associate an ITI with a “cluster” of ITIs, such as the cluster of procedures running on a single physical

to denote a specific composition operation. In particular, several different definitions of security are known to be “universally
composable”, in the sense that they support a universal composition theorem such as Theorem 4 below. We thus use the acronym
“UC security” to refer to the specific notion discussed here. (The duplicate terminology can be somewhat justified by Proposition
5 below, which implies that UC security is in a sense aminimal extension of basic security that is preserved under universal
composition.)

13

computer. Aninstance of a protocolπ with SID s in a certain configuration of a system is now defined to
be the set of ITIs that have codeπ and SIDs.

Remark:The above modeling of the SID is only one out of many possible ways for representing and
distinguishing among protocol instances in a composite system. Still, the fact that all ITIs in a protocol
instance have the same SID, which is determined by the invoking ITI, seems like a natural choice. In
particular, it is easy to realize (say, by letting the party which initiates an instance to determine the SID and
communicate it to all other participants). It also often facilitates the design and analysis of protocols, by
providing to the participants a common value that is unique to the instance.

The protocol execution experiment. The protocol execution experiment is the same as the one in Section
4.2 in Part I, with the following two modifications. First, as mentioned above, we allow the environment
to provide inputs to the adversary at any time. Similarly, we allow the adversary to provide outputs to the
environment at any time.

Second, recall that in the model of Section 4.2 in Part I all parties (ITIs) invoked by the environment must
run the same protocol (ITM). Furthermore, all the parties were treated as participating in a single protocol
instance. In the present model, unless explicitly restricted, the environment can in principle invoke multiple
protocol instances, by giving different SIDs to different parties. To keep in the spirit of a single instance,
we require that all the parties invoked by the environment participate in the same protocol instance, namely
they all have the same SID. (The value of the SID is of course chosen by the environment.)

Analogously to the notationEXECπ,A,E from Section 4.2 in Part I, letUC-EXECπ,A,E(x) denote the
random variable describing the output of environmentE when interacting with adversaryA and protocolπ
on inputx (for E) in the present model.UC-EXECπ,A,E denotes the ensemble{UC-EXECπ,A,E(x)}x∈{0,1}∗ .

Restricting the environment to run only a single protocol instance significantly simplifies the model
and the analysis of protocols. On the down side, it comes at the price of some restrictions on the class of
protocols which can be composed in a secure way. See more discussion in Section 4.2.

The ideal process. The ideal process remains the same as the one in Section 4.2 in Part I, with the follow-
ing exception: We restrict attention to ideal functionalitiesF where an instance ignores inputs that do not
specify its SID. (Recall that the SID of an instance is determined by the ITI that called this instance for the
first time.) Similarly, we assume thatF includes its SID in all of its outputs. We note that this restriction is
not essential; its purpose is to simplify the modeling and analysis of protocols.

Protocol emulation. The notion of protocol emulation and realizing functionalities is the same as in Sec-
tion 4.2 in Part I, except that it relates to the present execution experiments:

Definition 3 UC protocol emulation and realization A protocolπ UC-emulates protocolφ if for any PT
adversaryA there exists a PT adversaryS such that for all PT environmentsE that output only one bit:

UC-EXECφ,S,E ≈ UC-EXECπ,A,E

A protocolπ UC-realizes an ideal functionalityF if π UC-emulates the ideal protocol forF .

4.2 Composability

The main attraction in UC security is that it guarantees composable security with respect to almost any PT
calling protocol. That is, we restrict the way a protocol receives inputs from and provides output to the
surrounding system in the following natural way: We assume that the only component of the “subroutine

14

protocol” that receives inputs from the outside and provides outputs to the outside is the “top-level program”.
More precisely, recall that an ITIP is called asubroutine of an ITI P ′ if P takes input fromP ′ or provides
output toP ′; P is a subsidiary of P ′ if it a subroutine ofP ′ or of a subsidiary ofP ′. Say that an ITM
π is subroutine respecting if any ITI P running the codeπ has the property that all subsidiaries ofP
are subroutines only ofP or of subsidiaries ofP . A protocol is subroutine respecting if it is subroutine
respecting as an ITM. We have:

Theorem 4 Let π and φ be subroutine-respecting PT protocols such thatπ UC-emulatesφ. Thenρπ/φ

UC-emulatesρ for any PT protocolρ.

Historical note. Theorem 4 was first proven in [PW00, PW01] for the case whereρ invokes a single
instance of the subroutine protocolφ. (These proofs are set in their formalism, which has several technical
differences from the one presented here.) The case whereρ may invoke an unbounded number of instances
of φ was first proven in [C01] in a model similar to the one presented here, and subsequently re-proven in a
number of different models, e.g. [BPW04, DKMR05, K06, CKLP06].

