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Abstract

Adaptive autonomous systems in the real world continuously encounter new demand-
ing situations derived from the physical constraints of their own body and the en-
vironment. They have to acquire the information about the environment through
their own sensory systems, and adaptive behaviors have to be achieved by using a
highly restricted amount of resources such as limited number of sensors and motors.
It turns out that the physical constraints derived from the body and the environment
can also be exploited to achieve behavior. This idea was previously formulated as
the principle of “cheap design”, and a number of case studies have demonstrated its
biological plausibility. The underlying problem of cheap design, however, is that it
leads to a strong dependency of the behaviors on the environment, which results in
limited adaptivity. In order to realize an adaptive system, behavioral diversity is
required.

This thesis explores cheap design and behavioral diversity in relation to body dy-
namics, morphological properties, and sensory-motor coordination. By considering
dynamic interactions between real-world robots and their environment as the central
issue of interest, underlying mechanisms of behavioral diversity are identified. More-
over, it is also shown how these dynamic interactions are related to perception and
cognitive processes. Through a number of case studies of biologically inspired au-
tonomous robots, these mechanisms are conceptualized as a set of design principles.
These principles can not only be used for building robots but also capture important
insights of biological systems.
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Zusammenfassung

Adaptive autonome Systeme werden in der realen Welt ständig mit neuen Situationen
konfrontiert, die aufgrund der physikalischen Gegebenheiten ihres eigenen Körpers
und der Umwelt zustandekommen. Insbesondere müssen sie alle Informationen über
die Umwelt mit ihren körpereigenen Sensoren sammeln und adaptives Verhalten trotz
stark limitierter Ressourcen (z.B. beschränkte Anzahl Sensoren und Motoren) erre-
ichen. Es stellt sich aber heraus, dass diese physikalischen Einschränkungen aus-
genützt werden können, um Verhalten zu erzeugen. Diese Idee wurde unter dem
Namen “Cheap Design” bekannt, und mehrere Fallstudien konnten ihre biologische
Plausibilität demonstrieren. Das diesem Ansatz inhärente Problem ist jedoch, dass es
zu einer starken Abhängigkeit des Verhaltens von der Umwelt führt und somit zu einer
limitierten Adaptivität. Für ein adaptives System ist eine grosse Verhaltensvielfalt
notwendig.

Die vorliegende Dissertation untersucht “Cheap Design” und Verhaltensvielfalt im
Kontext von “Body Dynamics”, morphologischen Eigenschaften und sensor-motorischer
Koordination. Dynamische Interaktion zwischen Robotern und ihrer Umwelt wird
als zentrales Thema betrachtet, um die zugrundeliegenden Mechanismen von Verhal-
tensvielfalt zu identifizieren. Es wird ausserdem gezeigt, wie dynamische Interaktio-
nen mit Wahrnehmung und kognitiven Prozessen zusammenhängen. Schliesslich di-
enen Fallstudien von biologisch inspirierten autonomen Robotern dazu, diese Mecha-
nismen als eine Sammlung von Design-Prinzipien zu konzeptualisieren. Diese Prinzip-
ien können nicht nur für die Konstruktion von Robotern verwendet werden, sondern
enthalten auch wichtige Erkenntnisse von biologischen Systemen.
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Chapter 1

Introduction

Biological systems explore complex dynamic environments actively and flexibly with
a rich variety of behaviors, while artificial systems still suffer from the limited adapt-
ability in the real world. One of the fundamental problems in the study of adaptive
behavior seems to lie in the fact that we do not fully understand how the systems
(both animals and artifacts) physically interact with the real world. From this per-
spective, the studies in the field of embodied cognitive science have demonstrated the
importance of body and physical system-environment interaction for understanding
mechanisms underlying adaptive behavior.

This thesis further explores adaptive behavior in the context of embodied system-
environment interaction. By considering the concept of embodiment as a central
issue, a set of principles for the design of adaptive systems are investigated. The goal
of these principles is not only to actually build robots, but also to obtain additional
insights into the adaptive mechanisms of biological systems. In particular, we explore
how behavioral diversity and cognitive processes are related to the notion of “cheap
design”. With a number of case studies using real-world systems, we introduce ways
to achieve behavioral diversity and its relation to cognitive processes.

1.1 Background

In the traditional view of artificial intelligence, one of the underlying implicit as-
sumptions is that symbol processing in the brain is the sole generator of intelligent
behavior. The main body of research, therefore, has focused on computation, i.e.
constructing a world model and making stepwise decisions based on it. However, this
approach faced, among others, the so-called frame problem [23, 92]. It is argued that
it is impossible to maintain a model of the complex and dynamic environment and
at the same time act in real time. The world model must be updated constantly, but
the update time grows exponentially as the complexity of the model increases. As a
result, the agent will spend most of its time on updating the world model, which leads
to a significant degradation of its performance. The traditional approach also suffered
from the frame-of-reference problem. Adaptive behaviors cannot be explained based
on the internal representation in the brain only, because they are highly dependent
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on a system-environment interaction [18, 19, 104]. The symbol processing for the
internal representation, in particular, was pointed out to be an additional fundamen-
tal problem of symbol grounding [37, 102]. In the traditional approach, symbols are
typically defined in a purely syntactic way by how they relate to other symbols and
how they are processed by some interpreter. The relation of the symbols to the real
world is rarely discussed explicitly.

In this context, behavior-based robotics was introduced. With only little infor-
mation about the world, artificial systems are capable of relatively complex adaptive
behaviors by having a set of basic parallel processes [10, 11]. This approach provided
a significant advance over the traditional paradigm of centralized control. However,
the focus was still on the control architecture, and embodiment was not treated as
a central issue. More comprehensive observation of biological systems has led to
the paradigm of Embodied Artificial Intelligence [89, 54]. This approach deals with
adaptive behavior in the context of system-environment interaction, and thus the
body as a physical entity became a central issue of interest. One of the implica-
tions was that adaptive behavior cannot be reduced to control and symbol processing
only. It is essential to consider many different physical aspects of the systems such as
morphological properties, control and motor action, and sensory-motor coordination.
The principle of cheap design captures the fundamental idea of embodiment, which
makes this approach different from traditional artificial intelligence and conventional
robotics.

1.2 Motivation

Originally proposed as one of the design principles of autonomous adaptive agents, the
principle of cheap design states that designs of adaptive systems must be parsimonious
and exploit the physical constraints of the ecological niche [87, 88, 89]. There have
been a number of case studies in biological science that support some aspects of cheap
design (e.g. [7, 22, 24, 34, 116, 119]). An important aspect of this principle is that
behaviors and functions are always dependent on the environment, and they often
cease to work when the environment is changed. A good example is the case study of
the Passive Dynamic Walker (PDW, [20, 73]). Despite its natural way of walking, a
PDW can function only in a very limited ecological niche, i.e. a slope with a specific
angle. If the angle of the slope is varied slightly, the PDW is no longer functional
and falls over. For an adaptive system, therefore, cheap design cannot be viewed in
isolation, but has to be considered in the context of other design principles [87, 89]:
it is not only important to exploit physical constraints, but it must be shown how
rich behavioral diversity can be achieved, which is the main objective of this thesis.

Firstly, we investigate cheap design in the context of multi-purpose adaptive sys-
tems. A system for a simple task (e.g. moving from point A to point B in a pre-
determined static office environment) does not always require behavioral diversity,
because the system deals with known situations and can always react in the same
manner. In contrast, an autonomous adaptive system in a dynamic environment con-
tinuously encounters new situations and has to deal with them by using its limited
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resources (e.g. limited number of sensors and actuators). This is one of the reasons
why cheap design and behavioral diversity are essential for understanding adaptive
behavior. In this sense, although the PDWs nicely demonstrate the power of cheap de-
sign for the complex task of walking, they have no behavioral diversity. Secondly, we
consider how cheap design and behavioral diversity are related to cognitive processes.
It will be shown that morphology and physical behavior of an autonomous adap-
tive system are directly related to cognitive processes. And finally, we pursue the
question of how behavioral diversity and cognitive processes lead to the emergence of
goal-directed behaviors. Metaphorically this issue was initially pointed out in “the law
of requisite variety” [4]: It is necessary for an adaptive system to possess behavioral
diversity to regulate and maintain the processes against foreseeable and unforeseeable
disturbances. In short, “only variety can destroy variety”. In this respect, the under-
lying mechanisms for the emergence of goal-directed behaviors are closely related to
the notion of cheap design and behavioral diversity.

1.3 Methodology

So far, we have not explicitly discussed what we mean by behavioral diversity. In
nature, animals exhibit many different kinds of behaviors such as the different gait
patterns of legged locomotion, and handling an object in different manners.

In medical and biological sciences, behaviors are often explained in terms of reflex
and voluntary movements, because these movements can be mapped onto different
parts in nervous systems such as spinal cord, cerebellum, and cortex. According to
the notion of cheap design, however, animals’ behaviors are the result not only of
nervous systems, but also of highly complex body structures (e.g. musculoskeletal
structure) and interaction with the environment. Functions in nervous systems are
only a part of the entire mechanism to generate behavior.

Therefore, for a comprehensive understanding of adaptive behavior, the “eco-
logical balance” between mechanical structures, actuation, control, and information
processing has to be investigated. It is not sufficient to decompose a complex system
into a number of neural and mechanical substructures. In this sense, the synthetic
methodology, i.e. the approach of “understanding by building”, is particularly useful,
because different levels of ecological balance can be tested in the real world.

For a systematic investigation, we firstly discuss a way to classify behaviors. There
are the following four categories, i.e. Behavior Type I, II, III and IV. As shown in
Figure 1-1, behaviors are categorized with respect to actuation and control. Behavior
Type I includes those which do not require any active control. In nature, for exam-
ple, a twisted body automatically turns back to its natural posture without control
or actuation. Behavior Type II is controlled and actuated but no sensory informa-
tion is used. As shown later in this thesis, a simple actuation can be used to attain
many behaviors including walking, hopping, running, and swimming. It is difficult
to find this type of behavior in nature, because sensory and motor systems are gen-
erally tightly coupled in animals. In Behavior Type III, sensory information is used
for feedforward motor control. Feedforward control uses the sensory information to
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Figure 1-1: Classification of behavior.

exploit the body dynamics. Previously, it has been shown that the models of PDWs
can be extended by little actuation such that they are able to walk on a level ground
[123, 21, 115]. In this model, the robot swings a leg forward when a sensor detects
its lift-off. Sensors are used to control the biped walking of this robot, but control
still exploits the body dynamics. Finally, in Behavior Type IV, sensory information
is used for feedback control. For this type of behavior, a system has a goal of move-
ment (e.g. a pre-programmed trajectory of the body). The sensory information is
used to compensate for the undesired deviation between the current and the desired
trajectories. Most of the traditional robots, including industrial robots and the ZMP
(Zero Moment Point) based legged robots, are controlled in this manner(e.g. [121]).

