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1 Introduction

Phishing is a form of online fraud that is doing increasing damage to the financial industry. In its traditional
form, a victim is sent a fraudulent email message directing the victim to fraudulent website, normally hosted
on a hacked machine, with some urgent call to action. The purpose of the call to action is typically to incite
users to follow a link, by suggesting that they will receive some form of reward for following the link, suffer
a penalty for failing to follow, or some combination of the two. The website that the victims are directed to
is designed to mimic the appearance of a legitimate site, such as an online bank, vendor or payment system.
The goal here is to continue the confidence game, initiated inthe call to action, so that the victim remains
convinced that she is interacting with the legitimate site.The fraudulent website will request from the vicim
a number of credentials and other information of interest, such as personally identifying information. The
goal of the attacker, termed aphisher, is to trick the victim into releasing his credentials to thefraudulent
website, so that later they may be used to perform some form offraud. In general, the credentials of interest
are credit or banking related, the most common examples of which include credit-card numbers, or pairings
of usernames and passwords for online banking sites. Phishers try to obtain as much information as they can
from their victims. Phishers generally sell off the information that they collect to other individuals, called
cashers, who specialize in monetizing the information, and the moreinformation that a phisher can acquire
on a given victim the more value it will fetch, as this information aids the cashers in their goal.

Apart from the social aspects of phishing, there are also technical components. These are often aimed
at circumventing phishing countermeasures (see, e.g., [32, 37]) or spam filters (see, e.g. [35]), or at mining
user-specific data of relevance to an attack (see, e.g., [26,29, 31].) Thus, phishing is a complex threat,
consisting of both a technical component and a social/psychological component. Its very complexity is also
what makes it so difficult to defend against. As an example of why it is difficult to defend against, we can
recall how security experts, until quite recently, argued that once the public became aware of the threat, then
technical security features such as SSL would eradicate theproblem. This is not happening. One reason is
that while most people understand that there is an association between security and the presence of an SSL
lock, many do not know how to interpret security indicators (see, e.g., [22, 14]) and few know that phishers
can also use SSL [39] or simply add locks in thecontent portionof a webpage [33]. Second, it is known that
there is a tremendous discrepancy between what typical users knowand what theypractice. An example of
this is illustrated by recent studies involving eyeball tracking [46], in which it was concluded that most users
rarely look for SSL indicators, much less choose to interactwith these. While educating users isnecessary
to some degree, it is also difficult [43]. Moreover, it is not sufficient to explain the problems to the target
audience, but one must also change their behavior. It is hardto untangle the technical aspect from the social
aspect when we address the problem of phishing, and an understanding of both may be necessary to make
significant progress.

1.1 Why Phishing Works

Phishing works due to a confluence of several different factors. It begins with a victim receiving a call to
action that is essentially nothing more than a confidence game. People have been tricked by confidence
games for as long as there have been con-men. While spam filters and other anti-spam technology can
help reduce the exposure to these calls to action, it can easily be argued that even if spam were essentially
eliminated, phishers would be able to con people into visiting their mimicked sites through other means.
Once the intended victim visits the mimicked site, the confidence game is continued by providing a site that
looks and has similar user experience to a legitimate site. This helps to establish or maintain a sense of trust
with the fraudulent site, meaning that the victim is likely to provide it with information that he otherwise
would not. Constructing a site that has a similar look and feel is, of course, not a difficult process, and can
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even be automated [45]. Because the user believes he is interacting with the legitimate site as opposed to
a fraudulent one, he does not worry about releasing potentially confidential information to it, as the user
would often willing and safely release the same informationto the corresponding legitimate institution.

However, there exist cryptographic mechanisms built into web-browsers that are supposed to aid users
in determining the identities of the websites they are visiting. In particular, websites can use the Secure
Socket Layer (SSL) protocol or its IETF standardized version, the Transport Layer Security (TLS) protocol,
to push non-forgeable cryptographic certificates issued bytrusted authorities to browsers who visit their
sites, thereby authenticating themselves. Since many, if not most, legitimate commerce and banking sites
use these certificates, it is reasonable to ask why consumersdo recognize the mimicked sites by their lack
of legitimizing certificate issued by a trusted certificate.There are varying reasons that can be given for this,
but, almost universally, they can be grouped in to the category of usability issues: Users generally have little
understanding of what or where the browser’s most basic security indicators are, nevermind how to use them
in order to determine the identity—or lack thereof—of the website with which they are communicating. For
example, most users do not seem to be able to interpret the lock icon displayed by browsers to indicate
an SSL/TLS session has been established. Typical users knowto an even lesser extent that it may be
clicked to display a certificate containing information about the purported identity of the website, along
with information on the identity of the authority which is vouching for its identity.1 The result is that when
users visit phishing sites, the lack of appropriate cryptographic authentication is not noticed, and users tend
to rely on indicators that they have come to trust in the non-digital world, such as the presence of brand
logos and other look-and-feel branding intangibles, regardless of how inapplicable these indicators are as
authenticators in the digital realm. A further, or more detailed explanation of the general phishing problem
is beyond the scope of the current presentation, but interested readers are directed to [28] for comprehensive
coverage of the issue.

The threat of phishing is real and expensive. Apart from the direct damage phishing is doing to the
financial industry, it is also seriously threatening to haltthe expansion of e-commerce, due to the erosion of
trust among many computer users. In fact, largely motivatedby phishing scams, the Federal Deposit Insur-
ance Corporation (FDIC) and the Federal Financial Insitutions Examination Council (FFIEC) mandated that
all online banks in the US would need to substantially improve their authentication technologies by the end
of 2006, beyond that of simple passwords over SSL/TLS established authenticated and encrypted channels
[17].

1.2 Other Approaches

While punitive legislative approaches (see [11] for a review) may keep some would-be phishers out of the
game, it is unlikely that law enforcement alone can cause a noticeable dent in the phishing statistics, making
technical countermeasures important. Given that phishingis both a technical and a social problem, such
countermeasures are far from straightforward. Moreover, given the complexity of the problem, it is not
likely that there would beonesolution that would address it in its entirety. Instead, it is likely that many
different solutions will be needed to lessen the success rate of various types of attacks.