Proof idea. At high level, the proof of Theorem 4 follows the same steps as the proof of Theorem 2, with
the exception that here protocolρ may call multiple instances ofφ, where these instances run concurrently.
Consequently, the adversaryAρ that interacts with protocolρ concurrently invokes multiple instances of
the simulatorAφ, where each instance ofAφ interacts with a single instance ofφ. In order to be able to
carry out the overall interaction withρ and the environment in a globally consistent manner,Aρ uses the
fact that each instance ofAφ outputs the necessary informationafter each activation.This allowsAρ to use
information generated in one instance ofAφ as input to another instance ofAφ. (Recall that in the case of
basic securityAφ is required to generate output only at the end of the execution; such a guarantee would not
suffice for the present case.)

As in the proof of Theorem 2, the proof of validity ofAρ proceeds by reduction to the validity ofAφ. The
main difference from Theorem 2 is that here there are multiple instances of a subroutine protocol (eitherφ or
π), running concurrently. Thus, we need to demonstrate that no environment can tell the difference between
the case where all instances ofφ are replaced byπ and the case where none of the instances ofφ are replaced
by π. This is done via a standard hybrid argument, namely by considering multiple hybrid executions where
in each execution one more instance ofφ is replaced byπ. An environment that distinguishes between two
consecutive instances is now translated into an environment that contradicts the validity ofAφ. We omit
further details.

4.2.1 Discussion

To interpret Theorem 4 recall that, for any given calling protocolρ, the fact thatρπ/φ UC-emulatesρ im-
plies that replacing the instances ofφ by instances ofπ does not change the behavior ofρ with respect
to PT adversaries in a noticeable way; in particular, it does not introduce any new vulnerabilities toρπ/φ.
Furthermore, recall that any of the composition scenarios mentioned in Section 2.2 (with the exception of
joint-state composition, discussed below) can be captured as universal composition with some set of calling
protocols. Thus, Theorem 4 guarantees security-preserving composition in any of these scenarios. Some
additional aspects of the theorem are discussed next.

Modular protocol analysis. The fact that Theorem 4 puts very few restrictions on the calling protocolρ
makes it conducive to carrying out the plan from the preamble of Section 4.3 of Part I in a way that meshes

15

naturally with the structure of common protocols. That is, the theorem allows de-composing protocols to
many simple subroutines, analyzing each subroutine separately, and then deducing the security of the overall
protocol from the security of the subroutines. In particular, the partitioning to subroutines can be nested in
an arbitrary way. This is a powerful methodology, especially given the fact that rigorous analysis of even
simple cryptographic protocols tends to be dauntingly complex.

Enabling sound symbolic and automated analysis. Another advantage of Theorem 4 is that it allows to
“abstract away” cryptographic imperfections such as computational bounds and error probabilities, while
maintaining soundness of the abstractions. This enables applying automated proof tools that require sym-
bolic representations of protocols (as in, say, [DY83]) and cannot directly handle asymptotic modeling and
cryptographic imperfections. To do that, first devise functionalities that capture in an ideal way the security
properties of the cryptographic primitives (say, encryption in the case of [DY83]) used in the analyzed sys-
tem. Next, re-write the protocols to be analyzed in a symbolic, non-asymptotic model that corresponds to
having access to the devised ideal functionalities. Now, one can apply an automated tool to the symbolic
representation of the protocol. Finally, use the UC theorem to deduce that, if the cryptographic protocols in
use UC-realize the devised ideal functionalities, then the overall system enjoys the same properties proven
for the abstract version. Some works that take this approach include [BPW03, CH04, SB+06].

Two things should be kept in mind, however, when taking this approach. First, for the analysis to be
of value, one has to make sure that the asserted abstract security properties have meaningful translations to
concrete security properties of concrete protocols.

Second, the complexity of automated analysis tools grows very rapidly as a function of the number of
messages and sessions in the analyzed system (see e.g. the undecidability and NP-completeness results in
[EG82, DLMS99]). Consequently, a viable instantiation of the above approach would need to break down
protocols to simple subroutines and analyze each subroutine separately as a single session. Here the UC
theorem is once again a crucial enabler.

Representing communication models. Another use of Theorem 4 is for modular representation of var-
ious communication models within the basic model of computation described above. That is, to capture a
given communication model, simply devise an ideal functionalityF that guarantees the abstractions pro-
vided by that model. Now, designing protocols in that model is translated to designing protocols that run in
the basic model and make calls toF . In order to further simplify the code ofF , one can allow for multiple
instances ofF to run concurrently, where each instance deals with a single use of the underlying model (say,
a single sending of a message in the case of an authenticated communication abstraction). Here we do not
necessarily intend torealizeF in an algorithmic way; rather,F merely serves as a functional description
of the desired abstraction. Still, in some cases the same ideal functionality can be used both as the basis
for a communication model and as a target to be realized by cryptographic protocols. Some communication
models that have been captured this way include authenticated communication, secure communication, and
synchronous communication (see e.g. [C01]).