In biological systems, it is often difficult to see a clear distinction between these
behavior types. During walking, for example, animals make use of all of the behavior
types such as passive dynamics of musculoskeletal structure, actuation by muscles,
and sensory feedback. This could be one of the reasons why systematic investigation
is often difficult in biological sciences. By using the synthetic methodology, we are
able to build and test real-world systems. The main contribution of this thesis is,
therefore, to explore the potential importance of the different Behavior Types in the
context of behavioral diversity and cognitive processes.

In the next section, we will discuss the conceptual principles for cheap design,
behavioral diversity and cognitive processes on the basis of this classification. The
main focus is centered around Behavior Type II and III, because there we are able to
see direct contributions of the morphological properties to adaptive behavior.

1.4 Design Principles

In this section, we summarize the conceptual design principles that have been devel-
oped through the case studies described in the rest of the thesis. For the systematic
explanation of the concepts, the design principles are formulated into the three as-
pects, “body dynamics for behavioral diversity”, “body dynamics for sensing”, and
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“control for behavioral diversity”. It is important to mention that, because body and
control are generally tightly coupled in biological systems, the principles below are
also closely related to each other, and some of the principles could be rather obvious
in isolation. Given the premature state, however, it is important to focus on how
each principle relates to the others in order to see the complete picture.

1.4.1 Design Principles of Body Dynamics for
Behavioral Diversity

Embodied systems consist of many different physical components with a variety of
properties such as motors with high and low torque, actuated and passive joints, rigid
and elastic segments. When such a complex system interacts with the environment,
stable periodic behavior patterns, the so-called “attractor states”, can be generated
because of the intrinsic body dynamics determined by the morphological properties.
In Chapters 4 and 5 of this thesis, a robot called Stumpy will be introduced. It
consists of two actuated joints, elastic feet, an upper body acting as an inverted
pendulum, and large masses attached in the arms. When one of the joints is actuated
at a certain frequency, it hops by exploiting the elastic feet and the properties of the
inverted pendulum.

As shown in this example, by exploiting the interactions between the mechanical
components, stable periodic behavior can be achieved: The robot will settle into an
“attractor state” through a process of self-stabilization without sensory information.
Generally, a behavior in an attractor state will self-stabilize if it is disturbed. In this
subsection, we focus on two design principles of body dynamics concerning behavioral
diversity.

Multiple attractor states by exploiting body dynamics
This design principle states in essence that, because behavior is emergent from the
interactions of many mechanical components, a small variation in one control para-
meter can change the whole dynamics of the system, i.e. the way all components
interact with each other. Stated differently, changes in one control parameter can
lead to different attractor states.

For example, as shown in Chapter 5, Stumpy exhibits a few different behav-
ior patterns in the locomotion behavior called “lateral bounding” (i.e. a movement
pattern between hopping and running in which the robot moves sideways). When
the inverted pendulum oscillates in an upright position, it hops in place, whereas it
bounds sideways as the center of the oscillation is shifted to one side. Moreover, as
another example shown in Chapter 4, Stumpy is able to switch its behavior between
forward and backward walking by changing one control parameter of the phase de-
lay between two motor oscillations. Because the behavior of Stumpy is the result of
many interacting components (e.g. springs, actuators, and masses), changes in one
control parameter (e.g. the center of the oscillation) can lead to different variations
of locomotion behavior.

The idea of exploiting body dynamics to achieve multiple attractor states is partic-

5



ularly important for perception and learning of behaviors. As shown in Chapter 7, by
exploiting the interactions between components, the perception and learning mecha-
nisms can be much simpler, because there are fewer control parameters to be explored.

Behavioral diversity by exploiting self-stabilization
This principle states that behavioral diversity can be also increased within one attrac-
tor state by exploiting the self-stabilization. Through a change in one of the control
parameters, which does not move the robot out of its basin of attraction, considerable
behavioral variation can be achieved.

For example, in Chapter 6, a four-legged robot exhibits a form of running behavior
simply by swinging the legs at a certain frequency without sensory information. The
oscillation frequency is determined by the morphological properties of the robot. Even
in this simple method for running behavior, behavioral diversity can be achieved
by exploiting the following mechanism: During a stable running behavior, the legs
interact with the ground in the same manner in every leg step. Because the legs are
exerted by the same ground friction and reaction forces in every leg step, deviation
of the leg trajectory results in instability. For example, there is a specific touch-
down angle of the legs which enables the same touch-down angle in the next leg
step. The touch-down angle of the legs is determined by morphological properties
such as elasticity and the length of the leg segments, but the compliant legs have a
self-stabilizing function in a sense that a deviation of the touch-down angle can be
corrected in the next leg step. Therefore, this running behavior is in an attractor
state.

When the frequency of the leg swing is changed, the desired touch-down angle
of the legs can rarely be achieved. In other words, the stable locomotion process
is “actively” disturbed. What is happening in this case is that, even though the
self-stabilization mechanism tries to adjust the angle of touch-down, the preferred
oscillation frequency of the legs disturbs the self-stabilization, and as a result the
robot runs at a lower forward locomotion speed. Note that Stumpy is also able to
control the locomotion velocity of lateral bounding in a similar way (Chapter 4).

1.4.2 Design Principles of Body Dynamics for Sensing

In Behavior Types I and II, changes of the environment directly influence the be-
havior patterns. For example, a process of running behavior of the four-legged robot
(Chapter 7) becomes unstable when the ground friction is changed. When behavior
relies on the environmental conditions as in the case of running behavior, the physical
properties of the environment can be reflected in the behavior patterns. These be-
havior patterns are then used for acquiring information about the environment. For
this strategy of sensing, there are two design principles which explain the relation
between body dynamics and sensory information.
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Multi-modal sensing through body dynamics
This principle states that many sensory channels can be used to recognize the physical
properties of the environment when a system exploits its body dynamics. As explained
in the previous design principle, behavioral patterns are generated as a result of the
interplay between many components in the body and the environment.

An example is shown in the running behavior of the four-legged robot which
results from many components interacting with each other: The ground reaction
force exerted at the feet, the force generated in the elastic passive joints, the output
force of the actuators, and the momentum of the large masses in the body, such as
the batteries. Even if the robot exhibits running behavior, it often shows a different
behavioral pattern when an environmental property (e.g. the ground friction) is
changed as shown in Chapter 7. Because the environmental properties are reflected
in the behavior patterns of the body, the properties can be estimated through the
behavior of each component contributing to the whole body dynamics, such as touch
sensors on the ground, joint angle sensors, torque sensors in the motors, and inertial
sensors in the body. In this manner, sensing of non-trivial physical properties can be
possible: Ground friction and body mass can be measured by a visual sensor and an
on-off mechanical switch (Chapter 7).

Multi-modal sensing is particularly important for situated systems, i.e. systems
that acquire information about the environment through their own sensory systems.
For a situated system, the sensory information acquired through one sensory channel
is not very meaningful. Generally in conventional robotic systems, sensory infor-
mation is interpreted by a human designer and implemented in a control program.
For a system which grows through the interaction with the environment, however,
grounding is a fundamental issue, as pointed out by the “symbol grounding problem”
[37, 102, 127]. For the symbol grounding problem, sensory information becomes more
“meaningful” by correlating multi-modal sensory information. Because information
from each sensory channel is generated by a certain physical interaction, the robot is
able to learn the relation between different physical interactions by correlating the re-
spective information. As another example of legged locomotion, the angle of a slope
can be measured with a single sensory channel, an inclinometer. The information
extracted from this sensory channel, however, becomes more meaningful if it is com-
bined with information from other sensory channels, e.g. locomotion speed, the force
exerted on the legs, energy consumption, and motor signals. The robot might be
able to “understand” the meaning of the slope angle or of high friction by correlating
sensory patterns from different channels.

It is important to note that this mechanism for multi-modal sensory information
does not always work when sensory-motor coordination is implemented. When the
behavior is actively stabilized by using sensory information, the behavior of the body
might not be changed by different environmental conditions; As a result, multi-modal
sensory information cannot be generated. Therefore, it might be important to make
the system dependent on the physical changes to some extent in order to acquire
multi-modal sensory information.
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Information structure acquired through body dynamics
This principle is related to the previous one. It states that the recognition process of
the environmental properties can be significantly simplified when sensory information
is acquired through behavioral patterns induced by body dynamics. Because a change
of an environmental property can result in a considerably different behavioral pattern,
the sensory information acquired through body dynamics can be clearly distinctive.

For example, as shown in Chapter 7, the running behavior of the four-legged robot
is possible only in a certain environment with a set of control parameters. Although a
small change in the environment does not influence the behavioral pattern due to the
self-stabilization nature of body dynamics, the stable locomotion pattern disappears
and a chaotic pattern is induced when the environment is substantially changed.
Because of the self-stabilization mechanism, the transition between stable and chaotic
behavioral patterns is salient, thus sensory information acquired through the behavior
patterns can be easily distinguished. A threshold can be sufficient for the recognition
of ground friction as shown in Chapter 7, for example.

An important implication is the fact that discrete states are generated in contin-
uous space of sensory information, which is originated in the self-stabilization char-
acteristics derived from body dynamics. In other words, the sensory information is
“structured” by the body dynamics such that the environmental properties can be
discretely recognized. These discrete states are then used for a form of symbolic in-
ternal representations, which are the indicators of physical interaction between the
body and the environment.

1.4.3 Design Principles of Control for Behavioral Diversity

So far, we have discussed only Behavior Type II, i.e. behaviors generated by a simple
controller without any sensory information. Although many behavioral patterns can
be generated only with a simple controller by exploiting body dynamics, the integra-
tion of sensory information substantially enhances behavioral diversity, which then
leads to Behavior Types III and IV as introduced in the previous section. There
are many different ways to integrate the sensory information for adaptive control,
but here we focus only on the control architecture for Behavior Type III. Namely,
the main question is how the control architecture integrates the sensory information
by exploiting morphological properties and body dynamics. By integrating sensory
information, the control architecture can guide the system for goal-directed behaviors.

Sensory-motor coordination for stable behavior processes
This principle states that, when sensory morphology and temporal sensory informa-
tion are properly taken into account, sensory-motor coordination can be significantly
simplified. The simplification of the sensory-motor coordination is particularly im-
portant for the stability and the precision of maintaining complex behavior processes.

