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1 Introduction

Legged locomotion of biological systems can be viewed as a self-organizing
process of highly complex system-environment interactions. Walking behavior
is, for example, generated from the interactions between many mechanical
components (e.g. physical interactions between feet and ground, skeletons and
muscle-tendon systems), and distributed informational processes (e.g. sensory
information processing, sensory-motor control in central nervous system, and
reflexes) [1]. An interesting aspect of legged locomotion study lies in the fact
that there are multiple levels of self-organization processes (at the levels of
mechanical dynamics, sensory-motor control, and learning).

Previously, the self-organization of mechanical dynamics was nicely demon-
strated by the so-called Passive Dynamic Walkers (PDWs; [2]). The PDW is
a purely mechanical structure consisting of body, thigh and shank limbs that
are connected by passive joints. When placed on a shallow slope, it exhibits
natural bipedal walking dynamics by converting potential to knetic energy
without any actuation. An important contribution of these case studies is
that, if designed properly, mechanical dynamics can generate a relatively
complex locomotion dynamics, on the one hand, and the mechanical dy-
namics induces self-stability against small disturbances without any explicit
control of motors, on the other. The basic principle of the mechanical self-
stability appears to be fairly general that there are several different physics
models that exhibit similar characteristics in different kinds of behaviors (e.g.
hopping, running, and swimming; [3, 4, 5, 6, 7]), and a number of robotic
platforms have been developed based on them [8, 9, 10, 11].
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Dynamic interactions of distributed information processing also play an
important role in stable and robust legged locomotion, which has previously
been shown in the locomotion studies of biologically inspired motor control
architectures, the so-called Central Pattern Generator models (CPGs; [12]).
This approach typically simulates the dynamic interactions of neurons, and
the periodic oscillatory signal output of the neural network is connected to
the motors of legged robots. Due to the dynamic stability in the signal out-
put, the locomotion processes using this architecture generally exhibit robust
locomotion of complex musculoskeletal structures [13, 14], and it has been
shown that the legged robots are capable of legged locomotion in relatively
complex environment [15, 16, 17, 18].

As exemplified in these case studies, one of the most challenging problems
in the studies of legged locomotion is to identify the underlying mechanisms
of self-organization which induces physically meaningful behavior patterns
in terms of stability, energy efficiency, and controllability, for example [19].
From this perspective, the goal of this article is to explore how the self-
organization processes in the physical system-environment interactions can
be scaled up to more “intellignet” behaviors such as goal-directed locomotion,
by discussing two case studies of learning legged robots. More specifically,
while the dynamic legged locomotion research were limited to only periodic
behavior patterns, we will explore the mechanisms in which the rules of motor
control can be generated from the physical interactions in the legged robotic
systems. Note that this article shows only the important aspect of the case
studies in order to discuss conceptual issues. More technical details can be
found in the corresponding publications [20, 21].

2 Learning from Delayed Reward

Physical dynamic interactions play an important role not only for the repeti-
tive behavior patterns such as walking and running on a flat terrain, but also
resilient behaviors such as high jumps and kicking a ball. Generating such
resilient behaviors generally involves nonlinear control that requires a certain
form of planning. For example, a high jump requires a preparation phase
of several preceding steps; ball-kicking requires a swing back of the leg in a
specific way to gain the maximum momentum at impact. The optimization
of such behavior control can be characterized as a “delayed reward” learning
problem [22], which means, for example, that a system can realize it was a
bad step only after falling over. In order to deal with such nonlinear control
of body dynamics, this section explores a case study of a one-legged hopping
robot that learns to generate a series of high-jumps to traverse a rough terrain
[20] .



Learning Legged Locomotion 5

I, % [«v

(70

(b)

Fig. 1 (a) Photograph and (b) schematic of the one-legged hopping robot. It consists of
one servomotor at the hip joint (represented by a circle with a cross) and two limb segments
connected through a compliant passive joint (marked by an open circle).

One-legged hopping robot

Figure 1 shows one of the simplest legged robot models. This robot consists
of one motor at the hip joint and two limb segments connected through an
elastic passive joint. This system requires only a simple motor oscillation to
stabilize itself into a periodic hopping behavior [23]. The hip motor uses a
position feedback control, in which the angle of hip joint is determined by
three parameters: amplitude A, frequency f, and offset of oscillation B.