Composition with joint state. The restriction to subroutine-respecting protocols, made in Theorem 4,
excludes the case of composition with joint state, namely in the case where parties in two or more protocol
instances have access to the same instance of some subroutine program. We currently have two alternative
methods to deal with this situation. A first method is to explicitly model the subroutine as an entity that
interacts with multiple protocol instances (even arbitrary ones). This in turn requires working with a strong
variant of UC security, calledgeneralized UC, which allows capturing such subroutines and the protocols
that use them. See details in [CDPW07].

16

A second option is to demonstrate thatall the protocols that use the joint subroutine do so via an interface
that satisfies a certain condition. Essentially, this condition requires that the interface looks like the interface
of multiple independent instances of a simpler procedure. In this case, one can again demonstrate a security-
preserving composition result similar to Theorem 4. See details in [CR03].

Some equivalent variants. Finally, we note that several variants of Definition 3 turn out to be equivalent to
the present formulation. First, allowing the environment to output an arbitrarily long string, or alternatively
restricting the environment to deterministic computation do not change the definition, nor does letting the
simulator depend on the environment results in an equivalent definition.4 Also, restricting the adversaryA to
only forward messages from the environment to the parties and back results in a definition that is equivalent
to the present formulation. Similarly, restricting the adversaryS to have only black-box access toA results
in an equivalent definition.

4.3 Feasibility and relaxations

We very briefly survey the feasibility results regarding UC-realizing ideal functionalities. As we’ll see,
in spite of the apparent syntactic similarity with basic security (Section 4.4 in Part I), UC security is in
general a considerably more restrictive notion. In particular, some far-reaching impossibility results exist.
Consequently, several relaxations and work-arounds have been proposed. We will briefly survey these as
well.

Encryption, signing, and secure communication. We start with some positive results. It turns out that
for the basic tasks of encryption, digital signatures, and other tasks associated with secure communication,
there are universally composable formulations that are realizable by known and natural protocols. In fact,
in some cases the UC definitions are closely related, or even equivalent, to standard definitions (which use
some special-purpose formulations).

Two salient examples are theideal public-key encryption functionality, FPKE, and theideal signa-
ture functionality, FSIG, which capture the basic requirements of encryption and signature in an abstract
and unconditional way. UC-realizingFPKE (for non-adaptive party corruptions) is essentially equivalent
to the standard notion of security against chosen ciphertext attacks [DDN00, RS91]. UC-realizingFSIG is
essentially equivalent to the standard notion of existential unforgeability against chosen message attacks
[GMRi88].

Another class of examples are functionalities related to the task of obtaining secure communication.
These include the key-exchange functionality from Section 4.3 of Part I, as well as ideal functionalities
capturing authenticated and secure communication sessions, entity authentication, and related tasks. All of
these functionalities can be UC-realized by simple and known protocols. For instance, see the modeling
of certified mail in [PSW00a] or secure channels in [PW01, CK02]. In addition, both the ISO 9798-3 key-
exchange protocol and IKEv2 (the revised key exchange protocol of the IPSEC standard) UC-realize the
ideal key-exchange functionality [CK02, CK02a].

General feasibility. Can the general feasibility results for basic security assuming authenticated com-
munication (see Section 4.4 in Part I) be carried over to UC security? When the majority of the parties
are honest (i.e., they are guaranteed to follow the protocol), the answer is positive. In fact, some known
protocols for general secure function evaluation turn out to be universally composable. For instance, the

4We remark that in other formalisms, where entities are required to be polynomial in a global security parameter rather than in
the length of local inputs, the last equivalence does not hold, see e.g. [HU05].

17

[BGW88] protocol (both with and without the simplification of [GRR98]), together with encrypting each
message using non-committing encryption [CFGN96], is universally composable as long as less than a third
of the parties are corrupted, and authenticated and synchronous communication is available. Using [RB89],
any corrupted minority is tolerable. Asynchronous communication can be handled using the techniques of
[BCG93, BKR94]. Note that here some of the participants may be “helpers” (e.g., dedicated servers) that
have no local inputs or outputs; they only participate in order to let other parties obtain their outputs in a
secure way.

However, things are different when honest majority of the parties is not guaranteed, and in particular in
the case where only two parties participate in the protocol and either one of the parties may be corrupted.
First, one of the most common proof-techniques for cryptographic protocols, namely black-box simulation
with rewinding of the adversary, does not in general work in the present framework. The reason for that is
that in the present framework the ideal adversary has to interact directly with the environment which cannot
be “rewound”. (Indeed, it can be argued that the meaningfulness of black-box simulation with rewinding in
a concurrent execution setting is questionable.)

Furthermore, in the UC framework many interesting functionalities cannot be realized at all by plain
protocols. (Aplain protocol uses no ideal functionality other than the authenticated communication func-
tionality.) For one, the ideal commitment functionality from Section 4.3 of Part I cannot be UC-realized by
plain two-party protocols [CF01]. Similar impossibility results hold for the ideal coin tossing functionality,
the ideal Zero-Knowledge functionality, and the ideal Oblivious Transfer functionality [C01]. These results
extend to unrealizability by plain protocols of almost all “non-trivial” deterministic two-party functions and
many probabilistic two-party functions [CKL03], and to impossibility of realizingany “ideal commitment
functionality”, namely any functionality that satisfies the basic correctness, binding and secrecy properties
of commitment in a perfect way [DDMRS06]. These results apply also to multi-party extensions of these
primitives, whenever the honest parties are not in majority.