For example, although course stabilization in the air is a considerably demanding
task, the flying robot introduced in Chapters 2 and 3 is able to recover from most of
the potential course deviations with a simple substrate of sensory-motor coordination.
This is possible because it exploits temporal sensory information and sensory mor-
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Figure 1-2: Design principles and their relation to the topics described in this thesis.

phology, i.e. the optic flow information obtained from the omni-directional camera
images. More concretely, when the robot rotates clock-wise around its vertical body
axis, the optic flow indicates the flow from right to left; When the robot goes down,
the flow goes from the bottom to the top; And when it goes straight, the optic flow
on both lateral sides indicates opposite directions. Because this optic flow provides
sufficient information about the behavior of the system, the robot is able to react to
the disturbances.

It is important to mention that sensory morphology is highly related to the body
dynamics and the behavioral diversity of the system. In the case of a legged robot,
for example, an on-off mechanical switch does not provide any information about
a locomotion process if it is not on the foot. In a similar way, the flying robot
requires most of the sensors in lateral sides because the robot has particular body
dynamics and behavioral diversity, i.e. it mostly travels toward the forward direction.

Control for goal-directed behaviors
This principle states that control for goal-directed behaviors can be significantly sim-
plified when self-stabilization mechanisms are exploited.

In the goal-directed navigation of the flying robot, for example, the optic flow
information, which is used for the course stabilization, can also be used for measuring
the traveling distance by accumulating the flow over time. By combining both the
course stabilization mechanism and the odometry mechanism, this robot is able to
perform goal-directed navigation. Theoretically, only a few pixels of visual informa-
tion are sufficient to be processed for the goal-directed navigation in the air.

As another example, which is highly related to the design principle of body dynam-
ics for behavioral diversity, the four-legged robot can adjust its locomotion velocity
by using a simple time delay which is the computationally simplest way to regulate a
desired velocity (Chapter 6). This is possible because it exploits the self-stabilization
mechanism derived from the compliant legs.
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1.5 Overview of the thesis

So far, the conceptual background and design principles have been explored. In the
rest of the thesis, we explore three individual research topics that all contribute to
our understanding of adaptive behavior. In particular, we focus on the issues of
locomotion and navigation, because they are fundamental functions for autonomous
systems, and cheap design and behavioral diversity are essential for these functions.
The following sections are organized on the basis of about 14 published papers. Here
we summarize the case studies in the context of the conceptual contributions described
in this section (Figure 1-2).

The first topic investigates visually guided navigation of flying insects (Chapters
2 and 3). The major focus lies on how flying insects can achieve many different func-
tions with a relatively simple brain. In order to understand the behavioral diversity of
visual navigation, we have investigated a biological model of flying insects and tested
it in a real-world robotic platform (Chapter 2; This chapter is based on the reviewed
publications [47, 49]). It is shown that the temporal patterns acquired through the
biologically inspired motion detectors can be used for visual odometry given a proper
sensor morphology (i.e. the location of motion detectors and their resolution). The
visual navigation model is then tested with a freely flying robot (Chapter 3; This
chapter is based on the publication [50]). Goal-directed navigation is achieved by im-
plementing mechanisms of course stabilization and visual odometry for sensory-motor
coordination. Moreover, it is shown that the proper morphology in the sensory system
significantly improves the navigation performance in an unstructured environment.

Chapter 4 presents a dynamic locomotion robot, Stumpy, which takes advantage of
its intrinsic body dynamics. Owing to the unique design of its morphology, Stumpy
exhibits a variety of locomotion behaviors even though it has only two actuated
degrees of freedom (this chapter is based on the publication [48]). The behavioral
diversity of Stumpy is explored further in Chapter 5, where it is explained how Stumpy
exploits its intrinsic body dynamics and the physical interaction with the environment
for behavioral variations (this chapter is based on the publications [51, 53]).

Another kind of locomotion system is introduced in Chapter 6 (this chapter is
based on publication [52]). The four-legged robot, Puppy, shows that rapid locomo-
tion can be achieved even without sensory feedback by exploiting a self-stabilization
mechanism derived from the elastic material property implemented in its legs. By
exploiting this stabilization mechanism, we introduce a unique method to enhance the
behavioral diversity. As an example, it is shown that a simple mechanism is sufficient
to control a complex running behavior. On the basis of stable dynamic locomotion
of Puppy, we explore how body dynamics and the interaction with the environment
can be related to the perception in Chapter 7. It is shown how body dynamics is
related to the structure of sensory information, which could potentially simplify the
perception of situated systems (this chapter is based on the publications [55, 57]).

Finally in Chapter 8, the contributions and perspectives of this thesis are dis-
cussed. In particular we consider how this thesis contributes to the challenging issues
of evolutionary and developmental artificial systems and artificial cognition.
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Chapter 2

A biologically inspired visual
odometer for flying robot
navigation

Abstract

While mobile robots and walking insects can use proprioceptive information (special-
ized receptors in the insect’s leg, or wheel encoders in robots) to estimate distance
traveled, flying agents have to rely mainly on visual cues. Experiments with bees
provide evidence that flying insects might be using optical flow induced by egomotion
to estimate distance traveled. Recently some details of this “odometer” have been
unraveled. In this study, we propose a biologically inspired model of the bee’s visual
“odometer” based on Elementary Motion Detectors (EMDs), and present results from
goal-directed navigation experiments with an autonomous flying robot platform that
we developed specifically for this purpose. The robot is equipped with a panoramic
vision system, which is used to provide input to the EMDs of the left and right visual
fields. The outputs of the EMDs are in later stage spatially integrated by wide field
motion detectors, and their accumulated response is directly used for the odometer.
In a set of initial experiments, the robot moves through a corridor on a fixed route,
and the outputs of EMDs, the odometer, are recorded. The results show that the
proposed model can be used to provide an estimate of the distance traveled, but the
performance depends on the route the robot follows, something which is biologically
plausible since natural insects tend to adopt a fixed route during foraging. Further
investigation in the simulation shows that goal-directed navigation can be potentially
achieved by simple visual processing, and that the design flexibility of this approach
leads to high adaptivity to the given task-environment.

0This chapter is based on the reviewed publications [47, 49].
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2.1 Introduction

Navigation in complex 3-D environments is a challenging issue for both animals and
robots. Flying insects solve this task in a robust and adaptive way despite their
tiny brains. Being able to navigate in 3 dimensional space offers several advantages.
Flying insects, for example, can reach target locations (e.g. food sources, or their
nest) faster and easier, they have the birds eye perspective of their environment, and
they have increased access to places, that are not reachable by land. However, this
also introduces a number of additional issues that need to be addressed. For example,
parsimony of control strategies is essential, since flying agents can not simply pause -
they must make control decisions in a timely manner. Robustness of control strategies
is another issue - while in wheel-based robots it is possible to make a sequence of bad
decisions without endangering the integrity of the robot, this will be disastrous for a
flying robot. There is also a much higher pressure to develop mechanisms that are
able to cope with unanticipated situations. Abilities like flight stabilization, obstacle
avoidance, safe landing, or target tracking, will often have to rely on vision. In some
cases, required navigational accuracy and small size operating areas preclude the
use of most commercially available equipment like GPS or radar. Especially dead
reckoning in a small range can only be done supported by visual information, since
proprioceptive errors are much larger compared to land-based vehicles [26, 35].

Bees make use of both landmark and dead reckoning information for navigating,
and can communicate the distance and direction to a newly found food source to
their nest mates. Use of dead reckoning requires that both directional and distance
information be available. Whereas in direction estimation there is a lot of evidence
(starting with the pioneering work of von Frisch [120]) that celestial cues and espe-
cially the polarization pattern of the sky play crucial role [99, 36], the way that bees
gain information about the distance traveled has been a point of dispute for many
years.

Early studies suggested that the distance is gauged in terms of total energy
consumption during a foraging journey, but recent studies of the bees’ behavior
questioned this hypothesis, and suggested that visual cues, more specifically the
amount of image motion, play an important role on estimating the distance trav-
eled [107, 108, 112]. In these studies, bees were initially trained to search for the food
source in the vertically striped tunnel. Then the searching behavior of the trained
bees was observed when the pattern of stripes on the walls was changed, by using
different stripe periods, different width between right and left walls, and walls with
horizontal stripes. With horizontal stripes, bees tend to fail searching for the food
source at the right location, therefore it was concluded that vertical stripes are used
for the visual odometer. With different period of stripes, bees succeed in finding the
food source position, which implied that bees measure the distance independent of the
spatial frequency of the stimulus in the environment. However, when the distance to
both walls was increased or decreased compared to the training situation, bees tend
to fail in searching at the right location. The main conclusion from these studies was
that the bee’s visual odometer provides an estimate of distance that is independent
of the spatial frequency of the visual stimulus, i.e., it only depends on the angular

12



velocity of the image projected on the insect’s retina.
Although there is a lot of behavioral evidence that bees might be using optical flow

for estimating distance, there is very little known of how this could be implemented
neuraly. A visual odometer for mobile robots was proposed, but this odometer is
based on an image interpolation algorithm rather than optical flow [109]. On the
other hand, there is a lot of work done on insect motion perception and its use on
stabilizing flight. The optomotor response of flying insects has been investigated for
a long time. Reichardt reported on the optomotor response of the fly almost thirty
years ago [97], he demonstrated that a tethered fly inside a striped drum tends to
turn in the direction in which the drum is rotated. This response helps the insect
maintain a straight course by compensating for undesired deviations. The landing
response of the fly was investigated with case studies on the extending leg response
for the preparation to land and deceleration of speed before landing [110]. Those
studies imply that flies might be using image motion of the texture on the ground
for producing a landing response. Such a scheme would take advantage of the fact
that texture in the image moves faster as the insect comes close to the ground. In
addition, bees appear to use a similar strategy to regulate their flight speed [107],
according to which bees decrease their flight speed as the vertically striped tunnel
becomes narrower so as to keep the angular velocity of the image constant.

On the basis of above mentioned behavioral experiments as well as electrophys-
iological studies, a model of motion detection in the insect’s nervous system, the
so-called Elementary Motion Detector (EMD), has been proposed [9]. This biological
motion detection mechanism is also very interesting from the engineering perspective,
because traditional optical flow approaches require large computational resources [3].
Some attempts to incorporate motion detector mechanisms to control artificial agents
in both real-world robots and computer simulations have been reported in the last
few years. An autonomous agent capable of avoiding obstacles, while moving very
fast, by exclusively using optical flow was implemented by Franceschini et al. [30].
The visuomotor system of the robot was based on the study of the neural mechanisms
of motion detection in the compound eye of the housefly. It consists of an array of
EMDs capable of analog, continuous-time processing, which were used to steer the
robot directly. In a similar way, EMDs were used in a simulated flying agent for
altitude control, to avoid crushing on the ground [77, 79]. Due to their simplicity,
analog VLSI implementation of EMDs has been also proposed [38].