An important first step is therefore to understand the taxonomy of phishing attacks, allowing us to tailor
countermeasures for each class of attacks. Not counting malware based attacks (such as spyware or keyboard
loggers, or attacks on routers [44]), one can notice that most phishing attacks consist of adeliverycomponent
(often using spam techniques) and amimicry component. The latter presents the victim with information
intended to cause him or her to divulge particular user credentials, while being under the impression that he
or she accesses the resource that is being impersonated.

1In this discussion we will ignore another problematic issue: Certificates are often issued with weak or improper validation of
the requester’s identity.
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One of the main difficulties of preventing mimicry is what onemay term thesecurity gapbetween users
and their machines. More specifically, all user decisions are made given the information users are presented
by their computers. Practitioners and researchers alike agree that it is a difficult problem to determine how to
convey to a user information relating to his or her security status — in particular in the light of the possibility
of the adversary attempting to present the similar but invalid indications to targeted victims. For example,
almost all phishers use the logos of the organizations they are trying to impersonate, and some cause a small
lock (identical to the SSL icon) to be presented in the body ofweb pages that arenotsecured by SSL. Users
often do not realize that the lock icon is in the wrong location, and have no way of determining that the logos
were used by somebody other than their rightful owners. In fact, many legitimate companies’ sites add to
this confusion, as they place similar lock logos on their web-pages in numerous spots, in an effort to convey
to customers the belief that their site is secure. Another reason for the security gap is that users do not notice
the presence of warnings or the absence of reinforcing security information, as supported by [30, 41].

We believe that mimicry will become increasingly sophisticated, with the functionality of entire sites
being emulated by attackers, and in particular, with any type of “secure login” windows being mimicked,
even if said windows are provided by the browser. This will circumvent the security of techniques such as
Password Authenticated Key Exchange [4, 36, 34], which (quite naturally) base their security guarantees
on being used. We call this new type of attack adoppelganger window attackas it evades security require-
ments by looking the same as (potentially) secure interfaces but without offering the “behind-the-scenes”
functionality of these. In other words, the attacker strives to become adoppelganger– or identical twin –
of the various interfaces he wants his victim to see. A incarnation of this attack is the so-called “picture in
picture” attack [27].

In this presentation we introduce the notion of doppelganger attacks, and offer a first treatment of how
to defend against these. This is done in the context ofpromiscuous users– i.e., users who may operate from
a large number of semi-trusted2 terminals, some of which may not been used before. We note that if one
instead assumes non-promiscuity, the problem is simplified, as the user’scomputercan automatically verify
(by means of stored state certificates, digital signatures,etc) that a previously visited site is not impersonated.
Indeed, under this assumption, no user login is needed: the machines can verify each other’s identities
by means of cryptographic authentication methods before access is granted (although in such scenarios a
password may still be desirable to ensure the legitimate user is the one currently using the machine). Thus,
such a setting shifts the emphasis to that of protecting against malware (as is needed for all approaches) and
securing the initial access to a user machine.

One approach to defend against such doppelganger attacks isthat of a secure communications pathway.
Traditionally, these have been used for the initial access (i.e., logon) of the user’s machine at the operating
system level, but may in principle also be used for any user authentication process, even at the application
level—although, this would require OS support. This corresponds to a solution in which a trusted third
party is placed on a terminal (normally a portion of the operating system), and is used to guarantee that
all login attempts are made using theintended protocol, and not some fake masquerading interface. It also
ensures that no other process gets access to the credentials. For example, imagine a solution in which a
user must always — when presented with a secure login window —press some combination of keys that
moves the computation into a “safe state” in which only very restricted authentication functionality and its
user interface are made available. This would shift the problem to that of securing the operating system, and
allow the secure use of standard mutual authentication techniques, such as the previously mentioned PAKE
protocols. However, in the absence of such a solution, alternative approaches (such as ours) are necessary.

2We do not assume that the correct protocols are followed, butdo assume the absence of keyboard loggers, and the like. A more
detailed trust model is presented in section 5.
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Our proposal. We propose a protocol that permits a user interface that provides users with visual character-
by-character feedback as they enter their passwords, allowing users to stop entering their password if they
obtain feedback that they do not recognize—a sure sign of interacting with the wrong site. While there are
numerous ways in which the interface to such a protocol couldbe implemented, our goal is to provide a
secure protocol on which such interfaces can be built. As an example, with our protocol, one could require
that passwords are entered by pointing to keys of an online keyboard over which the feedback images are
displayed, or to confirm with the mouse that each image displayed is correct after it was entered in the
keyboard; but these are just two interfaces that could be hung off the same protocol. Finally, we point out
that while users will be required to recall passwords, as they traditionally have, they need only recognize
feedback, a cognitively much simple cognitive task than recall.

Our approach, which is based on oblivious transfer (OT) and password authenticated key exchange
(PAKE), is proven secure in several critical ways based on cryptographic assumptions and models. A con-
tribution of potential independent importance is a blinding technique used to reduce the costs of communi-
cation and computation of the OT component of the solution byintroduction of one extra move in which
the client sends the server a blinded request, the response to which is later unblinded to obtain the actual
response. This technique allows a high degree of security (quantified by the number of possible images
that can be selected for each password character that is entered) at the same time as a reasonably efficient
implementation.

2 Related Work

The rapid rise of phishing attacks and their potential to have large negative effects on e-commerce has
resulted in a significant number of researchers trying to solve the phishing problem. The approaches have
varied widely, which is appropriate given the fact that phishing is at heart a social engineering attack, and
thus can take on many different guises. We briefly review someof the main works in this area.

Chou et al. [12] use a system that evaluates a given web page and comes up with a “phishiness” index
to indicate the likelihood that the web page in question is that of a phisher. The index is computed based
on factors including, but not limited to: similarity of URL to known phishers’ sites, the inclusion of official
logos from official sites and requests for passwords and credit cards.