Three main approaches for circumventing these impossibility results have been considered in the litera-
ture. The first approach is simply to try to formulate morerelaxedideal functionalities, that will be easier to
realize, but will still capture the security requirements of the desired task. This is a task-specific and delicate
endeavor. Some works that take this approach are [CK02,PS05]; a salient characteristic of these relaxations
are that security is guaranteed only in a computational senseeven in the ideal process.

A second approach is to assume that the parties have access to some trusted set-up. A third approach
is to relax the UC-emulation requirement. These approaches are described in Sections 4.3.1 and 4.3.2,
respectively.

4.3.1 Adding set-up assumptions

It turns out that general feasibility can be regained when some trusted set-up is assumed. One such trusted
set-up assumption, called thekey registration (KR) model, assumes that there exists a trusted “registration
authority” where parties can register public keys associated with their identities, while demonstrating that
they have access to the corresponding secret keys. (Alternatively, parties can let the authority choose public
keys for them; here the corresponding secret keys need not be revealed, even to the “owners” of the public
keys.) Then, parties can query the authority for a party identity and obtain the registered public key for that
identity. Practically any ideal functionality can be UC-realized by interactive protocols in the key registration
model, under standard computational hardness assumptions. Furthermore, the protocols remain secure even
in the presence of arbitrary other protocolsthat use the same public keys.

Taking a short detour, it is interesting to compare this set-up assumption to the set-up assumptions
needed for guaranteeing authenticated communication. To obtain authenticated communication (namely,
to UC-realize an ideal functionality that provides an authenticated communication service), it is necessary

18

and sufficient to have access to an ideal functionality that allows parties to register public keys that will
be associated with their identities,without having to disclose the secret keys to the registration authority.
This set-up is structurally similar to the key registration set-up, except that the trust put in the registration
authority is considerably milder.

An alternative set-up assumption, called thecommon random string (CRS) model, is that all parties
have access to a string that is guaranteed to be taken from a predetermined distribution, typically the uniform
distribution. Furthermore, it is assumed that the string was “ideally generated” in the sense that no set of
participants have any “side information” on the common string (such as the preimage of the string according
to some one-way function). This assumption is attractive in that it can be realized by physical processes that
minimize the trust that participants need to put in external authorities. Also, it does not require parties
to explicitly register before participating in the computation. However, here the general feasibility results
are weaker, in the sense that the protocols are not (and, in fact, provably cannot be) shown secure in the
presence of arbitrary other protocols that use the same common string. Instead, security is shown only when
all protocols that use the common string do so using a very specific interface.

Yet another alternative set-up assumption, called thetiming model, is of a somewhat different flavor: It
assumes that there is a bound on the delay of messages delivered in the network, as well as on the mutual
discrepancy in local time measurements, and that these bounds are known to all parties. Here too it is
possible to realize any ideal functionality, under standard hardness assumptions [LPT04].

Historically, general feasibility results were first demonstrated in the CRS model [CLOS02]. The overall
structure of that protocol is the same as in [GMW87], as sketched in Section 4.4 in Part I. The main dif-
ference is in the zero-knowledge and coin-tossing components, which are very different. In particular, the
new components (based partly on the UC commitment protocol in [CF01]) allow for simulation “without
rewinding”, using the CRS set-up. Protocols in the KR model again use the same structure. For non-adaptive
party corruptions, it was observed that the [CLOS02] protocols can be modified to work in the KR model
[BCNP04]. For adaptive party corruptions some new protocols have been developed [CDPW07].

Can we characterize which functionalities are realizable without set-up? or only given authenticated
communication? Alternatively, can we characterize the set-up functionalities that suffice for realizing a
given task? Some limited answers to the former question, for the case of evaluating a pre-determined
function of the parties’ inputs, and for the case of functionalities aimed at guaranteeing secure commitment,
are known [CKL03, DDMRS06]. Otherwise, these are interesting open questions.

4.3.2 Relaxing UC security

In light of the restrictiveness of UC-emulation, and in particular given the above impossibility results regard-
ing realizing UC-realizing functionalities without initial set-up, it is natural to look for alternative notions
of security, that will still provide some general security and composability guarantees while being easier to
realize.

This question is highlighted by the fact that UC-emulation appears to be overly strong with respect to
the notion of composable security (Definition 1). That is, Theorem 4 states thatρπ/φ UC-emulatesρ, where
Definition 1 only requires thatρπ/φ emulatesρ according to the basic notion of emulation, namely Definition
2 in Part I. On the one hand, this extra strength is useful, in that it guarantees that security is preserved even
after multiple applications of the universal composition operation. On the other hand, though, this extra
strength raises the question of whether there is a less demanding variant of UC-emulation that would still
satisfy Definition 1.