Another advantage of EMDs as can be seen from the above mentioned appli-
cations, is that they can be used in different parts of the visual field for different
purposes. EMDs at the periphery can be used to evaluate lateral flow as well as the
motion of the ground for evaluating flight speed or distance covered, whereas EMDs
tuned in the center of the visual field can be used for detecting objects and avoiding
them. Being able to reuse the same basic circuit is very important for flying agents
since there are normally very strict constraints on the amount of payload the agent
can carry.

In this chapter we introduce a biologically inspired visual odometer based on
EMDs and present and analyze data of its performance on a robot. Given the re-
sults from the real-world experiments, we conduct further investigation of navigation
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Figure 2-1: Left: the Reichardt model of elementary motion detection. Photorecep-
tors, high-pass filters, low-pass filters, multipliers, and the subtraction module are
wired in series. The output of the last step (subtraction) is an estimate of image
speed (see text for details). Right: the visual odometer based on a wide field motion
detector. The integrated response of an array of EMDs, each tuned to a different
part of the visual field, is used to implement a wide field motion detector. Its outputs
are then integrated over time to provide an estimate of the distance traveled (for
explanations, see text).

in simulation, in which the minimum requirements of this navigation strategy are
explored.

2.2 Elementary Motion Detectors and the Visual

Odometer

2.2.1 Basic EMD Circuit

As mentioned earlier a large part of the flying insect’s behavior seems to rely on image
motion. Their motion detection mechanism has been investigated in electrophysio-
logical level for a long time [31], and a computational model of motion detection,
the Elementary Motion Detector (EMD), has been proposed based on the results
from these studies [9]. There are several version of the EMD model, one of the most
commonly used is the so-called Reichardt or correlation model, which consists of two
photoreceptors, high-pass, low-pass filters, multipliers, and summation functions, as
shown in Figure 2-1. An important feature of this model is that it sensitive not only
to the magnitude of image motion but also to the direction of the motion, i.e. EMD
responses are positive when image moves preferred direction, and negative response
with non-preferred.

Here we propose a method to measure distance traveled using the Reichardt model.
Since the EMD response provides an angular velocity signal (more exactly, a spatio-
temporal signal that depends on the speed of the stimulus as well as its spatial
frequency, see next subsection), the distance traveled could be estimated by inte-
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grating the EMD outputs over time. The information processing steps we employed
in the experiments are as follows. At first, intensity values from two adjacent pix-
els on a CCD camera image are used to calculate activity of a photoreceptor pair
(Photo1i(t), Photo2i(t) of the ith EMD). Subsequently the output of the High-Pass
Filters HPF1i(t) and HPF2i(t) at time t is calculated as follows:

HPF1(t) = Photo1(t)− Photo1(t− 1) (2.1)

HPF2(t) = Photo2(t)− Photo2(t− 1) (2.2)

Given output of HPF s, the output of the Low-Pass Filters LPF1i(t), LPF2i(t) is
calculated as follows:

LPF1(t) = a ·HPF1(t) + (1− a) ·HPF1(t− 1) (2.3)

LPF2(t) = a ·HPF2(t) + (1− a) ·HPF2(t− 1) (2.4)

where a is a parameter for the time delay. Then each LPF output is multiplied with
the output of its neighboring HPF :

MLP1(t) = LPF1(t)×HPF2(t) (2.5)

MLP2(t) = LPF2(t)×HPF1(t) (2.6)

The output of an EMD module is finally computed as:

EMD(t) = (1− b) · EMD(t− 1) + b · (MLP1(t)−MLP2(t)) (2.7)

where b is another delay parameter implementing a low-pass filter on the EMD’s
output to reduce noise. By putting many EMD modules in parallel we can increase
the visual field size, thus simulating the wide field motion sensitive H1 interneurons
in the insect’s brain:

H1(t) =
∑

i

EMDi(t) (2.8)

At the end the visual odometer response, V O, is calculated by integrating the H1
output over time:

V O =
∑

t

H1(t) (2.9)

2.2.2 Initial Experiments Using a Panoramic Camera

To evaluate the performance of our model, we developed a miniature panoramic vision
system, which consists of panoramic mirror, a CCD camera module, and the housing
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Figure 2-2: Vision system and initial experiment setup. Left: The panoramic vision
system we developed for this experiment consists of CCD camera, panoramic mirror,
and housing components, which weighs 90 g in total so that it can be embedded in
the flying robot. The visual field covers 360 degrees on the horizontal plane, and
260 degrees vertically. Middle and right: This vision system is equipped with the
caster-frame on a pair of rails, and an external motor drives the vision system along
a straight route at a constant speed. Initially walls with black and white stripes were
installed along the rails (20cm width period of black and white, 60cm distance from
vision system).

components. The system was designed to weight no more than 90 g in total so that
we could later integrate it to the flying robot (Figure 2-2). The panoramic mirror was
developed based on a panoramic optics study [16] and it has a hyperbolic surface that
provides a visual field of 360 degrees on horizontal plane and 260 degrees vertically.
In the first experiment, this vision system was equipped with the caster wheel frame
on a pair of rails, and a motor system which drives the vision system at constant
speeds along a horizontal straight route (Figure 2-2).

Initially walls with black and white stripes were installed along the railway (20cm
width period of black and white, 60cm distance from vision system). Figure 2-3 shows
that the typical responses of one EMD module, when the vision system moves 2 m
at constant speed of 15 cm/sec. Black and white stripe patterns can be seen as big
fluctuation of image intensities, i.e., image edges that activate the HPF s and LPF s.
The EMD responses indicate image motion (as a result of egomotion), and eventually
V O indicates the distance the vision system moves. Since only one EMD is used in
this graph, the response of V O seems layered, because V O is incremented only when
EMD goes through an edge in the image. This layered response in V O outputs could
be improved by applying wide field of EMDs that cover wide range image angle such
that changes in intensity (edges) continuously activate EMDs.

A characteristic feature of the EMD model is that its response depends not only
on the speed of the image, but also on its spatial frequency [110]. Thus, it acts
more like a spatio-temporal filter rather than a pure speed detector. Its response
attains a maximum at a certain speed that induces a specific temporal frequency. In
order to test this characteristic, we have carried out another set of experiments, in
which the vision system is driven 5 times at 3 different speeds (15cm/sec, 28cm/sec,
and 40cm/sec) in the same setup as previous experiment. As shown in Figure 2-4,
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Figure 2-3: Typical responses of the EMD and the visual odometer. Upper: Photore-
ceptor activity is calculated directly from the image captured by CCD camera. This
graph shows the time-series of photoreceptor activity. Fluctuations on the signal cor-
respond to the stripe pattern of the walls when the vision system moves horizontally
along the corridor. Middle: The outputs of High-pass and low-pass filters. Fluctua-
tions on these signals correspond to the edges in the image. Bottom: Responses of
the wide field motion detectors and the accumulated visual odometer response.

the visual odometer responses at different speeds indicate different distances even
though it moves along the same absolute distances, i.e. the responses at middle speed
indicate the longest distance. This result is not compatible with the results obtained
from the bee experiments that show that distance estimation is independent of the
spatial structure of the stimulus [106].

However, as shown in Figure 2-4, the odometer responses at each speed tend to
indicate the same distance, which imply this odometer could be used for measuring
distance to the target position as long as the agent follows the same route. Considering
the fact that this assumption has to be made even in the case of a visual odometer
which is independent of the spatial frequency (the bee still needs to encounter the same
objects at the same distance), we can conclude that there is no obvious advantage of
spatial-frequency independent visual odometer in this context.

With this assumption in mind, we tested this system in the natural office environ-
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Figure 2-4: Visual odometer responses at 3 different speeds. Time series of pho-
toreceptor activity for 3 different speeds: 15cm/sec (Upper Left), 28cm/sec (Upper
Right), and 40cm/sec (Bottom Left). Bottom Right: Visual odometer response. Be-
cause the outputs of the EMDs depend on temporal frequency, the odometer produces
different distance estimates at different speeds.

ment, in which the vision system moved 5 times at the same speed along the same
routes without any artificial walls but by using the surroundings of the office. Photore-
ceptor inputs and odometer responses are shown in Figure 2-5, which demonstrates
that the odometer has the ability to operate even in unstructured office environments
when it follows the same route at the same speed.

2.2.3 3-D Navigation with EMDs and the Visual Odometer

In the following, we focus on integration of the EMD-based visual odometer in an
autonomous flying robot. Flying agents also need to obtain the flight height informa-
tion in order to maintain a certain flight altitude, to avoid crushing on the ground,
and for reaching a certain target position in 3-D space. One possibility to realize such
a mechanism is to use information from the ventral part of the visual field. EMDs
receiving input from this part could measure the distance to the ground by using the
optical flow induced by ground texture. A strategy of speed and altitude control of
flying agents by using a similar mechanism has been evaluated in simulation [77, 79].
An alternative would be to use EMDs tuned to the vertical direction, in such a case
the mechanism is the same as the one used in the visual odometer described in the
previous section, but this time the EMDs are tuned to motion along the vertical
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Figure 2-5: The response of the visual odometer in an experiment performed in a
natural office environment. Left: Typical output values of four photoreceptors. Their
output profile depends on the structure of environment and the light conditions.
Right: Visual odometer response. The vision system moved along the same route
5 times at the same constant speed. This graph shows that the proposed odometer
mechanism provides a robust distance estimate as long as it moves along the same
route.

plane (see Figure 2-7). According to this scheme, the vertical EMDs respond to the
vertical motion of the agent (changes in altitude), thus this information could be
used for altitude control. Note that, however, this approach does not measure the
distance to the ground simultaneously but it depends on the accumulated response
of the EMDs, and thus it is prone to cumulative errors. For the purpose for our
experiments thought, it proved to be sufficient to keep the robot over a certain height
and to avoiding crushing on the ground. This is not general purpose altitude control
mechanism neither a model of how insects achieve this.

One prominent feature is that EMDs cannot accurately measure 2-D image mo-
tion, i.e. they cannot always distinguish horizontal from vertical motion depending on
the image structure [9]. We tested the performance of both vertically and horizontally
tuned EMDs in the same experimental setup described in the previous subsection.
During the experiment the robot had to move forward at constant height and speed
in the office environment. Two arrays, consisting of 80 EMDs each, arranged along
the horizontal, vertical directions, were used to provide both horizontal (forward mo-
tion) and vertical (changes in altitude) motion cues estimates, respectively. Figure
2-6 shows the panoramic image in an office environment and distribution of the two
dimensional EMD array. Figure 2-7 shows the output characteristics of the horizon-
tally and vertically tuned EMDs in terms of the average and the standard deviation
of the EMD responses. This result implies that the vertical EMDs could measure
vertical motion with a 4% error.
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Figure 2-6: (a) Panoramic view of an office environment acquired through the
omni-directional camera, and (b)distribution of two dimensional EMD array in the
panoramic image.