Several commercial efforts, among them those by Microsoft and eBay, involve browser extensions to
flag blacklisted sites (where an updated blacklist is frequently made available for automated download).
A related but academic effort is the Trust-Bar constructionby Herzberg and Gbara [25], which associates
logos with the public keys of the certificates of visited sites. The hope is that displaying the logos will
create a better conceptual connection between the organizations certifying that a site can be trusted and the
trusted site. Further, it is postulated that the use of logosallows for the development of corporate branding
for certificate authorities, creating a valuable asset for which they will have incentive to protect, by not
improperly issuing certificates in improper situations.

When a user can knowingly trust the user interface he or she isusing, then traditional cryptographic
PAKE protocols can be used to ensure security, as the phishercannot simply bypass them. Therefore, a
key issue in overcoming doppelganger attacks is to produce atrusted path from the user to the server, when
possible. An excellent review of trusted paths is availablein [16]. A way to circumvent the traditional
problem of trusted path was recently suggested by Parno, Perrig and Kuo [40]; their approach involved the
use of an auxiliary device (a cell phone) to maintain trustedstate. Dhamija and Tygar [15] also approach
the phishing problem by trying to address phishing by creating a trusted path between the user interface and
the user. In their proposal, to establish trust in the user interface, a user must select a specific image which
will be superimposed onto all dialog boxes presented by the browser. Since the selected image is known
only to the user (and possibly provided by the user), the phisher cannot duplicate such a dialog box. For this
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solution to be used, the user must have a pre-established secret (the user’s image) with the browser, and so
this technique does not allow for promiscuous browser use, the model we address.

Clearly, the notion of trusted path is very relevant to defend against phishing and doppelganger attacks.
The trusted path problem is closely related to thetrusted computingproblem (see [42] for a comprehensive
discussion). While trusted paths are typically concerned with how to secure data input (e.g., by standardized
and secure interfaces) trusted computing instead is concerned with controlling what processes are running on
a given machine, and what resources they have access to. Typical trusted computing efforts do not directly
address the doppelganger problem, since an attacker may tryto deceive a user to perform some action (such
as inputting his password) using a web browser window. Trusted computing controls what applications
are run, and must for practical reasons allow the execution of web browsers; in typical trusted computing
scenarios the contents of webpages viewed by the browser arenot verified or validated. Note that it is non-
trivial to automate the interpretation of content, as can beseen by the failure of commercial efforts to block
spam.

PassmarkTM (also branded asSiteKey) is a product of RSA Security (EMC), and has recently been
deployed by the Bank of America. This product attempts to fight phishing by building on the traditional
username/password interface by having the site authenticate back to the user. It does so by first recognizing
client machines by means of previously saved cookies, and byrequesting the user to enter his username. If
the user and his machine are recognized then Passmark causesa user-specific image to be displayed, after
which the user can enter his password. Users are trained not to enter their password unless they recognize
the image displayed to them. The product also has a server-side component that analyzes login attempts and
usage patterns, looking for fraudulent activity.

While Passmark is a promising approach, the client-side portion has some drawbacks. First, in the
presence of cookies, Passmark protected sites display an image to the user, but this constitutes placing
a secret on the user’s computer; in such cases stronger cryptographic mechanisms surely could be used.
Second, given that cookies are not resilient to pharming (see, e.g., [28]), their techniques do not seem to
provide any protection against such attacks. Finally, alternative identity verification methods are needed
when users do not accept cookies or when users migrate between machines (i.e., the case of promiscuous
user). In such cases, the user is not presented with the image, but is instead authenticated through other
independent means. User studies by Schecter et al. [41] haveshown that the approach may not succeed
in bridging the security gap between users and their machines: Subjects in a user study were found not to
react to the absence of Passmark images. Further, the subjects in the study were aware of participating in a
phishing study, which is known (see, e.g., [1]) to introducea bias. However, a similar observation was made
in the context of the “eBay user greeting” in [30], where subjects were not aware of participating in a study,
much less a phishing study.

A similar technique to Passmark is that of Yahoo!’s Site seal; this is a technique by which users can
upload text or images to a server which then displays these when the user returns to the site. Like Passmark,
this is a technique reliant on cookies and elements stored inthe user cache [48], but instead of identifying the
user(which requires asking for the user name), it only recognizes thebrowserinstalled on a given machine.
While the interface of Site Seal is similar to that of Passmark it is not identical, and it is unclear, although
likely, that it would suffer from the same lack of user recognition that current Passmark interfaces suffered,
as previously discussed.

While it remains possible that users of our proposed DPD system would also fail to notice the absence
of their correct feedback images, we note that such issues are critically dependent on the user interface
that is used to interface with the protocol, and that an appropriately designed user interface can address
this problem. We note that the design of such an interface is the purview of HCI experts, and therefore
out of the scope of this presentation. Our goal is to design a secure protocol upon which such an interface
can be draped. Our emphasis is on the design of a cryptographic protocol that meets realistic efficiency
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requirements and which supports a user interface that helpsdefend against doppelganger attacks, without
the need for local storage such as is necessary for cookies.

3 Doppelganger Attacks

While we have briefly mentioned doppelganger attacks, in this section we formalize the notion, and discuss
some of the difficulties in defending against strong online doppelganger attacks.

In a doppelganger attack, an attacker controls one or more windows on a user’s machine, and produces
an output that duplicates the appearance (and apparent functionality) of a given target site. The attacker
aims to make a victim believe that he or she is interacting with the given target site, while he or she instead
is interacting with the attacker. The goal of this is to allowthe attacker to capture the victim’s credentials,
and later enable the attacker to impersonate the user to the legitimate site. Note that the attacker needs not
present an exact duplicate or functionality of a given target site, but rather it must only be convincing enough
to confuse average users: Images and interfaces that are clearly incorrect to experts are often mistaken as
legitimate to average users, due to their more casual understanding of security indicators, browser chrome
and standardized interfaces. We will consider two classes of doppelganger attacks:

Offline Doppelganger Attacks. We may assume that the attacker has one or more accounts with the target
site. The attacker is permitted to communicate with the target site a polynomial number of sessions in order
to learn the behavior of the target site, and collect other information necessary to duplicate the appearance
of the target site. Once this process is completed, the attacker constructs a doppelganger site, and tries to
cause the user to enter her credentials (associated with thetarget site) as input to the doppelganger site. The
attacker may later connect to the target site in order to attempt to impersonate the victim (using the harvested
credentials), but the attacker is not permitted to have opensessions with the target site and with users at the
same time.