It turns out, however, that the answer to this question is negative. That is, it can be seen thatanynotion
of emulation that satisfies Definition 1 with respect to any calling protocolρ implies UC-emulation. That is:

19

Proposition 5 Assume that protocolπ emulates protocolφ with ρ-composable security for any subroutine-
respecting protocolρ. Thenπ UC-emulatesφ.

The idea here is that an arbitrary calling protocolρ can essentially mimic any interactive environment
E , even in the basic setting where the external environment cannot interact with the adversary during the
execution. This holds even thoughρπ is only required to emulateρφ according to the basic notion, since the
instructions ofρ can require the adversary to provide “on-line” information in the same way thatE expects
to have in the UC modeling. We omit further details.

Proposition 5 can be interpreted as stating that UC-security is in some sense a “minimal” requirement
that guarantees both composability and basic security. It also means that the extra strength in the conclusion
of Theorem 4 comes without any additional requirements from the protocol. (Some closely related results
appear in [L03, L04].)

Still, some relaxed variants of UC-emulation have been proposed and shown to be preserved under
universal composition with arbitrary protocols [PS04, BS05, MMY 06]. By Proposition 5, these variants
necessarily provide security guarantees that are weaker than basic security. Still, the provided guarantees are
often meaningful. In addition, it was demonstrated that these notions allow realizing any ideal functionality
given only authenticated communication, under general (but stronger than usual) hardness assumptions.

Essentially, the way in which these notions weaken the security requirement is by allowing the “simu-
lator” to run in super-polynomial timeT . This means that meaningful security is guaranteed only when the
following two conditions are met. First, the ideal functionality should be such that security is guaranteed
even against adversaries running in timeT . This condition is met by most common formulations of ideal
functionalities; in fact, most common formulations provide “perfect” security, even against computationally
unbounded ideal-model adversaries.

The second condition is a bit more subtle: Recall that the definition only guarantees that the environment,
or the calling protocol, cannot tell whether it is interacting with the emulating protocolπ and adversaryA
(which may be PT), or with the emulated protocol and adversaryS, which may run in timeT . Thus,
security is meaningful only when the thecalling protocol itselfwithstands adversaries that run in timeT .
To exemplify this point, we note that it is possible to construct protocols that are secure according to this
notion, and yet completely “break down” under self-composition of only two instances.

5 Conclusion

This tutorial addressed the challenges associated with rigorously modeling cryptographic protocols and
capturing their security properties. Particular stress was put on guaranteeing security in settings where
protocols arecomposedwith each other in a number of ways. We have reviewed a general definitional
approach, thetrusted party paradigm.We saw two formalizations of this approach: A basic formalization,
that is easier to satisfy but provides only limited secure composability guarantees, and a more advanced
formalization that is considerably more restrictive in general, but provides very strong secure composability
guarantees.

When looking back at the covered material, one thing becomes very clear: It is far from obvious what is
“the right” way to capture and formalize security properties of cryptographic protocols. In fact, there prob-
ably is no single good way to do so, and different formalisms have incomparable strengths. Furthermore,
seemingly small differences in the formalisms result in drastic differences — both in the meaningfulness
(e.g. in the behavior under protocol composition), and also in the restrictiveness, namely in the ability to
assert security of natural protocols.

One consequence of this fact is that finding viable notions of security for cryptographic protocols re-

20

mains an intriguing and lively research area. Another consequence is that appropriately formulating the
security requirements of a given cryptographic task can be a delicate challenge in itself. In fact, this is often
the “hard part” of the security analysis, more so than actually asserting that a given protocol satisfies the
formulated property in the devised model.

Acknowledgments. My thinking and understanding of cryptographic protocols has been shaped over the
years by discussions with many insightful researchers, too numerous to mention here. I thank you all.
Oded Goldreich and Hugo Krawczyk were particularly influential, with often conflicting (complementary?)
views of the field. I’m also grateful to the editor, Sergio Rajsbaum, for his effective blend of flexibility and
persistence and to Shai Halevi, Ralf Küsters and Birgit Pfitzmann for helpful remarks.

References

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested oper-
ations. In10th ACM conference on computer and communications security (CCS), 2003. Extended
version at the eprint archive, http://eprint.iacr.org/2003/015/.

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive
systems. In1st Theory of Cryptography Conference (TCC), LNCS 2951 pp. 336–354, Feb. 2004.

[B+05] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without Authentication.
In Crypto’05, 2005.

[BCNP04] B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols with Relaxed
Set-Up Assumptions. 45th FOCS, pp. 186–195. 2004.

[BS05] B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net - Concurrent Com-
position via Super-Polynomial Simulation. 46th FOCS, 2005.

[B91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty
Minority. J. Cryptology, (1991) 4: 75-122.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution.CRYPTO’93, LNCS. 773,
pp. 232-249, 1994.