2.3 Simulation Experiments

2.3.1 Method

This section presents a simple simulation experiment to investigate the influence of
parameters on the proposed approach. For the sake of convenience, we conducted
the simulations in a 2-D environment. As shown in Figure 2-11, an agent navigates
through a corridor, both sides of which have walls with one-dimensional sinusoidal
intensity patterns. The controller used in this simulation is shown in Figure 2-9.
The left and right visual fields consist of two dimensional arrays of EMDs, in which
EMDs are oriented both horizontally and vertically to measure both movements [9].
The number of EMDs in each array can be highly flexible; in the extreme case, one
EMD on each side and another for vertical one is sufficient (therefore, only 5 pixels
are required for 3-D control). In addition, parameters of the EMDs, such as low-
pass filter constants, can be set independently, but only homogeneous distributions
are employed. The responses from both horizontal and vertical wide field EMDs
are extracted, and provide inputs to the visual odometer as well as to a sensory-
motor circuit. In the visual odometer neuron, the given inputs from the horizontal
EMDs (EMD H R and L in Figure 2-9) are accumulated over time. In the sensory-
motor circuit, the right and left horizontal EMDs are connected to the rotation motor
neuron. The right and left vertical EMD neurons (EMD V R and L) are connected
to the elevation motor neuron, whereas the connection weights are chosen in such a
way to suppress vertical motion, i.e. to retain height. The thrust motor neuron is
connected to a bias neuron that drives the robot forward at a constant speed. The
connection weights are set by hand, and are not changed during the experiments.
The simulated agent has no inertia or friction, thus the position and the orientation
of the agent are simply calculated from visual inputs in the previous step. The agent
starts to navigate from the same initial condition and continues until it hits the walls
or reaches the end of the experimented area.

We tested 2, 40, and 90 pixels on each lateral view of the agent (therefore the
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Figure 2-7: Left: Two-dimensional EMDs. Filled ellipses denote photoreceptors,
filters and operators are represented by the boxes, and their outputs provide inde-
pendent estimates of vertical and horizontal image motion. Right: Typical responses
of vertical and horizontal EMDs when the vision system moves horizontally straight
in the natural environment. This graph indicates that the EMDs could also be used
to detect vertical motion with very small errors.

agent has 2, 40, and 90 EMDs in total respectively), each of them are positioned at a
constant angular distance of 2 degrees. We began with a simple environment in which
walls in the corridor contains sinusoidal intensity patterns. Noise was then added by
means of the following equation.

I(x) = 128 + 128× sin(x) + 256×NoiseLevel ×Random (2.10)

where I(x) is the intensity at location x, and Random is a random value between
0 and 1. We tried NoiseLevel values of 0, 20, 50, and 100 %. This noise corresponds
to a variation of spatial structure in the real environment. Figure 2-11 shows the
typical sinusoidal patterns at each noise level. With each combination of the number
of EMDs and the noise level, 20 trials were tested using the different wall patterns
generated by different random seeds.

2.3.2 Result and Discussion

Figure 2-10 illustrates the trajectories from each trial, and Figure 2-11 shows the
mean visual odometer responses of 20 trials and the standard deviations (SD) as
percentage of the mean visual odometer responses. In case of NoiseLevel 0%, the
proposed method can achieve goal-directed navigation with only 2 EMDs (4 pixels);
the agent follows the same route and measures the distance correctly, i.e. zero SD.
In the noisy conditions, however, the trajectories spread out in earlier stages of the
navigation, which lead to larger odometer errors. In the cases of 40 and 90 EMDs, on
the other hand, deviations of routes are relatively small. These results suggest that the
larger numbers of EMDs improve the performance in the noisy environments, namely
goal-directed navigation can be achieved robustly even when spatial structures of
the environment are modified. This also implies the design flexibility of the proposed

21



Figure 2-8: Top: The simulation setup. Bottom: The typical patterns used on the
wall. (Noise 0, 20, 50 and 100 % from top to bottom.)

approach in a sense that designers (or an evolutionary process) can flexibly change the
architecture of the agent to adapt to the complexity of the given task-environments.

2.4 Discussion and Further Work

The experimental results imply that the optomotor response of flying agents would
play an important role in a visual odometry scheme using EMDs, because their re-
sponse tends to be dependent on the structure of environment. In this respect, the
visual odometer that we describe here is not compatible with what we currently know
about its biological counterpart, because the bee’s response seems to be independent
of the spatial structure of the environment. However, as we discussed earlier, this
does not seem to have an advantage since the bee still has to follow the same route
in order to experience the same distances to the objects, which is a prerequisite even
for a pure image velocity visual odometer to work.

An interesting property of the navigation scheme described in this chapter, is that
the system not only achieves visual odometry but also avoids obstacles, controls its
speed, and presumably this mechanism could also be used for safe landing, and these
by using the same elementary mechanism, the EMD. For all of these behaviors, the
sensory-motor response is, again, a very important issue to consider, because none
of these behaviors could have been realized without it. The safe landing mechanism
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Figure 2-9: Sensory-motor control circuit. Outputs of left and right EMD networks
provide the vertical (EMD-V-L, EMD-V-R) and horizontal (EMD-H-L, EMD-H-R)
image motion values of each side. The horizontally, vertically tuned EMDs are con-
nected to a motor neuron that controls the robot’s rotation, elevation, respectively.
The outputs of the horizontally tuned EMDs are also used by visual odometer. The
thrust motor neuron has a connection to bias neuron that implements the default
move-forward behavior.

could be implemented by changing the connections between the EMDs and motor
neurons. One interesting issue to be studied could be whether an action selection
mechanism for switching between conflicting behaviors such as obstacle avoidance
and landing would be necessary.

Another issue has to do with EMD design considerations about morphology and
heterogeneousness. Considering fly’s tendency of landing control to texture on the
ground, it is not only intuitive but also biologically plausible that EMDs focusing
on the ground could be used. This is a morphology issue of visual system design.
Moreover it is natural to consider a heterogeneous design that would make use of
different parameters among EMDs, such as the delay parameters or the connections
to the motor neurons, because there would be different optimal parameters for lateral
visual fields from ventral ones. Instead of manually tuning these parameters, one
possibility would be to use artificial evolution to automatically generate them.

From the information theoretic perspective, this navigation algorithm has many
advantages over traditional methods, because of its cheap and flexible design. In the
extreme case, only 8 pixel values are required for navigation, because it can navigate as
far as ego-motion can be detected, which can be implemented, in principle, with only
two EMD modules, for horizontal and vertical motion detection, on each side. The
number of EMDs would be determined depending on the task-environment, because,
for example, the agent does not need many EMDs when it navigates in a simple
environment, with a limited number of visual patterns, like artificial gratings. And it
could be also intuitive to imagine that design flexibility would be another advantage,
since we, as designers (or by using evolutionary techniques), can easily increment or
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Figure 2-10: Trajectories of the simulated agent. Each graph contains the results
from 20 trials with different wall patterns.

decrement the number of EMDs from one to thousands, with the same basic circuit.
The relation between EMD design and task-environment could be another interesting
issues to be investigated in future work.

To summarize, this chapter presented a navigation algorithm using a biologically
inspired visual odometer that is based on Elementary Motion Detectors, and evaluates
its performance by using a robot equipped with a panoramic visual system. Since
flying agents have to achieve a number of complex tasks in parallel with severe weight
and real-time constraints, cheap design could be one of the most important design
strategies. The result of the experiments with the autonomous flying robot show that
the proposed algorithm can successfully be employed of navigation tasks in a complex
indoor environment.
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Figure 2-11: Left: The mean visual odometer responses of 20 trials. Right: The
standard deviations as percentage of the mean visual odometer responses.
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Chapter 3

Biologically Inspired Goal-Directed
Navigation of a Flying Robot

Abstract

Experimental research in biology has uncovered a number of different ways in which
flying insects use cues derived from optical flow for navigational purposes, such as
safe landing, obstacle avoidance and dead reckoning. In this study, we use a syn-
thetic methodology to gain additional insights into the navigation behavior of bees.
Specifically we focus on the mechanisms of course stabilization behavior and visually
mediated odometer by using a biological model of motion detector for the purpose
of long-range goal-directed navigation in 3D environment. The performance tests of
the proposed navigation method are conducted by using a blimp-type flying robot
platform in uncontrolled indoor environments. The result shows that the proposed
mechanism can be used for goal-directed navigation. Further analysis is also con-
ducted in order to enhance the navigation performance of autonomous aerial vehicles.

3.1 Introduction

The ability to navigate in a complex environment is crucial for both animals and
robots. Particularly flying insects are capable of surprisingly good navigation despite
the small size and relative simplicity of their brains. Biological studies of flying insects
have revealed that the animals are largely relying on visual sensory inputs for their
navigation. The vision systems of flying insects are exquisitely sensitive to motion,
because visual motion induced by ego-motion can tell the animal much about its own
motion and also about the structure of its environment. Behavior experiments with
flies and bees show a number of different ways in which insects use cues derived from
optical flow for navigational purposes (for review, see [110]). Early studies showed
that a tethered fly inside a striped drum tends to turn in the direction in which the

0This chapter is based on the reviewed publication [50].
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drum is rotated [97]. This reaction, so-called optomotor response, serves to help the
insect maintain a straight course by compensating for undesired deviations. In addi-
tion to such a simple reactive behavior, mechanisms for long distance navigation are
also crucial for such insects as honeybees, which navigate accurately and repeatedly
from their hive to a food source. This type of navigation has been known to require
that both directional and distance information be available. For the direction estima-
tion, there is a lot of evidence that celestial cues, especially the polarization pattern
of the sky play a crucial role [36], and recent studies of bees’ behavior suggested that
the amount of image motion plays an important role to estimate the distance traveled
[112].