P(t) = Asin(27f -t)+ B (1)

When these parameters are set properly, the robot shows stable periodic
hopping behaviors (Figure 2), and behavioral characteristics resulting from its
particular morphology can be summarized as follows. First, locomotion can
only be achieved dynamically. Since the leg has one single actuated degree of
freedom, the only way the robot can lift its legs off the ground is by delivering
enough energy through the motors to make the whole body jump. Second,
stability is achieved through the material properties of the legs (especially
the compliance of the passive joints) rather than by actively controlling the
positions of all joints. For instance, an inadequate position of the lower limb
(which is only passively attached to the upper limb) during the flight phase
will automatically be corrected by the spring on contact with the ground. In
particular, this characteristic allows the robot to be controlled in an open-
loop manner (i.e. without any sensory feedback) over a continuous range of
control parameters. By simply actuating periodically the motors back and
forth, the robot put on the ground will automatically settle after a few steps
into a natural and stable running rhythm. Third, the elasticity of the legs,
partially storing and releasing energy during contact with the ground, allows
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Fig. 2 Self-stability and variations of locomotion processes: (a) stable forward locomotion
with a constant stride length, (b) backward locomotion, (c, d) forward locomotion with
two and three step cycles, (e) stable locomotion with chaotic stride lengths. The oscillation
frequencies of the hip motor are f = 2.78,2.72,2.85,2.78,2.73 Hz (from top to bottom).

to achieve not only stable, but also rapid and energy efficient locomotion.
The importance of such elastic properties in muscle-tendon systems has been
long recognized in biomechanics, where it has a particular significance in
theoretical models for the locomotion of legged animals [3, 4].

Learning to hop over rough terrain

Although the periodic dynamic locomotion can be mechanically stabilized
against small disburbances, the hopping robot needs to actively manipulate
the motor control parameters to deal with more complex environment. In this
experiment, we applied a machine learning method, the so-called Q-learning
algorithm [22], for optimizing the oscillation frequency of the actuated joint.

The learning process repeats locomotion experiments in a given environ-
ment untile it reaches to a certain number of leg steps. In a learning step
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Fig. 3 (a) Learning results of motor control in simulation. The optimized sequence of
motor frequencies exhibits 12 leg steps successfully travelling through a rough terrain. (b)
Time-series photographs of the robot hopping over the steps. The motor control parameter
was first optimized in simulation and transferred to the robot for the real-world experiment.

n, the system tests a motor control policy consisting of a series of motor os-
cillation frequencies f;—1 2., which is determined from a probability matrix
Q" (i, f) (i is the number of leg steps). After each trial, the learning process
receives a positive reward signal proportional to the travelling distance and
negative reward in case the robot falls over.

no~ ) —5.0 11 = FailedStep
R™(i) = {FinalDistance : 1 # FailedStep (2)

The learning process then updates the probability matrix with a certain
learning rate a as follows:

QUi fi) = (1.0 — ) - Q" (4, fi) + a - (R"(3)
+7-maz(Q"(i+ 1, f))) (3)
As in the typical reinforcement learning, this learning process utilizes a dis-

count factor v, which influences the seleciton of action with respect to the
prior action. For example, when the action f; at a leg step ¢ resulted in
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Fig. 4 A learning process of motor control policies. The color in each tile indicates the
oscillation frequency of motor at the leg step N. It is shown that the control policy is
structured toward the end of the learning process.

a successful continuation of locomotion, the learning process reinforces the
probability of choosing f;—; with a discount factor v as well as that of f;.

The hopping robot was implemented in a physically realistic simulator to
facilitate a number of trials and errors in the learning process, and the learned
parameters were transferred to the real-world robotic platform. After a few
hundred iterations in the learning phase, the system is able to find a sequence
of frequency parameters that generates a hopping gait of several leg steps for
the locomotion of the given rough terrain (Figure 3).

Searching for a specific series of frequency parameters is not a trivial prob-
lem, because the choise of parameter not only influences behavior of the cor-
responding leg step, but also those of subsequent leg steps. For example, if the
system changes a control paramter at the leg step ¢, the exactly same motor
output of the leg step ¢ + 1 often results in completely different behaviors.
It is, therefore, necessary to utilize the delayed-reward learning such as the
Q-learning algorithm explained above, and the typical characteristics in the
learning process is illustrated in Figure 4. At the earlier learning steps, the
robot attempts mostly random sequences of the control parameters, which
are more structured at the later stage. The search process is, however, not
straight forward in a way that, at a certain learning step, the control para-
meters at earlier leg step is modified to achieve breakthroughs. For example,
while the learning process in Figure 4 could not find the adequate parameter
at the leg step 12 (after the learning step 17), it had to explore the parame-
ter space until the parameter change at the leg step 9 (at the learning step
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42), which eventually resulted in a breakthrough to continue the locomotion
thereafter.