[BCG93] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computation. 25th Symposium
on Theory of Computing (STOC), 1993, pp. 52-61. Longer version appears in TR #755, CS dept.,
Technion, 1992.

[BGW88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. 20th Symposium on Theory of Computing (STOC), ACM,
1988, pp. 1-10.

[BKR94] M. Ben-Or, B. Kelmer and T. Rabin. Asynchronous Secure Computations with Optimal Re-
silience.13th PODC, 1994, pp. 183-192.

[BCC88] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge.JCSS,
Vol. 37, No. 2, pages 156–189, 1988.

[C95] R. Canetti. Studies in Secure Multi-party Computation and Applications.Ph.D. Thesis, Weizmann
Institute, Israel, 1995.

21

[C00] R. Canetti. Security and composition of multi-party cryptographic protocols. J. Cryptology, Vol. 13,
No. 1, winter 2000.

[C01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Ex-
tended abstract in42nd FOCS, 2001. A revised version (2005) is available at IACR Eprint Archive,
eprint.iacr.org/2000/067/ and at the ECCC archive, http://eccc.uni-trier.de/eccc-reports/2001/TR01-
016/.

[C06] R. Canetti. Security and Composition of Cryptographic Protocols: A Tutorial, (Part I). in Distributed
Computing Column of ACM SIGACT News, Vol. 37, Num. 3, (Whole Number 140), Sept. 2006.

[C+06] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-Structured
Probabilistic I/O Automata. In Workshop on discrete event systems (WODES), 2006.

[C+06a] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-Bounded
Task-PIOAs: A Framework for Analyzing Security Protocols. In 20th symposium on distributed
computing (DISC), 2006.

[CDPW07] R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universally Composable Security with Pre-Existing
Setup.4th theory of Cryptology Conference (TCC), 2007.

[CFGN96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Computation.28th Sympo-
sium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR 682, 1996.

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. Crypto ’01, 2001.

[CH04] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Cryptographic Pro-
tocols (The case of encryption-based mutual authentication and key-exchange). Eprint archive,
http://eprint.iacr.org/2004/334. Extended Abstract at 3rd TCC, 2006.

[CK02] R. Canetti and H. Krawczyk. Universally Composable Key Exchange and Secure Chan-
nels . Eurocrypt ’02, pages 337–351, 2002. LNCS No. 2332. Extended version at
http://eprint.iacr.org/2002/059.

[CK02a] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-based Key-Exchange Protocol.
Crypto ’02, 2002. Extended version at http://eprint.iacr.org/2002/120.

[CKL03] R. Canetti, E. Kushilevitz, Y. Lindell. On the Limitations of Universally Composable Two-Party
Computation without Set-up Assumptions. EUROCRYPT 2003, pp. 68–86, 2003. Extended version
at the eprint archive, eprint.iacr.org/2004/116.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party
secure computation. 34th STOC, pp. 494–503, 2002.

[CR03] R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto’03, 2003.

[CKLP06] L. Cheung, D. Kaynar, N. Lynch, O. Pereira. Compositional Security for Task-PIOAs.
Manuscript, 2006.

[DDMRS06] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan and A. Scedrov. Games and the Impossi-
bility of Realizable Ideal Functionality. 3rd theory of Cryptology Conference (TCC), 2006.

22

[DKMR05] A. Datta, R. K̈usters, J. C. Mitchell and A. Ramanathan. On the Relationships between Notions
of Simulation-based Security. 2nd theory of Cryptology Conference (TCC), 2005.

[DM00] Y. Dodis and S. Micali. Secure Computation. CRYPTO ’00, 2000.

[DDN00] D. Dolev. C. Dwork and M. Naor. Non-malleable cryptography. SIAM. J. Computing, Vol. 30,
No. 2, 2000, pp. 391-437. Preliminary version in 23rd Symposium on Theory of Computing (STOC),
1991.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Information
Theory, 2(29), 1983.

[DLMS99] N.A. Durgin, P.D. Lincoln, J.C. Mitchell and A. Scedrov. Undecidability of bounded security
protocols. Workshop on Formal Methods and Security Protocols (FMSP), 1999.:w

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409–418,
1998.

[EG82] S. Even and Oded Goldreich. On the Security of Multi-Party Ping-Pong Protocols. 24th FOCS,
1983.

[F91] U. Feige. Ph.D. thesis, Weizmann Institute of Science, 1991.

[GRR98] R. Gennaro, M. Rabin and T Rabin. Simplified VSS and Fast-track Multiparty Computations with
Applications to Threshold Cryptography,17th PODC, 1998, pp. 101-112.

[G01] O. Goldreich. Foundations of Cryptography. Cambridge Press, Vol 1 (2001) and Vol 2 (2004).

[GK89] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM. J.
Computing, Vol. 25, No. 1, 1996.

[GMW87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Symposium on
Theory of Computing (STOC), 1987, pp. 218-229.

[GO94] O. Goldreich and Y. Oren. Definitions and properties of Zero-Knowledge proof systems. J. Cryp-
tology, Vol. 7, No. 1, 1994, pp. 1–32.