Inspired by these insect studies, the basic reactive behaviors observed in the ani-
mals, e.g. obstacle avoidance and fixation behaviors, have been modeled and imple-
mented into many land-based robotic platforms (e.g. [30, 100, 44, 45, 111]); simulated
flying agents were used for altitude control and obstacle avoidance [81]; a robotic
gantry demonstrated the landing behavior of flies [113]; a “tethered” autonomous
helicopter demonstrated its altitude control using optical flow [80]. A number of
aerial robotic applications which employ optical flow based controls have also been
extensively explored (e.g. [3, 118, 47]). One of the interesting contrasts between the
navigation of these robotics research and those of insects is that, whereas artificial
aerial vehicles generally strongly rely on a number of different sensory modalities
such as gyros, accelerometer, and GPSs, insects largely depend on vision with a va-
riety of different processing pathways, from the low-level flight stabilization to the
high-level long-distance navigation as mentioned above. Toward the comprehensive
understanding of flying insects’ navigation, which can be applicable for long-distance
navigation of aerial autonomous vehicles, in this chapter, we propose a method of
goal-directed aerial navigation by exclusively using an embedded omni-directional vi-
sual sensor with optical flow. In order to evaluate the performace of the method, the
flight experiments with an autonomous flying robot is presented. By comparing the
experimental results with the biological experiments and the other robotic navigation
studies, we discuss a number of different solutions in order to enhance the perfor-
mance of the proposed navigation method.

In the following sections, the course stabilization and visual odometer models are
proposed, and then we evaluate the performance in the navigation of a freely flying
robot. Further issues to enhance the proposed navigation capability are discussed at
last.

3.2 Experimental Platform

We developed an autonomous flying robot, shown in Figure 3-2. The flying robot
Melissa is a blimp-like flying robot, which consists of a helium balloon, a gondola
hosting the onboard electronics, and a host computer. The balloon is 2.3m long and
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Figure 3-1: Left: The Reichardt model of elementary motion detection. Photorecep-
tors, high-pass filters, low-pass filters, multipliers, and the subtraction module are
wired in series. The output of the last step (subtraction) is an estimate of direc-
tion sensitive image speed. Right: The controller circuit for the flying robot and
visual odometer. The gray rectangle denotes the panoramic image extracted from
the omni-directional camera on the robot. The image is given to both horizontally
and vertically arranged photoreceptor arrays of EMDs. After the integrators and
comparator, the outputs are given to motor controller and visual odometer modules.

has a lift capacity of approximately 500g. Inside the gondola, there are 3 motors
for elevation and thrust control (an additional motor for rotation control is attached
directly to the balloon), a four-channel radio link, a miniature panoramic vision sys-
tem, and batteries. The panoramic mirror has a hyperbolic surface that provides a
visual field of 360 degrees on the horizontal plane and 130 degrees vertically. The
control process of Melissa can be decomposed to three basic steps. First, the video
signal from the CCD camera attached to the gondola is transmitted to the host com-
puter via a wireless video link. Second, the images are then digitized on the host
computer, which also performs the image processing in order to determine the target
motor command. And third, the motor command is sent to the gondola also via radio
transmission. The frame rate of the visual processing is set to a constant speed of
10.0 fps. The robot uses 180 (horizontal) x 60 (vertical) pixels (90 x 30 EMDs), which
covers 360 degrees along horizontal plane and 120 degrees along vertical plane in the
panoramic image homogeneously, i.e. angular distances between photoreceptors of
the EMDs, the sampling bases, are 1.0 degree.

3.3 Course Stabilization and Visual Odometer

3.3.1 Model

On the basis of the biological studies, this section explains models of course stabiliza-
tion and visual odometer for the flying robot we have developed. These two models
will be used for the experiments of goal-directed navigation in the later section.
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Figure 3-2: Top: The autonomous flying robot, Melissa and its gondola, on the
bottom of which a miniature panoramic camera is attached. Bottom: An image
obtained by the panoramic vision system (left) and its log-polar transformed image
(right), which is used in the experiments.

3.3.2 Course Stabilization Model

Inspired by the flying insects’ optomotor response, here we describe a course stabi-
lization model for our flying robot. For the optical flow measurement, we employ
a biologically plausible model of motion detection, the so-called Elementary Motion
Detector (EMD) or the Reichardt detector, shown in Figure 3-1 (for review [9]). Two
adjacent photoreceptors send their outputs to temporal high-pass filters that remove
constant illumination containing no motion information. These signals are then “de-
layed” by exploiting the phase lag inherent in a first order temporal low-pass filter.
Delayed channels are then correlated with adjacent, non-delayed channels by means
of a multiplication operation. Finally the outputs of two opponent EMDs are sub-
tracted to yield a direction-sensitive response. Although the nature of the neural
mechanisms and the location in the visual pathway remains to be elucidated, some
behaviors of the motion sensitive neurons in insects can be well characterized by this
motion detector model [110]. The salient properties of the movement-sensitive mecha-
nism underlying these responses are that it is directional, and that it does not encode
the pure speed of the moving image, rather it is sensitive to the temporal frequency
of intensity fluctuations generated by the moving image, and therefore confounds the
speed of the image with its spatial structure.
Figure 3-1 illustrates the control procedure: At first, image from the panoramic vision
system (see next section for the details) is log-polar transformed (the gray rectangle
in Figure 3-1), the intensity information of which is given to four 2-dimensional EMD
arrays, i.e. Horizontal Left (HL), Horizontal Right (HR), Vertical Left (V L), and
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Vertical Right (V R). These arrays extract horizontal motion and vertical motion
from the left and the right lateral images. The outputs of each EMD array are then
integrated in order to simulate the wide field motion sensitive interneurons H1 as
follows.

H1 HL(t) =
∑

i

∑

j

EMD HLij(t) (3.1)

H1 HR(t) =
∑

i

∑

j

EMD HRij(t) (3.2)

To estimate the rotational ego-motion of the robot, the right and left horizontal
motions are compared by a simple subtraction.

Srot(t) = H1 HL(t)−H1 HR(t) (3.3)

The vertical motion, i.e. changes in height, is also estimated in a similar manner.
The vertically arranged EMDs in the 2-dimensional EMD arrays give the estimate of
vertical motion. The outputs of these EMDs are integrated as Salt:

Salt(t) =
∑

i

∑

j

EMD V Lij(t)

+
∑

i

∑

j

EMD V Rij(t) (3.4)

These rotation and height sensory information induced by ego-motion is then given to
a motor controller module. The three parameters are required for the control of the
flying robot (see the next section for the details), i.e. rotation, elevation and thrust
motor outputs, MR, ME and MT , respectively, which are determined by the following
equation. 


MR

ME

MT


 =




WRS 0 0
0 WES 0
0 0 Wbias


 ·




Srot

Salt

1


 (3.5)

In this motor controller, WRS and WES are heuristically determined so that Srot and
Salt should be minimized, and Wbias is set such that thrust motors are driven at
constant speed.

3.3.3 Visual Odometer Model

The same horizontal EMD arrays that are used for course stabilization control are
again used for the visual odometer (Figure 3-1). Since the EMD response provides
an angular velocity signal, the distance traveled could be estimated by integrating
the EMD outputs over time. The responses from both right and left horizontal EMD
arrays are integrated every time step, which is given to the visual odometer module,
then accumulated over time. Namely the visual odometer response, V O, is calculated
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Figure 3-3: Left: Experimental setup for the navigation experiments. The experi-
ments start with the same initial conditions, i.e. initial robot position and orienta-
tion. Two video cameras are installed to record the absolute trajectory of the robot
for later analysis. Right: Pictures of three different uncontrolled environments, which
are tested in the experiments. (EXP 0, 1, 2, from left to right)

by integrating the H1 HL, H1 HR output over time:

V O =
∑

t

(H1 HR(t) + H1 HL(t)) (3.6)

3.3.4 Experiments

This section presents a series of navigation experiments by using an autonomous flying
robot. The models explained in the previous section are implemented in the robot,
and then tested in uncontrolled indoor environments.

3.3.5 Method

The W matrix of the equation (5) is heuristically determined before experiments, since
it is strongly dependent on the hardware conditions (floating balance of the robot etc.)
and environmental factors (air currents etc.). Three sets of experiments are conducted
in three different uncontrolled indoor locations (EXP0, EXP1 and EXP2 shown in
Figure 3-3), where we installed two video cameras to track and record the absolute
trajectories of the robot for later analysis (Figure 3-3 Left). The experiments in each
location consist of 10 flight trials: in one trial, the robot starts controlling at the
same initial conditions, i.e. initial positions and initial orientations, and stops the
operation after the same time duration. Due to the limitation of the experimental
environments, the time duration is set to 25 seconds.

3.3.6 Results

In Figure 3-4, the plots show 3-D trajectories of the robot. From the stereo video
camera images recorded externally, absolute positions of the robot are extracteded
by tracking a fixed point of the robot in one second step. In these graphs, each trial
starts from left toward right. Most of the trajectories in these graphs show that the
robot maintains straight routes by balancing the right and left lateral image speeds.
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Figure 3-4: 3-D trajectories of the flying robot during the experiments. Each plot
is extracted from the images recorded with the stereo video camera. The plots de-
notes the position of the robot at one second time-step, and each graph contains the
trajectories of 10 trials. (EXP 0, 1, 2, from top to bottom)

However a small difference in the initial orientations of the robot results in a relatively
large deviations at the goal position, as shown in the X-Y plane figure of EXP 2 in
particular. For the height control, the robot tends to lose the height at the beginning
of experiments, but eventually maintains the height in a certain range in all of the
trials.
Figure 3-5 shows the visual odometer responses that the robot experienced during
each trial. The proposed visual odometer model measures almost the same distances
in each experimental setup, EXP 0, 1, and 2. Especially in EXP 0 and 1, the curve
profiles of the visual odometer values over 10 trials show the similarity in their accumu-
lation patterns, which indicates that the proposed visual odometer could potentially
be capable of measuring the traveling distance. The relatively large deviations in
EXP 2 could be due to the course deviation of the robot route trajectories as shown
in Figure 3-4. Further issues will be discussed in the next section.
In addition, in Figure 3-5, the visual odometer responses are plotted against the cor-
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Figure 3-5: Top: Visual odometer responses of the 10 trials in the 3 experimental
setups. The curve profiles show that the visual odometer accurately estimates the
distances in the same experimental setup, particularly in EXP0 and 1. Bottom:
Visual odometer measurement vs. actual distance. The actual distances that the
robot traveled in each trial are extracted from Figure 3-4. The results show that the
visual odometer depends on the locations, since the plots from the same EXP are
distributed in similar areas of this graph.

responding actual distances the robot travels. The actual distances in this figure are
estimated from the externally observed 3D trajectories shown in Figure 3-4. Despite
the same flight duration of 25 sec, the variance of the visual odometer measurement
is relatively large. However, the distributions from EXP 0 and 1 tend to monoto-
nously increase as the actual distances increase. The result from EXP 2 seems to be,
again, caused by the route deviation. From these experimental results, the proposed
model is potentially capable of measuring the travelling distances visually, however
the measurement prones to depend on the route the robot experiences.
Further analyses are conducted with respect to the effects of the number of EMDs.
In these analyses, from the stored data of EMD outputs, we re-calculated the vi-
sual odometer outputs by using the different numbers of EMDs; 1, 10, 20, 30, and 45
EMDs are selected over each left and right laterally distributed EMDs; then integrated
their outputs over time. These results are normalized by the corresponding actual
distances, and their standard deviations (SDs) are calculated as percent of mean val-
ues (Figure 3-6). Therefore, when a SD results in a smaller value, it indicates that
the visual odometer with the corresponding number of EMDs contains smaller error.
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Figure 3-6: The effect of the number of EMDs by standard deviations (SDs) as
percent of the mean values in visual odometer measurement. The graphs show that
the number of EMDs changes the accuracy of visual odometer measurements.