Let us now consider the need for interactivity to addressoffline doppelganger attacks. Suppose to the
contrary that the there is no feedback to the userduring password entry. Any feedback given to the user
beforepassword entry can be duplicated by a offline doppelganger attack —recall that there are no shared
secrets between users and their machines, nor trusted inputpathways. This attack is mounted by having the
attacker enter the username of the client into the authenticsite’s page, storing the resulting display feedback,
and ceasing communication with the authentic site. Now if the same user accesses the doppelganger site, the
attacker looks up the display information and presents a doppelganger display to the user. Since the display
is identical (or similar) to the display that the user expects to see, she enters her password to the user. In
contrast, if authenticating information is only displayedafter the password is entered, then an attacker will
have the user provide her username and password, and will simply not provide the appropriate feedback.
The user at this point may realize that she was attacked and this may be beneficial, but her password has
been disclosed to the attacker at this point.

Online Doppelganger Attacks. In this model the attacker is permitted all of the benefits of an offline
attacker, but is not required to terminate communication with the authentic site once it starts trying to con-
vince users about the authenticity of the doppelganger site. Thus, this is a type of man-in-the-middle (MIM)
attack. We distinguish it from tradition cryptographic MIMattacks, because here the attacker is interacting
at the interface level with the victim, as opposed to the protocol level that cryptographers are concerned with
(i.e., the victim is not running security protocols that shemight think she is, but rather interfacing with a
maliciously controlled interface that tricks the victim into thinking she is running such protocols). Note that
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even if a proposed security protocol is secure against an adversary that has complete control of the network
the point is irrelevant as in a doppelganger attack, the protocol is not being executed.

Given our assumption that the user has no shared secret with her machine, and that there is no piece of
trusted real estate on her display, it follows that there is no image that her machine can display that cannot
be duplicated by the attacker. Suppose a user visits the doppelganger’s site, the doppelganger then quickly
visits the authentic site, and based on its appearance drawsthe same picture on the user’s display as was
shown to the attacker on his. Note that all of the informationsent by the user is available to the attacker
as there are no security protocols enabled on the doppelganger site; similarly, all information sent by the
authentic site becomes available to the attacker, as he is the apparent end-point of the communication as far
as the authentic site is concerned.

In effect, in the above attack, we have the attacker controlling what is displayed on the user’s monitor,
and everything she inputs into the machine is sent directly to the attacker. Thus, we can think of the user
as effectively interfacing with a malicious machine, and there is no hope of protecting the input of the user
at this point, as we could simply imagine that the malicious machine has an input-logger that captures the
user’s confidential information. In fact, if the doppelganger code is run on the victim’s machine, then it
becomes little more than a special-purpose keyboard logger. If we assume that the doppelganger code is run
on another machine (that may be easier to compromise than thevictim’s machine) then it may be possible for
the service provider to detect anomalies in terms of the geographic mapping to IP addresses, and the number
of sessions started from the range of IP addresses belongingto the machines controlled by the attacker. This
is not studied herein, though, as we focus on the offline attack alone; while this is arguably easier to defend
against, such an attack is also easier to mount.

4 A High-Level View of Our Goals

If there were atruly concurrentway for the human user (represented by the client machine) and the server
to verify each other’s credentials without leaking them in case of failure, then the problem considered herein
would no longer exist. While it may appear that the problem ofconcurrent signature exchange (e.g, [7,
19, 21]) would be closely related to this issue, there are notable functional differences relating to when
eitheruser (and specifically not their machine) wouldlearn or enterinformation. In the absence of true
concurrency, we propose a technique to approximate concurrency in this particular context. This is done by
letting the server machine provide gradual feedback on the credentials entered in the client machine; this
feedback is presented to the human user, allowing the same tostop the login process if invalid feedback is
noted.

Before describing our approach in more detail, it is important to consider the potential danger presented
by providing gradual feedback. Among cryptographers, it isa well-understood design principle that one
should maximize the entropy of the distribution from which secret credentials are drawn, by not processing
and providing feedback for password entry little by little.In particular, if a server were to verify an entered
password character by character as these are entered, and halt if an incorrect character is seen, then this will
very clearly allow for an interactive divide-and-conquer approach to determining the password of a victim.
We are well aware of this potential threat, and address the problem as follows:

Gradual and flexible feedback. We place two requirements on our solution:

1. The server should not obtain any partial credentials during the execution of the protocol, but only after
the human user (of the client side) has approved all gradual feedback material. This is to prevent the
scenario where an attacker, acting as a legitimate sever running the legitimate protocol, learns a few
bits of a user password in spite of not knowing the correct visual feedback.
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2. Each feedback item should be dependent on the most recent prefix of the credential, i.e., on all the
characters that have been entered. This is both to maximize the min-entropy of the feedback, which
in turn increases security by making it more likely that a phisher cannot duplicate correct feedback
without knowledge of the password; and to secure against temporary failures to recognize invalid
visual feedbacks. Namely, and as we will later describe in more detail, we assume that users may
occasionally fail to recognize incorrect visual feedback,and we want to make sure that the first mis-
match between the user-entered password and the version stored by the server causes all consecutive
feedback to be incorrect.

These two requirements may appear to be in contradiction with each other, since the first suggests that the
server cannot learn any information until the protocol completes, whereas the second states that mistakes
to recognize invalid feedbacks are aggregated. However, this apparent contradiction can be resolved by the
use of oblivious transfer techniques; these allow the client to index (using the credential prefix) adatabase
of feedback items that is unique to the user in question. While we could employ simpler techniques not
involving OT, the use of OT allows us to defend against a more realistic threat, corresponding to a tiered
adversarial model.

Side channel attacks. An attacker can only improve his chances of success (beyond that of guessing the
password) by either performing shoulder surfing on a victim (which is excluded by our adversarial model,
as will be detailed next), or by interacting as a man-in-the middle with both the victim and the server a large
number of times.