[GL90] S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence of Immoral Ma-
jority. CRYPTO ’90, LNCS 537, 1990.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, Vol. 28, No 2, April 1984, pp. 270-
299.

[GMRi88] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIAM J. Comput., April 1988, pages 281–308.

[HM00] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party
computation. J. Cryptology, Vol 13, No. 1, 2000, pp. 31-60. Preliminary version in16th Symp. on
Principles of Distributed Computing (PODC), ACM, 1997, pp. 25–34.

[H85] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer Science,
Prentice Hall, 1985.

23

[HU05] D. Hofheinz and D. Unruh. Comparing Two Notions of Simulatability.2nd theory of Cryptology
Conference (TCC), pp. 86-103, 2005.

[IPSEC] The IPSec working group of the IETF. See http://www.ietf.org/html.charters/ipsec-charter.html

[KLR06] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and Security
Under Composition. 38th STOC, pages 109-118, 2006.

[K06] R. Küsters. Simulation based security with inexhaustible interactive Turing machines. 19th CSFW,
2006.

[L03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Computation.
43rd FOCS, pp. 394–403. 2003.

[L04] Y. Lindell. Lower Bounds for Concurrent Self Composition. 1st Theory of Cryptology Conference
(TCC), pp. 203–222. 2004.

[LLR02] Y. Lindell, A. Lysyanskaya and T. Rabin. On the composition of authenticated Byzantine agree-
ment. 34th STOC, 2002.

[LPT04] Y. Lindell, M. Prabhakaran, Y. Tauman. Concurrent General Composition of Secure Protocols in
the Timing Model. Manuscript, 2004.

[LMMS98] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov. A Probabilistic Poly-time Framework for Pro-
tocol Analysis. 5th ACM Conf. on Computer and Communication Security, 1998, pp. 112-121.

[LT89] N. Lynch and M. R. Tuttle. An introduction to input/output automata. CWIQuarterly, 2(3):219-246,
September 1989.

[LSV03] N. Lynch, R. Segala and F. Vaandrager. Compositionality for Probabilistic Automata. 14th CON-
CUR, LNCS vol. 2761, pages 208-221, 2003. Fuller version appears in MIT Technical Report MIT-
LCS-TR-907.

[MMY 06] T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Security from Number
Theoretic Assumptions.3rd Theory of Cryptology Conference (TCC), 2006, pp. 343-359.

[MMS03] P. Mateus, J. C. Mitchell and A. Scedrov. Composition of Cryptographic Protocols in a Proba-
bilistic Polynomial-Time Process Calculus. 14th CONCUR, pp. 323-345. 2003.

[MR91] S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992. Preliminary ver-
sion in CRYPTO ’91, LNCS 576, 1991.

[M89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[M99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.

[MMS98] J. Mitchell, M. Mitchell, A. Schedrov. A Linguistic Characterization of Bounded Oracle Compu-
tation and Probabilistic Polynomial Time. 39th FOCS, 1998, pp. 725-734.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, Vanessa Teague. A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. Theor. Comput. Sci.
353(1-3): 118-164 (2006). Preliminary version in LICS’01.

24

[P04] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. 36th STOC,
pp. 232–241. 2004.

[P91] T. P. Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
CRYPTO 1991: 129-140

[PW94] B. Pfitzmann and M. Waidner. A general framework for formal notions of secure sys-
tems. Hildesheimer Informatik-Berichte 11/94, Universitat Hildesheim, 1994. Available at
http://www.semper.org/sirene/lit.

[PSW00] B. Pfitzmann, M. Schunter and M. Waidner. Secure Reactive Systems. IBM Research Report RZ
3206 (#93252), IBM Research, Zurich, May 2000.

[PSW00a] B. Pfitzmann, M. Schunter and M. Waidner. Provably Secure Certified Mail. IBM Research
Report RZ 3207 (#93253), IBM Research, Zurich, August 2000.

[PW00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems.
7th ACM Conf. on Computer and Communication Security (CCS), 2000, pp. 245-254.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. IEEE Symposium on Security and Privacy, May 2001. Preliminary
version in http://eprint.iacr.org/2000/066 and IBM Research Report RZ 3304 (#93350), IBM Re-
search, Zurich, December 2000.

[PRS02] M. Prabhakaran, A. Rosen, A. Sahai. Concurrent Zero Knowledge with Logarithmic Round-
Complexity. 43rd FOCS, 2002: 366-375

[PS04] M. Prabhakaran, A. Sahai. New notions of security: achieving universal composability without
trusted setup. 36th STOC, pp. 242–251. 2004.

[PS05] M. Prabhakaran, A. Sahai. Relaxing Environmental Security: Monitored Functionalities and Client-
Server Computation.2nd Theory of Cryptology Conference (TCC), 2005.

[RB89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest Majority.
21st Symposium on Theory of Computing (STOC), 1989, pp. 73-85.