There are two implications that should be mentioned from this analysis. Firstly, in
principle, one EMD is essentially the minimum requirement of the proposed visual
odometer model, although redundancy improves the measurement errors for all EXP
0, 1, and 2. Secondly, these results indicate that the performance of the proposed
visual odometer could be improved by adaptively chosing a preferable visual field.
For example, in EXP 0 and 1, the SDs of the left visual field are significantly larger
than those of right, especially in the smaller numbers of EMDs. Therefore in order
to improve the performance, the robot should use the left visual field for the odome-
ter. More generally, if the robot would have a task in which it should visit the same
goal location, the robot could adaptively choose/learn the appropriate number and
positions of EMDs in order to improve the odometer performance.

Given the experimental results, in this section, we discuss further issues of the
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proposed navigation model and possible solutions to improve the performance of the
goal-directed navigation.
For flight stabilization using optical flow, the robot has to visually extract the trans-
lation and rotation motions of its own body and compensate for them. While a flat
visual projection area with a narrow view angle, such as a standard camera view,
has a great disadvantage for this problem, the panoramic vision system makes the
problem easier as employed in our experiments, where we compared the mean mo-
tion direction at the contralateral part of the panoramic image for the yaw rotational
control. Furthermore, if necessary, the same principle can be applicable for the roll
and pitch controls in the case of flying insects or the other robotic platforms with
an omni-directional vision. For the altitude controls, in this chapter, we employed
the vertical EMDs to measure the vertical image movement. Most probably pure
image speed detectors, rather than spatio-temporal filter such as EMDs which have
non-linear responses with respect to image speed, would improve the performance
of altitude control. Alternatively, measuring the apparent ground speed could be
another solution to control altitude as demonstrated in [80]. The advantage of this
solution is that the similar mechanism could be also used for safe landing [113].
Although the experimental results showed that the combination of course stabiliza-
tion behavior and visual odometer could be used for goal-directed navigation, there
are some potential solutions to improve the accuracy of the proposed visual odometer
model. Since the performance of the visual odometer relies on the spatial structure
experienced during the navigation as shown in Figure 3-5, minimizing route devia-
tions could improve the accuracy. Sensory feedback from compass information, for
instance, is desirable to maintain a straight route, considering that celestial cues play
an important role as a global compass in natural systems. Landmark navigation
could also be a biologically plausible alternative solution to enhance the performance
of course stabilization. In another solution, as suggested in Figure 3-6, the EMD
locations and the number of EMDs in the visual field need to be carefully considered
for the better performance of the visual odometer, especially in unstructured envi-
ronments. Considering that bees increase the accuracy of goal-directed navigation
after learning phase, an adaptive learning mechanism in visual odometer model is
expected. Alternatively, visual odometer could be based on a pure speed detector,
rather than spatio-temporal filters. However, as long as the robot follows the same
route repeatedly, a spatio-temporal filter can be also usable.

3.4 Discussion

Given the experimental results, in this section, we discuss further issues of the pro-
posed navigation model and possible solutions to improve the performance of the
goal-directed navigation.

For flight stabilization using optical flow, the robot has to visually extract the
translation and rotation motions of its own body and compensate for them. While a
flat visual projection area with a narrow view angle, such as a standard camera view,
has a great disadvantage for this problem, the panoramic vision system makes the
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problem easier as employed in our experiments, where we compared the mean mo-
tion direction at the contralateral part of the panoramic image for the yaw rotational
control. Furthermore, if necessary, the same principle can be applicable for the roll
and pitch controls in the case of flying insects or the other robotic platforms with
an omni-directional vision. For the altitude controls, in this chapter, we employed
the vertical EMDs to measure the vertical image movement. Most probably pure
image speed detectors, rather than spatio-temporal filter such as EMDs which have
non-linear responses with respect to image speed, would improve the performance
of altitude control. Alternatively, measuring the apparent ground speed could be
another solution to control altitude as demonstrated in [80]. The advantage of this
solution is that the similar mechanism could be also used for safe landing [113].

Although the experimental results showed that the combination of course sta-
bilization behavior and visual odometer could be used for goal-directed navigation,
there are some potential solutions to improve the accuracy of the proposed visual
odometer model. Since the performance of the visual odometer relies on the spatial
structure experienced during the navigation as shown in Figure 3-5, minimizing route
deviations could improve the accuracy. Sensory feedback from compass information,
for instance, is desirable to maintain a straight route, considering that celestial cues
play an important role as a global compass in natural systems. Landmark navigation
could also be a biologically plausible alternative solution to enhance the performance
of course stabilization. In another solution, as suggested in Figure 3-6, the EMD
locations and the number of EMDs in the visual field need to be carefully considered
for the better performance of the visual odometer, especially in unstructured envi-
ronments. Considering that bees increase the accuracy of goal-directed navigation
after learning phase, an adaptive learning mechanism in visual odometer model is
expected. Alternatively, visual odometer could be based on a pure speed detector,
rather than spatio-temporal filters. However, as long as the robot follows the same
route repeatedly, a spatio-temporal filter can be also usable.

3.5 Summary

In this chapter, inspired by the navigation mechanisms of bees, we propose a method
for goal-directed aerial navigation exclusively using a panoramic vision system. We
performed experiments using a blimp-type robotic platform in unstructured indoor
environments, and the combination of course stabilization and visual odometer models
successfully demonstrates goal-directed navigation in the 3D indoor environments. In
addition, the further analysis leads to potential solutions to enhance the navigation
capability of the proposed models. Although the control of our blimp-type robotic
platform is by far simpler than those of other platforms such as helicopters, it is
expected to realize more sophisticated controls in more demanding situations with
a vision-based architecture, as the natural evolution has found a solution for flying
insects.
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Chapter 4

Design and Control of a Pendulum
Driven Hopping Robot

Abstract

In this chapter a new kind of hopping robot has been designed which uses inverse
pendulum dynamics to induce bipedal hopping gaits. Its mechanical structure consists
of a rigid inverted T-shape mounted on four compliant feet. An upright “T” structure
is connected to this by a rotary joint. The horizontal beam of the upright “T”
is connected to the vertical beam by a second rotary joint. Using this two degree
of freedom mechanical structure, with simple reactive control, the robot is able to
perform hopping, walking and running gaits. During walking, it is experimentally
shown that the robot can move in a straight line, reverse direction and control its
turning radius. The results show that such a simple but versatile robot displays stable
locomotion and can be viable for practical applications on uneven terrain.

4.1 Introduction

The design and implementation of the Stumpy II1 hopping robot is an exploration
of a novel morphology for locomotion, with an inverted pendulum inducing rhythmic
hopping and a transverse rotational degree of freedom for direction control. Its unique
structure and dynamics are capable of producing both biped-like and quadruped-like
gaits. In addition it can also display some effective non-biomimetic gaits.

Such use of pendulum dynamics in movement has been only partially explored.
Hayashi et al [39] have designed a pendulum-type jumping machine which uses in-
verted pendulums as swinging arms to propel the robot to jump. This machine was
capable of jumping up stairs, but not of regulating its movement direction or veloc-
ity. In another interesting example, Ioi et al [60] applied pendulum dynamics to the
problem of wheeled locomotion and designed a robot comprised of two big parallel

0This chapter is based on the reviewed publication [48].
1Videos available at http://www.ifi.unizh.ch/ailab/people/iida/stumpy/
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wheels, with a pendulum hanging between them. This robot was able to roll up slopes
and control forward velocity and turning. However, the use of pendulum dynamics
to drive legged locomotion has not been previously considered2.

The control of gait and balance in hopping robots has been widely studied by
Raibert and his colleagues, for one-legged, two-legged and four-legged hopping ro-
bots, in two and three dimensions [93, 94, 96, 95]. Such robots have been shown to
successfully produce bounding gaits, through control of hopping height and forward
velocity. They have also been able to perform somersaults [90]. These robots have
long narrow legs each with a single spring-loaded prismatic joint. The legs are at-
tached to the body mass, by a roll and (for 3D motion) a pitch degree of freedom,
by which they can influence foot placement. Due to this mechanical structure, these
robots are statically unstable, and therefore must continue to hop in order to stabilize
their body. For practical applications this presents a considerable limitation. In the
Stumpy robot, the four legs also consist of a spring loaded prismatic joints, but are
much shorter. Also, they do not have any other degrees of freedom with respect to
the robot’s upper body, and control of foot placement is accomplished by the upper
body. This has the advantage that the structure is statically stable, while allowing
for dynamically stable locomotion. This enables the robot to smoothly transition
between standing still, walking, running, and coming to a stop again, which is more
practical for real world applications.

The dynamic stability of the Stumpy robot is comparable to that of the monopod
hopping robot developed by Ringrose [98]. The monopod was able to achieve self-
stabilizing running, without any sensors or active control, by simply moving the
single actuator of the robot, through a fixed repetitive cycle. Due to the interaction
of this simple control with a carefully designed self-stabilizing mechanical structure,
the robot was able to correct its posture despite the effects of destabilizing forces.
According to Murphy [78], self-stabilizing posture of the body can be achieved in a
two legged robot during bounding gait, if the normalized moment of inertia of the
mechanical structure is less than 1. Since the interaction between controller and the
mechanical structure of the Stumpy robot fulfills this condition, it displays a similar
self-stabilizing property. Thus, it is able to perform locomotion with high tolerance
to environmental disturbances.

The mechanical structure of the robot has been designed according to the princi-
ples of cheap design and ecological balance described by Pfeifer et al [89]. Thus, only
the minimum number of sensor and actuators that are necessary to perform the task
have been used. This is similar to the design of the Scout robot, built by Buehler
et al [14], which uses a small number of actuators for quadruped locomotion. The
design of Stumpy has also incorporated the use of mass distribution in control, an
optimization method described by Paul et al [84]. The controller for the robot is
designed according to the principles of behavior based control [13].