In the former case, the attacker would have to start a sessionwith the server; guess a first credential
prefix; and compare the resulting feedback to the observed feedback (retrieved through shoulder surfing).
This would have to be done repeatedly, which would provide a practical indication of attack. We note that
typical implemented authentication systems allow for onlybetween three and ten mistakes before special
action is taken, such as temporarily suspending the account; in this context, this first attack is less serious
than the doppelganger window attack would be in the absence of our countermeasure.

In the latter case, the attacker would attempt to infer the expected sequence of feedback items by popu-
lating an entire malicious database with the images retrieved through interactions with the legitimate server,
and determine from the user’s reaction whether this was the correct image or not. Assuming, for simplicity,
that the password alphabet has only 26 characters (a clear lower bound), then the attacker could interact
with the server 26 times to retrieve all possible feedbacks for the first character of a password for a user
it wishes to attack. The attacker would then create a database in which only half of the retrieved images
correspond to the correct images returned by the legitimateserver; the attacker would then trick the user to
attempt to log in to his “half correct” service. If the user detects the attack (and halts input), then the attacker
knows the password character corresponds to the modified half of the database, and otherwise the attacker
learns the character corresponds to the correct half of the database. By performing this attack somelog226
rounds with different correct subsets of images, the attacker is able to determine what the first password
character is. Note that this would only requireq = 26 + log2 26 interactions with the server and client and
the attack is guaranteed to learn the first character of the password. This could then naturally generalized
to retrieve the remaining characters of the password. All inall, this would result in an attack that uses only
mq calls, wherem is the number of characters in the password. This is substantially better (for the attacker)
than the best possible attacks on PAKE protocols. There, thesame number of interactions with the server
and client would only be able to successfully share a key witheither party with a probability of at most
qm/(26m). Here, the probability corresponds to the number of interactions over the size of the dictionary of
passwords. (Note that we are assuming a uniform distribution of passwords over the dictionary). However,
while theoretically speaking, this is a truly devastating attack, it has very limited practical applicability as
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typical users would be expected to react to a threat of this type before any meaningful amount of data has
been leaked, and most servers now halt interaction with given clients after a small number of interactions
which fail to properly authenticate. Further, a doppelganger attack on current PAKE or SSL protocols would
allow the attacker to retrieve the entire password with one faulty interaction, whereas our protocols negates
the possibility off offline doppelganger attacks without many interactions.

We provide a solution that allows for a careful analysis, while operating in a threat model that is prac-
tically oriented. We use oblivious transfer techniques to allow the exchange of feedback and credentials,
without leaking the credentials. If the human user accepts the feedback items, then a traditional password-
based key exchange is performed on the then-fully-entered credential. While the traditional use of oblivious
transfer techniques would render our approach impracticalto the extent that it would not be deployable, we
are providing some new efficiency improvements that bring down the costs to a range where the technique
offers substantial promise. However, for common deployment in settings where computational resources
are scarce, further improvements may be necessary; we hope that our proposed design can spur follow-up
work that lowers the costs to the extent that the associated techniques aretruly practical.

5 The Model

Participants. We consider the following participants: human users (also referred to plainly asusers); user
machines; target sites (service providers with established relationships to users); and the adversary. We
assume that users have pre-established shared secrets withtarget sites (passwords to be remembered and
feedback to be recognized), and that these are relatively short (i.e., not of sufficient length to allow secure
usage as cryptographic keying material.) There are no pre-established secrets between user machines and
target sites.

Adversary. We consider a remote, networked adversary; while the problem of shoulder surfing is a re-
alistic threat in some contexts, it is rather unlikely in thecontext of phishing attacks. In practice, we also
believe that users are also more likely to understand and protect themselves from shoulder surfing attacks
than phishing attacks; this is because shoulder surfing exists in the real world, where people have a strong
intuition for such things, as opposed to phishing which relies on a completely artificial security context
provided by the browser’s user interface.

The adversary is assumed to have several cryptographic as well as doppelganger abilities. Cryptograph-
ically, we must allow the adversary to be a passive adversarythat can listen in on valid authentication
transcripts between users and servers. Next, as an active adversary it ought to be able to execute the DPD
protocol as either a malicious server, or client, as failureto protect against such attacks could render the
protocol useless. Finally, an even stronger model should beconsidered in which the malicious Man-In-The-
Middle (MITM) adversary that can control all network traffic, and concurrently manipulate the traffic of
many simultaneous authentication sessions. Due to the interactive nature of the protocol, traditional PAKE
security models are insufficient, and we leave the development of such a model to future work. Without an
appropriate model, we do not prove our protocol secure in this setting although we conjecture it should be,
for some reasonably strong model. . Finally, we note that such a MITM adversary is substantially more
powerful than those currently enjoying success with phishing attacks, We also note that while the online
MITM model is more commonly considered in much of the literature, the offline model has practical merit
as various risk assessment tools run on the back-end of online banks have the potential of detecting plausible
man-in-the-middle attacks given odd network traffic patterns often associated with MITM attacks that are
actually deployed in practice; and while a well masqueradedman-in-the-middle attack can be run by first
placing malware on the client machine (after which the intermediary would run on this machine), such an
attack automatically bypasses all known client-side security measures by virtue of its strength.
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From the perspective of a doppelganger attacker, the adversary is assumed to be able to direct selected
victims from a target site to a site controlled by the adversary; this may be done either at the beginning of,
or during3, a session. The adversary may also control selected processes running on the user machine (as
described below), and may interact with the target site before or during an attack (as detailed in section 3).

User machine. We do not assume that the user machine has anystored staterelating to previous login
sessions (for the given user or others), nor that the target site has any information relating to any potential
public key associated with the combination of the user and the target machine4. Furthermore, we model the
machine as asemi-trustednode: (a) we assume that all processes are isolated from eachother, and cannot
access each other’s storage, input, or output, except for any information transmitted over the network; and
(b) competing processes may run independently of each other, may display information to the user, and
will receive any user input entered in their respective windows. Finally, we do not assume the existence of
so-called secure chrome, or any other secure monitor real estate.