[RS91] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen cipher-
text attack. CRYPTO ’91, 1991.

[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In
Eurocrypt99, LNCS 1592, pages 415–413.

[SB+06] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann and M. Waidner. Cryptographically Sound Theo-
rem Proving. 19th Computer Security Foundations Workshop (CSFW), 2006.

[Y82A] A. Yao. Protocols for Secure Computation. In23rd Annual Symp. on Foundations of Computer
Science (FOCS), pages 160–164. 1982.

[Y86] A. Yao, How to generate and exchange secrets, In27th Annual Symp. on Foundations of Computer
Science (FOCS), pages 162–167. 1986.

25

A Trusted-party based security: A mini survey

This section briefly surveys some works that are directly relevant to the development of the trusted-party
paradigm as a method for defining security of protocols. (Indeed, this is only a fraction of the body of work
on modeling cryptographic protocols and asserting security properties.) More detailed surveys on this topic
can be found in [C00, C01]. Also, some of these works have already been mentioned earlier and are not
re-addressed here.

Two works that essentially “laid out the field” of general security definitions for cryptographic protocols
are the work of Yao [Y82A], which expressed for the first time the need for a general “unified” framework for
expressing the security requirements of cryptographic tasks and for analyzing cryptographic protocols; and
the work of Goldreich, Micali and Wigderson [GMW87], which put forth the approach of defining security
via comparison with an ideal process involving a trusted party (albeit in a very informal way).

The first rigorous definitional framework is due to Goldwasser and Levin [GL90], and was followed
shortly by the frameworks of Micali and Rogaway [MR91] and Beaver [B91]. In particular, the notion of
“reducibility” in [MR91] directly underlies the notion of protocol composition in many subsequent works,
including the notion of universal composition as descried here. Beaver’s framework was the first to directly
formalize the idea of comparing a run of a protocol to an ideal process. Still, the [MR91, B91] formalisms
only address security in restricted settings; in particular, they do not deal with computational issues.

Canetti [C95] provides the first ideal-process based definition of computational security against resource
bounded adversaries. [C00] strengthens the framework of [C95] to handle secure composition. In particular,
security of protocols in that framework is shown to be preserved under non-concurrent universal composi-
tion. This work also contains sketches on how to strengthen the definition to support concurrent composition.
A closely related formulation appears in [G01].

The framework of Hirt and Maurer [HM00] is the first to rigorously address the case of reactive function-
alities. Dodis and Micali [DM00] build on the definition of Micali and Rogaway [MR91] for unconditionally
secure function evaluation, and prove that their notion of security is preserved under a general concurrent
composition operation similar to universal composition. However, their definition involve notions that make
sense only in settings where the communication is ideally private; thus this definition does not apply to the
common setting where the adversary has access to the communication between honest parties.

All the work mentioned above assumessynchronouscommunication. Security for asynchronous com-
munication networks was first considered in [BCG93, C95].

The framework of Pfitzmann, Schunter and Waidner [PSW00, PW00] is the first to rigorously address
concurrentuniversal composition in a computational setting. (This work is based on [PW94], which de-
scribes a basic system model and sketches a notion of security.) They define security for reactive function-
alities in a synchronous setting and prove that security is preserved when asingleinstance of a subroutine
protocol is composed concurrently with the calling protocol. An extension of the [PSW00,PW00] framework
and notion (calledreactive simulatability) to asynchronous networks appears in [PW01].

Universal composability in its full generality was first considered in [C01], which addressed the case
of unbounded number of concurrently composed protocols. This work also demonstrated how the security
requirements of a number of commonplace and seemingly unrelated cryptographic tasks can be captured via
the trusted-party paradigm in the devised model.

A process calculus for representing probabilistic polynomial time interacting processes is developed in
[LMMS98, MRST06]. In [MMS03] the notion of protocol emulation and realizing an ideal functionality is
formalized in this model, and shown to be preserved under universal composition with any calling protocol.
Other models that define emulation-based security include [DKMR05, K06].

At very high level, the notions of security in [PW01,C01,MMS03,DKMR05,K06] are similar. However,

26

the underlying system models differ in a number of respects, which significantly affect the expressibility
and generality of the respective models (namely, the range of real-life situations and concerns that can be
captured by the respective formalisms), as well as the simplicity and ease of use. In addition, the models
provide different degrees of abstraction and different tools for arguing about security properties. We leave a
more detailed comparison out of scope.

Finally, we note that the above notions of security do not leave room for non-determinism in protocol
description and run-time scheduling. This is a natural choice, since non-determinism that is resolved arbi-
trarily at run-time seems inherently incompatible with security against computationally bounded adversaries.
However, such modeling does not allow utilizing the traditional analytical advantages of non-determinism
in modeling of distributed protocols. First steps towards incorporating in the model non-determinism that’s
resolved at runtime are taken in [C+06, C+06a]; the main idea here is to allow some parts of the protocol
execution to be determined arbitrarilyafterall the algorithmic components are fixed.

27