In summary, this case study explored a learning architecture that exploits
dynamics of a compliant leg for goal-directed locomotion in rough terrain.
In order to achive highly dynamic locomotion such as a series of high jumps
over large steps, the learning architecture requires a self-organization process
which explores time-series motor output; because a behavior of the robot is
not only dependent on an immediate motor output but also the prior ones,
the delayed-reward mechanism (the propagation of reward signals over multi-
ple leg steps) is necessary in the learning architecture. It is important to note
that the goal-directed behavior shown in this case study was a result of the
two levels of self-organization processes (i.e. in mechanical and informational
dynamics): because the learning process exploited the underlying mechanical
self-stability, the basic forward locomotion dynamics do not require para-
meter optimization, on the one hand, and the rich behavioral diversity of
various hopping heights can be generated only by manipulating frequency
parameters.

3 Learning from Implicit Reward

The previous case study employed a rather simple setup of learning experi-
ments to emphasize the roles of delayed-reward signals in a learning process
of legged locomotion. In contrast, this section discusses how the complexity of
self-organization processes can be scaled up such that non-trivial signal path-
ways can be developed between sensory input and motor output. Here, we
introduce another learning architecture which extracts correlation between
signals to propagate implicit reward signals for a visually mediated target
following behavior.

Four-legged running robot

The robotic platform used in this case study is a running robotic dog [24]
shown in Figure 5. This robot has four identical legs, each of which consists
of one servomotor actuating a series of two limbs connected through a pas-
sive elastic joint as in the previous case study. Dynamic locomotion is also
achieved by periodically moving back and forth the servomotors actuating
the legs of the robot, and the target angular position P;(t) of motor i at time
t is given by



10 Iida and Bovet

A
v

k fl3

(d)

Fig. 5 (a) Four-legged running robot with two cameras (only one of them was used in the
experiments). (b) Schematic of the robot, illustrating the locations of motors (circles with
crosses) and passive joints(open circles). (c¢) Neural network architecture that illustrates
synaptic weights. Solid arrows represents non-zero synaptic connections after the learning
phase, through which neural activities can propagate, whereas dotted arrows represent
synaptic connections with essentially zero weights. (d) Snapshot image correlated to the
reward signals.

where A; is the amplitude and B; the set point of the oscillation. Compared
with the one legged hopping robot, this robot has a few additional parameters
¢;, the phase offsets, which determine the phase delay of oscillation between
the legs.

The learning architecture of this robot has a form of neural network, which
receives signals online from a visual sensor and provides output signals to the
control parameters of Eq. (4). The neural network is specifically designed for
extracting correlations in sensory-motor signals by using a modified Hebbian
learning rule (see [21] for more details). We have modeled three groups of
neurons, i.e. motor neurons, sensor neurons, and “reward neurons”, which
are fully connected internally as shown in Figure 5(c).

The motor neurons are connected to a set of motor variables that represent
the differences of parameter values between left-side and right-side motors, as
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well as between fore and hind motors. For instance, the oscillation amplitudes
A; of the four motors are defined as follow:

Agoreiess = Ao~ 5 Aty — L A, (5)
Agorerignt = Ao+ 5 M — 5 Aiong (6)
Aninatege = Ao — 5 Aias + 3 Adiong (7)
Anind,right = Ao + %AAlat + %AAlong (8)

AAjq and AAjppg are the lateral and longitudinal differences of amplitude,
and Ag is the average amplitude. The other motor parameters (i.e. the set
points B; and the phase offsets ¢;) are defined accordingly. Eventually, we
have the 8 state components (i.e. Ag, AAja, AAiong, Bo, ABiat, ABiongs
Adiar, and A¢yong) whose values are represented by the activity of 8 motor
neurons. Note that the frequency of oscillation f is constant for all motors,
which provides a basic setup of the robot running forward.

The robot is equipped with a vision system consisting of a camera attached
to the body and pointing in the forward direction (see Figure 5). The sensor
neurons are receiving both intensity and estimated optical flow extracted
from the grayscale visual imput of the 32 x 24 pixel values. For enabling
reinforcement learning, we also include a set of “reward neurons” as described
below.