User assumptions. It is important to model users in a realistic manner, as theirbehavioral characteris-
tics are an important part of the problem. Whereas traditional cryptographic protocol research does not
consider the human factor, it is important to do that in our setting. Our initial problem statement revolves
around the problem for typical users to identify the correctuser interface, especially so in the context of
adversarial mimicry. Users often fail to notice security information communicated to them [47]. They are
better at noticing the presence of incorrect information [33] than the absence of correct information [30],
but commonly make mistakes of either kind. We rely on users tosomewhat reliably detect the presence of
incorrect information and the absence of correct information; we do not quantify the probability with which
this is done, as we do not have data supporting what is realistic to assume. Further, any such data would be
severely dependent on the interface draped over the protocol, and, as we have stressed, the design of such
an interface is a completely separate problem.

Computational assumptions. We assume that we are functioning in the random oracle model,which
assumes that before the protocol begins, a random functionH : {0, 1}∗ → {0, 1} is made available to all
of the parties. While its known that arbitrary protocols proven secure in the random oracle model cannot be
securely implemented [10, 2, 24], in practice it has shown tobe an effective heuristic, and the RSA-OAEP
sub-protocol of TLS is already reliant on the assumption; sofrom a practical point of view this assumption
is the same as the one currently made. Other than this, the standard cryptographic assumptions apply: all
parties are limited to computing in probabilistic, polynomial time. We note that the random oracle is needed
to provide an efficient oblivious transfer algorithm that satisfies stronger security requirements than are
normally required. In essence, we require a limited form of non-malleability against a man-in-the-middle
attacker. Further, many PAKE protocols make use of the Random Oracle model (the exception is the work
of Katz et al. [34], but this protocol is not widely deployed). Finally, our protocol relies on the traditional
Decisional Diffie-Hellman (DDH) assumption, and a new stronger but seemingly reasonable assumption
based on it and related to the Static Diffie-Hellman (SDH) problem, where the adversary has limited access
to an exponentiating oracle. In the traditional DDH assumption, informally, an adversary is given a generator
g of a cyclic group, andgx andgy for randomx andy, and then a valuez that is either a random group
element orgxy; the assumption states the adversary cannot distinguish between the two possible values
for z. This is opposed to the original computational Diffie-Hellman assumption which assumes that an

3We note that such redirection attacks are not meaningful once a cryptographic key has been established between the target site
and the user machine.

4This would otherwise contradict our requirement of allowing promiscuous accesses of target sites.
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adversary, when givengx and gy cannot computegxy . The SDH assumption is a strengthening of the
computational DH assumption that addresses the security issue of protocols that effectively give adversaries

access to static DH oraclesOy(w)
△
= wy that raise group elementsw to the powery, when onlygy is

known by the adversary. Examples of protocols that rely on this security include ElGamal [20] in the case of
chosen ciphertext attack security, and the Ford-Kaliski Key retrieval protocol [18]. Note that because of the
random-reducibility of traditional DDH, the adversary hasalways had access to such an ‘oracle’ for random
queries. The added benefit from this assumption is that the adversary can make queries relating to thegxi

of interest. The SDH assumption has been studied to some extent in the computational Diffie-Hellman case
by Brown and Gallant [8], who show connections between it andthe hardness of the underlying Discrete-
Logarithm problem. However, the issue has been left seemingly unstudied in the stronger decisional case.
In particular, we posit that having access to such an oracleOy for a small constant number of queries, say
t, is helpful only in computingt Diffie-Hellman values, and is not of any other help in distinguishing even
a t + 1st Diffie-Hellman value from random, even if the valuesgx1 , ..., gxt of interest to the adversary were
known in advance.

6 High-Level Protocol Description

The DPD protocol is built on top of two cryptographic primitives:
(
n
1

)
-Oblivious Transfer (OT) and Pass-

word Authenticated Key Exchange (PAKE). Efficient protocols that implement these primitives are well
known in the cryptographic community. We give brief and intuitive descriptions of these two essential
elements.

(
n
1

)
-OT: this is a primitive between a chooser and a sender, where a chooser learns one string fromn

possible strings of the sender. The security properties of OT ensure the following security properties:

1. The chooser learns only the string that it has chosen from the sender.

2. The sender does not learn which string the chooser chose.

PAKE: This is a primitive in which a client secretly exchanges a cryptographic key with a server with which
it has previously shared a small (generally human-memorizable) password: the difference between the
password and the cryptographic key being that the former comes from a distribution with relatively
low entropy. The security properties ensure that a passive adversary has essentially no chance of
guessing the exchanged key, whereas an active adversary’s ability to guess the exchanged key is no
more thanq/D, whereq is the number of interactions that the adversary has with theclient or server,
andD is the size of the dictionary from which the passwords are chosen. Observe that if the key-
exchange is based on a password, this is essentially an optimal security condition, as an adversary
can always guess a client’s password with a probability ofq/D. This is done by choosingq different
passwords from the dictionary, and actively logging on to the server with each of them and seeing if
one of them is correct.

The goal of Delayed Password Disclosure is to only disclose the user’s entire password at the point in
which she is convinced she is talking to the intended site (and not a phisher). When she is convinced she is
talking to the correct site she can be confident that the disclosure of her password will not cause her harm.
Because of the step-by-step disclosure of the password, DPDessentially offers a graceful failure model for
authentication.

The high level idea of DPD is the following. Imagine that the server has a database of easily distinguish-
able images. In particular, assume (for explanatory purposes only) that there are as many images as possible
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prefixes of passwords. Again for the sake of example, let’s suppose the characters in a password are chosen
from an alphabet of size 26. In delayed password disclosure,when the user enters the first character in her
password she is returned one of the first 26 images in the database. Specifically we think of the first char-
acter of her password as indexing into the image database viaan oblivious-transfer protocol. When the user
enters the second character of her password, she is returnedone of the next(26)2 images in the database
which is indexed (via another OT protocol) by the the first twocharacters of the password. This process
continues for each character in the user’s password. Once animage has been returned for each character of
the user’s password, and they are all the images she was expecting, then she can be relatively sure that she is
interacting with the correct protocol, and therefore can initiate a traditional PAKE protocol with the server.

For a practical implementation, it would be excessively slow to transfer a large number of images via
an OT protocol, even for the most efficient of OT protocols. Therefore, we imagine that instead of having
a database of images, the server has a database of indexes to images that are actually transfered. The user
then uses the index to look up the image in a local database, orthe user can alternatively use the index to
produce an image via random-art techniques (such as those presented in [13]).

7 The Delayed Password Disclosure Protocol

Ideally, we would like our DPD protocol to behave like a PAKE protocol, but with the added property that
associate with each client’s username and password is a vector of values(y1, .., yc), which we can think of
as representing images that the user expects to see after entering each character of her password. Similarly,
we think of having each client’s account on the server associated with the client’s username and password
as well as a random functionI. We would like to think ofI being given to a trusted third party, and as the
client enters her password, after each characterφi the value ofI(φ1, . . . , φj) is revealed to the client, and
only if I(φ1, . . . , φj) = yj for eachj, will the user be convinced that she is dealing with the correct server
and agree to perform the password authenticated protocol with it.

7.1 An Intuitive Description of the Protocol

In order to create our protocol, one initial thought might beto consecutively perform a series of PAKE
protocols, one for each character in the passwordφ = (φ1, ..., φm) that the client has shared with the server.
The ‘shared password’ for theith execution of a PAKE protocol is theith character,φi, of the password
φ. If both parties agree onφi as theith character of the password, then a shared key would be established
between the client and server, and this can be used to transmit the image corresponding to theith character
of the passwordΦ from the server to the client. The security properties of thePAKE protocol would ensure
an adversary, masquerading as the server, would not learn the characters of the password, when sent by the
client.

Unfortunately, such a proposal has several problems. First, when the server and the client do not agree on
a character in the password, then which image is displayed tothe user? Since the client can easily establish
the disagreement over characters, it might seem reasonablefor the client to display a random image in such
a scenario. However, this will not work as it would permit an adversary acting as a client to easily perform a
server-probing attack on the client’s password: the adversary would guess the first character of the password,
and look at the image displayed. It would then repeat the protocol with the server, guessing the same first
character. If the image displayed in both cases is the same, then with high probability this is the correct
first character of the password, otherwise the adversary is guaranteed that this is not the first character of the
password. By repeating this process, the first character canbe determined, and then the process repeated.
In order to prevent such a simple probing attack, we would like to ensure that for any incorrect prefix of the
password the same incorrect image is displayed, no matter how many times the protocol is invoked.
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An OT protocol solves many of the above problems. It allows one to have a database of images: one
image for each possible prefix of the password. When the first character of the password is input by the the
client or adversary, it is used to index into the database viathe OT protocol to retrieve the corresponding
image. Because the database is fixed, it does not matter how many times an adversary imitates a client,
the same password prefix will always result in the same sequence of images. Further, because the OT
protocol ensures that the server does not learn what position of the database was queried, if the adversary
were simulating the server it would not learn the password prefix supplied by the user. Finally, because the
server is guaranteed that the client learns exactly one database entry, there is no fear that a large number
of feedbacks can be retrieved by a phisher with a small numberof interactions with the server. If this
were possible, then the phisher could use the collected feedback information to later perform an offline
doppelganger attack.

This OT solution seems quite reasonable and seemingly solves the problem. However, it is clear this is
not a practical implementation when one considers that the running time for even the fastest OT algorithms
is, by necessity, proportional to the size of the sender’s database, and the database size is proportional to
the users’ password space. In order to circumvent this problem, a series of OTs are performed on databases
the size of the password alphabet (one OT for each character in the password), where each character of the
password is used to index into a separate database. These databases are populated with ‘image feedback’
that is dependent on the previous selection of the user, thereby imitating the notion of performing an OT
on the entire prefix of the password. However, this dependency contradicts the goal of keeping the user’s
selection secret from the server. Therefore, before the client performs an OT with the server, it needs to
communicate to it the prefix of the password that has already been entered, so the server’s database can be
made dependent on it. This must be done in a blinded fashion, so that the nothing about the prefix is learned
by the server, but in a manner that allows the server to make the DB dependency. This is done through the
use of some Diffie-Hellman exchanges.

Once the entire protocol has been entered by the client and ithas received all of the expected feedback,
then it should be convinced that it is talking to the correct server, but the server still has not received au-
thentication from the client. Therefore, a traditional PAKE protocol is then executed. The entire protocol is
described in the next section.

7.2 A Detailed Description

Using the DDH assumption, we take a cyclic groupG of orderq where the assumption is assumed to hold,
find a generatorg. We will assume that these are fixed for the remainder of the protocol’s description.

Let Σ be the alphabet over which passwords are chosen, where we assume that|Σ| is a small but rea-
sonable constant: in practice this might be in the range of 64to 256. We assume that a clientC and a server
S have previously shared a passwordφC = (φ0, .., φm−1) ∈ Σm wherem is the length of the password
in characters, in practice this would be in the range of 8 to 64. When this password was agreed upon, the
server randomly selected a pseudo-random function (PRF)FC : {0, 1}n → {1, ..., q − 1} from an appropri-
ate generator. This function is used to construct an alternative PRFIg, FC :

⋃m
i=1 Σi → G, that maps from

the domain of password-prefixes to groupG. This function is used as it can be computed in an interactive
and blinded way by the DPD protocol. The feedback for the useron input ofφi is Ig,FC

(φ0, ..., φm). The
functionI is defined below:

Ig,FC
(φ0)

△
= gFC(φ0) = y0

Ig,FC
(φ0, ..., φi)

△
= y

FC(|Σ|·i+φi)
i−1 = yi (1 ≤ i)
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The DPD protocol is given in Fig. 1, followed by the OT protocol intended to be used in Fig 2. Note that
it is only the OT protocol that uses the random oracleH. This OT protocol is a simple modification of that
presented by Naor and Pinkas [38], which itself was a modification of a protocol presented by Bellare and
Micali [3]. We refer the reader to these references for proofs of security of the OT protocol. We do not
specify a particular PAKE protocol, as their efficiencies are fairly similar, and the protocol is only called
once. Therefore, any of the PAKE protocols described in [34,5, 6, 23] should suffice.