Learning to follow an object

The experiment of this case study consists of two phases. In the initial phase,
the motor neurons are randomly activated, thus producing arbitrary motions
of the robot. This initial phase allows the neural network to learn the basic
cross-modal correlations as follows. The reward is delivered when the robot
is facing a large black bin placed in the environment (as shown in Figure 6).
The synaptic connections between the reward and sensor neurons therefore
learn a correlation between reward signals and a set of visual input signals
that correspond to the image of the black bin in the center of the visual field
(as shown in Figure 5(d)). At the same time, because of the Hebbian-like
learning rule, the synaptic connections between the visual and motor groups
of neurons capture another significant correlation. This correlation, which
we will elaborate below, involves the the visual neurons that receive optical
flow signals and a particular pattern of activity in the motor neurons. In
the second phase, the robot is let to move on its own while activating the
sensory neurons receiving reward signals. Because of the particular synap-
tic connections that have been strengthened during the initial phase of the
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Fig. 6 Four-legged running robot following a black object in an unstructured environment.

experiment, the reward signals are propagating through visual neurons to
motor neurons, which eventually activate the oscillation of the legs such that
the robot follows the object.

The observed behavior, generated from the propagation of neural activity
across the network, is illustrated in Figure 6, where the robot turns towards
any black object that is placed in the center of its field of view, and follows
the object as it is moved around. The key aspect of the network connectivity
is the correlation between perceived visual flow and motor activity, which is
captured by the synaptic weights coupling the visual modality to the motor
modality. Figure 7 shows a graphical representation of these weights, illus-
trating the visual flow correlated to each motor control parameter. Clearly,
the neural architecture captures a significant correlation only between visual
flow and the motor parameter corresponding to lateral phase offset difference
(Adiat). This means that the quadruped robot learns a control strategy for
turning that modifies essentially the phase difference between the oscillations
of the left and the right legs.



Learning Legged Locomotion 13

ABiong

4.0

0.0

]

-4.0

Arar Arong

(b)

Mean Correlated Horizontal Flow
Tumning Speed (/5)

0
0s 25

03
[ — .

— -
2 =02
Ao At AAiong Bo ABut ABiong Adra Arong Lateral Amplitude Difference 037 03 Lateral Phase Offset Difference (2r)

(c) (d)

Fig. 7 Graphical representation of the synaptic weights coupling the visual modality to
the motor modality, showing (a) the visual flow field, and (b) only the horizontal compo-
nent thereof, correlated to each of the eight components of the motor state. (¢c) Average
horizontal component of the visual flow correlated to each motor component (absolute
value). (d) Turning speed of the robot as a function of both lateral amplitude difference
AA;.+ and later phase offset difference Agyq;-

To better understand this result, we systematically quantify the turning
rate of the robot as a function of various motor control parameters. Fig-
ure 7(d) shows that the turning speed is most easily and robustly controlled
with the lateral phase difference, the relation between the two quantities be-
ing almost linear in the considered range. In contrast, when the other motor
control parameters are varied, the turning speed of the robot either does not
change significantly, or displays no linear relation: for instance, as the lateral
amplitude difference is steadily increased, the robot does not always change
the turning rate monotonously.

In summary, the modified Hebbian learning rule, which captured the cor-
relation patterns of sensory-motor activity in the neural network, developed
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a non-trivial synaptic structure that produces an object following behavior
based on the visual sensory input. In order to achieve this task, the net-
work has to find a non-trivial correlation between visual sensory input, re-
ward signals, and motor signals. This experiment shows how self-organization
processes that capture correlation of sensory-motor signals can generate sen-
sible behavior patterns.

4 Conclusion

This article discussed the issues of legged locomotion from the perspective
of artificial life in the real world. By treating legged locomotion as a self-
organizing process resulting from complex physical and informational dynam-
ics, we argue that one of the most significant challenges lies in the grounding
of self-organization processes for physically meaningful behaviors. While our
exploration is still at a nascent stage, we extracted a few important princi-
ples from the case studies presented in this article. In particular, we have
shown that a learning architecture requires, on the one hand, reward signals
evaluating a series of motor actions to make full use of nonlinear mechan-
ical dynamics, and on the other, a specific form of signal propagation to
capture the patterns of sensible physical system-environment interactions for
goal-directed behaviors.

There are still a number of open questions that we have not explicitly dis-
cussed in this article so far. One of the fundamental questions is how we could
extend the complexity of self-organizing processes further with less “hand-
coded” elements in the embodied systems. For example, in the case studies
presented in this article, we pre-defined a number of elements such as the
basic controllers that generate sinusoidal oscillation, basic sensory informa-
tion processing (e.g. optical flow estimation), mechanical dynamics with fixed
viscous-elasticity in passive joints, and the basic reward signals, to mention
but a few. Although we found these pre-defined elements essential to main-
tain the learning phase within a reasonable amount of time, it requires further
studies to discuss how the self-organizing processes should be structured. We
are expecting that the comparative study with some of the related work (e.g.
[16, 25, 26]) will clarify more general rules to manage the higher dimension
of parameter space in self-organizing processes of embodied systems.
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