Client Server
C S

φC = φ0, ..., φm−1 φC = φ0, ..., φm−1

~Y = y0, ..., ym−1
~Y = y0, ..., ym−1

FC : {0, 1}n → {1, ..., q − 1}
g g

Round 0
C

- D0,j ← gFC(j) (j < |Σ|).

y′
0 ← D0,φ0

`

|Σ|
1

´

-OT(φ0, ~D0)

� -
~D0 = (D0,0, ..., D0,|Σ|−1)

If y′
0 6= y0 then halt input

...
Round 1 ≤ i < m

xi ∈U {1..q − 1}
αi = (yi−1)

xi

- Di,j ← α
FC (|Σ|i+j)
i

for 0 ≤ j < |Σ|.

y′
i = D

1/xi

i,φi

`

|Σ|
1

´

-OT(φi, ~Di)

� -
~Di = (Di,0, ..., Di,|Σ|−1)

If y′
i 6= yi then halt input

End Round i

PAKE((S, φC ||~Y ), (C, φC ||~Y ))

� -

Figure 1: A depiction of a DPD protocol between the clientC and the serverS. In the description(
|Σ|
1

)
-OT(φi, ~Di) represents the execution of the oblivious transfer protocol described in Fig 2 where the

client C is selecting theφith element from the possible choices represented by~Di, and where the previous
image history (yi−1) is carried along, blinded by the client/chooser using the blinding factorxi. This allows
the image of roundi to be a function of all password charactersup to and includingtheith character, without
requiring the OT function to allow an explicit selection from such a large corpus in each round. For reasons
of efficiency, this is an important practical feature given that the OT protocol used has a linear complexity in
the number of possible choices. Finally, PAKE((S, φC ||~Y ), (C,φC ||~Y )) denotes the execution of the PAKE
protocol by the client and server, where each use the password PC concatenated with~Y as the password for
the PAKE protocol, and the usernamesS andC as inputs to the protocol.

Security against Passive Doppelganger Attacks In order to prove security against passive doppelganger
attacks, we consider a scenario where an adversary wishes toconvince a specific userC to log-on to his
fraudulent phishing web-site, that is spoofing a serverS that the client has previously established a password
φ with. We assume that the adversary has access to an honest server as an oracle. The adversary is allowed to
interact with this server as many times as it wishes. Intuitively, it is at this point that the adversary attempts
to learn all information that is needed to fool the user laterinto logging on to the phishing site. Afterward,

15



Chooser Sender
Input i ∈ [1..n] Data:D1, .., Dn

Chooser ∈U [1..q − 1]

Choosek ∈U [1..q − 1] gr, C1, ..., Cn
� ChooseC1, ..., Cn ∈U Z

∗
q .

Let PK = Ci/gk

PK

- For eachj let PKj = Cr
j /PKr

Chooses, t ∈U {0, 1}n

For eachj let Vj = H(PKj, s, j) ⊕ (Dj , t)

Let (D′
i, t) = H(PK′

j = grk, s, i)⊕ Vi
V1, ..., Vn, s, M

� Let M = H(t, V1, ..., Vn, gr, C1, ..., Cn, s).
If H(t, V1, ..., Vn, gr, C1, ..., Cn, s) 6= M

output⊥
O.W. outputD′

j

Figure 2: An efficient OT-protocol based on that of Naor and Pinkas [38] that is provably secure in the
RO-model. As noted in Figure 1, the protocol has a linear complexity in the number of possible choices.

the adversary is given a challenge passwordφ, and asked to produce the images that correspond to it. This
is to model the fact that a user should stop entering her password when incorrect feedback is returned. The
adversary is successful if it can returnIC(φ) (i.e., the appropriate feedback corresponding to the password
φ).

If the adversary interacts as an honest party with the server, that is it runs the correct cryptographic
protocol, while trying to determine the sequence of images corresponding to a user’s password, then it
clearly can learn only a sequence of images per password prefix login attempt. The pseudo-randomness ofI
ensures that given the feedback for a given password prefix, feedback cannot be predicted for other prefixes.
The security properties of the OT protocol ensure that only one sequence of feedbacks is retrieved by the
adversary per interaction with the server.

Cryptographic Security Security against a passive eavesdropper follows directly from the security guar-
antees of the OT and PAKE protocols, which guarantee security against such adversaries, and the fact the
remaining network flows consist of public or random data, which the adversary could have produced itself,
and thus does not contain valuable information.

Next, consider an active adversary who tries to impersonatea legitimate server, when interacting with a
legitimate client. In this case the OT and PAKE security protocols ensure that the adversary does not learn
the client’s password if it does not both the password, and the correct feedback the server is supposed to
provide. There are two reasons for this, the OT protects the prefix inputs of the user and the PAKE protocol
ensures minimal information is lost in the case where the client and adversarial server do not share the same
password. Further, because the DPD protocol concatenates the feedback strings to the DPD password for
use in the PAKE protocol, this ensures that not only must the adversary know the correct password, but the
correct feedback strings.

In the case of an adversarial client interacting with a legitimate server, then an attempt to interact with
the server by feeding it a password results in the adversary learning nothing more than the whether or
not the attempted password is valid, as well as the feedbacksthat correspond to the attempted password.
That no information is leaked on feedback that does not correspond to the selected password is guaranteed
by a combination of the OT protocol’s security guarantees and the strengthened SDH assumption. The
strengthened assumption is needed here, for if in some roundi the adversary does not computeαi = yxi

i−1,
but rather sends some other valuêαi, then the honest server will still raise it to appropriate exponents
derived fromFC , and these values are returned in the following rounds through the OT protocol. Yet, our
computational assumption guarantees that in such cases, the adversary learns no information.
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Finally, one should consider a strong adversarial model in which the adversary controls the entire net-
work, and can have multiple authentication sessions interact concurrently. In such situations one needs
strong cryptographic models such as those proposed by Bellare et al. [4] or Canetti [9]. Security in such
models is desirable as the Internet, in principal, allows adversaries to manipulate traffic in a large range of
fashions. While the works previously mentioned provide basic frameworks, they must be extended in order
to allow such a proof. We are currently pursuing such work. However, as previously alluded to, these mod-
els allow attacks that are sufficiently stronger than those seen in practice, and further, currently many strong
attacks that would be practical in this model are MITM attacks that are currently largely detectable through
other mechanisms that are in place, such as the detection of odd or anomalous network traffic metrics.
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