The following section, Section 2, describes the design of the Stumpy robot. The
behavior of the robot is then mathematically modeled in Section 3. Then the control

2This is conceptually different from using inverse pendulum dynamics in ZMP-based balance
control, which is common in legged robots

38



Table 4.1: Mass and length parameters of the robot mechanical structure
Parameter Description Value

r1 rest length of feet 10 cm
lb length of base 15 cm
l1 length of lower vertical beam 21 cm
l2 length of the upper vertical beam 26 cm
l3 length of shoulder horizontal beam 41.5 cm
m1 mass of lower body 1.2 kg
m2 mass of upper body 0.43 kg
m3 mass on shoulder 0.12 kg

of straight line movement, direction, and turning radius are developed in Section
4. These controllers are tested on the robot, and data is presented from real world
experiments. In Section 5, a short discussion of the robots performance on these tasks
follows, with implications for future work. Section 6 ends with conclusions.

4.2 Robot Mechanical Structure

The robot (Fig. 5-3) was designed through the development of three prototypes. The
Stumpy II robot’s lower body is made of an inverted “T” mounted on wide springy
feet. The upper body is an upright “T” connected to the lower body by a rotary joint
providing one degree of freedom in the frontal plane (see Figure 1). This enables
the upper body to act as an inverted pendulum. For simplicity in nomenclature, we
call this the “waist” joint. The horizontal beam of the upright “T”, is weighted on
the ends to increase its moment of inertia. It is connected to the vertical beam by a
second rotary joint, providing one rotational degree of freedom, in the plane normal
to the vertical beam of the upper “T”. This joint is labeled the “shoulder” joint.
Stumpy’s vertical axis is made of aluminum, while both its horizontal axes and feet
are made of oak wood.

The total mass of the robot is approximately 1.9 kg. The mass and length para-
meters of the robot are detailed in the Table 7.1.

The joints are actuated using Minimotor DC-Micromotors. The waist motor is
a 3042 012C with a 43:1 gear reduction, and shoulder motor is a 2342 012C, also
with 43:1 gear reduction. The joint angles are measured using rotary potentiome-
ters. The control is performed via off-board motor control boards with a PIC16F877
microcontroller and a standard motor driver with PWM output.

4.3 Modelling and Analysis

The following variables are used in the analysis of the robot:
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Figure 4-1: Stumpy II Robot (Left) and Schematic diagram (Right) of the Stumpy
Robot, with variables which are used in modelling and analysis.

x0, y0, z0: origin of the world coordinate system
[x, y, z], θ1: origin of the robot, inclination in frontal plane
τ1, τ2: waist motor torque, shoulder motor torque
θ2, θ3: joint angles of the robot
Jl: moment of inertia of the lower body

To analyze the behavior of the robot, the model is orthogonalized into models
for the frontal and sagittal planes. In the frontal plane, the waist motor serves to
accelerate the waist joint and induce hopping motion.

τ1 = m2l2θ̈2 −m2gl sin(θ1 + θ2) (4.1)

We assume that in this motion, the effects of external forces are negligible, and that
conservation of angular momentum holds. According to this the following relation
can be stated:

Jlθ̇1 = m2l2θ̇2 (4.2)

where Jl is the moment of inertia of the lower body.
During walking, where at least one foot is always on the ground, the following relations
arise:

x = lb cos θ1, z = lb sin θ1 (4.3)

By substitution of Equation 4.3 into Equations 1 and 2, the following relations
result:
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Figure 4-2: Forward walking, produced
when ν+

s = ν−s , φ = 0◦
Figure 4-3: Backward walking, produced
when ν+

s = ν−s , φ = 180◦

Jlẋ = (τ1 + m2gl sin θ2)(−r sin θ1) (4.4)

Jlż = (τ1 + m2gl sin θ2)(−r cos θ1) (4.5)

In the sagittal plane, motion is induced by application of torque at the shoulder joint.
The shoulder torque first accelerates the shoulder beam.

τ2 = m3l3θ̈3 (4.6)

This motion causes two effects. One is a reaction torque, τr = −τ2, which must
be produced to conserve the angular momentum due to the rotation of the shoulder
beam. The second is an impulse torque produced due to the collision of the shoulder
beam with the joint stop τc. At any given angular velocity of the shoulder joint θ̇3,
the reaction torque τr will have the opposite sign as θ̇3, and τc will have the same
sign.

The rotation of the lower body in the plane normal to the reaction torque, θτr ,
caused by shoulder motion, is thus given as follows:

τr + τc = Jlθ̈τr − τf (4.7)

where τf is the friction torque produced by the coefficient of static friction between
the ground and the feet.

In this locomotion model, the elastic linear passive joints in the feet are neglected
for the sake of simplicity. Although it provides a significant influence to the stability
of locomotion behavior and the intrinsic body dynamics for hopping behavior, the
overall walking behavior of this robot can be well characterized by this model. The
hopping dynamics exploiting the elasticity will be investigated further in the next
chapter.
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4.4 Control

Stumpy is controlled to move in a unique way by actuating its waist joint, with a
back and forth swinging motion. This motion of the upper body imparts angular
momentum to the base which creates a rhythmic hopping motion.

During hopping, each lateral pair of foot contacts which can be considered together
as a “foot”, experiences two phases: stance phase, in which the foot is on the ground
and flight phase, during which the foot is airborne. At low frequencies of the upper
pendulum, one foot completes its flight phase and returns to stance phase, before
the second foot initiates flight phase. As a result, there are two phases in the gait
cycle: single support and double support. Therefore, we term this gait “walking”.
At higher frequencies, one foot is still in flight phase when the next foot enters flight
phase, so the two phases in the gait cycle are single support, and airborne. Therefore
we term this gait “running”. At the transition frequency, there is only one phase:
single support.

If the “shoulder” joint is unused, the robot will hop in place. The shoulder joint
can be used to control movement in the sagittal plane. When a lateral forward
rotation of the shoulder joint occurs, the foot will acquire a slight angular momentum
during flight phase, which serves to project the foot forward. Thus the shoulder joint
can be used to control movement direction, forward velocity and turning rate.

The control parameters are the frequency ω1, amplitude α1 and setpoint θ∗1 of
the waist joint oscillation, the frequency ω2, amplitude α2 and setpoint θ∗2 of the
shoulder joint oscillation, and the phase difference, φ, between ω1 and ω2, when they
are oscillating at the same frequency.

The basic control for the waist motor is a simple reactive algorithm, which outputs
a constant motor voltage until the joint angle sensor detects the maximum amplitude
α1, and then reverses the direction. Thus, the waist motor oscillates approximately
between α1 and −α1. The control of the shoulder joint is reactively coupled to the
waist and functions in a similar way. The shoulder motor voltage remains constant,
until the waist joint angle sensor detects that it has crossed the maximum amplitude
α1. At this instant, the shoulder joint instantaneously reverses the motor torque.
Due to this coupling, the waist and the shoulder joints are phase locked, such that
the phase relationship φ between the waist and the shoulder joint is constrained to
be either 0◦ or 180◦.

The hopping height of the robot mainly depends on the angular acceleration of the
waist joint periodic motion. The maximum amplitude of the swing determines the
region of stability of the structure during hopping. As in Raibert’s hopping robots, it
has been experimentally found that the control of hopping height in this robot can be
separated from the control problems of forward velocity, gait direction, and the radius
of curvature of the robots turning trajectory. As the main focus was the control of
movement direction, the hopping was tuned to a constant frequency, which produced
a suitable hopping height and allowed for a wide range of motions. Controllers were
then developed for straight walking, reversing direction and turning.

These controllers were implemented and tested on the robot. Data on position and
velocity of the robot during locomotion was collected using a CCD camera suspended
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Figure 4-4: Turning left, with a small
turning rate, produced when ν+

s < ν−s .
Figure 4-5: Turning right, with a small
turning rate, produced when ν+

s > ν−s .

from the ceiling above a 3.0 m x 2.0 m experimental arena, and a framegrabber which
recorded the movement of the robot at 25 frames/sec. For each experiment, the robot
was initially positioned at the center of the image. It was equipped with four high-
intensity LEDs, two on each side of the base and recorded in a darkened room. The
camera image was then processed to identify the locations of the LEDs, from which
the robots position and orientation was extracted and plotted once every second.
The following sections describe the design and implementation of the controllers and
present experimental data collected using this setup.

4.4.1 Tuning the Hopping Height

The hopping height and frequency were experimentally tuned by adjusting the motor
voltage of the waist motor. It was found that if the motor voltage is too low, the
angular acceleration is not fast enough to lift the feet off the ground for a significant
amount of time. As, the motor voltage gets higher a stepping motion is induced but
the frequency is not in tune with that of the mechanical structure. Within a small
range of motor voltages, resonance with the mechanical structure produces a stable
hopping pattern is produced with high dynamic stability. Informal tests show that
even large disturbances caused by accidental human intervention, such as “stepping
on the robot’s foot”, are corrected by its self-stabilizing nature. In this range, the
robot produces a “walking” gait, where one foot is always on the ground, and therefore
lends itself to good direction control.

4.4.2 Straight Walking

As described above, the shoulder joint is coupled to the waist joint angle, and reverses
the motor voltage at the maximum amplitude values. Thus, the basic control is such
that ν+

s , the motor voltage applied to the shoulder during clockwise rotation, and ν−s
which is the motor voltage applied to the shoulder during counter-clockwise rotation
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Figure 4-6: Going backwards and turning
right, with a small turning rate, produced
when ν+

s > ν−s . Simply by changing φ
to 180◦, the robot walks backward, as it
slowly turns right.

Figure 4-7: Going backwards and turning
left, with a small turning rate, produced
when ν+

s < ν−s .

are related by relationship, ν+
s = −ν−s .

In this situation, the forward momentum acquired by the left foot during flight
phase, is equal to the forward momentum acquired by the right foot and, therefore,
the alternating step sizes of the left and right foot are equal and the robot walks in a
straight line. Results of the robot performing this behavior are shown in Figure 4-2.
(The axes in this figure, and all other performance graphs are in metres).

It was found that the direction of the robot, that is whether it would move in the
forwards or backwards direction, was only dependent on the phase parameter φ. The
following graph in Figure 4-3 shows how changing the phase from 0◦ to 180◦, makes
the robot move in the opposite direction from that in Figure 4-2.

4.4.3 Control of Turning Rate

The control of turning rate is achieved using an enhanced forward walking controller.
In forward walking, the step lengths on the left and right sides are approximately
equal. Using a similar controller, but by increasing the step length of one foot and
shortening the other, the robot can achieve turning. Thus, we focus on the turning
rate induced by the difference between the clockwise and counter-clockwise voltages
applied to the shoulder motor. The turning rate, R, can be approximately given as
Ṙ = K(ν+

s − ν−s ). Thus, for example, in the case of ν+
s > ν−s , while the motor rotates

clockwise, the foot in flight phase takes a large step, but while the motor rotates
counter-clockwise, the other foot takes a smaller step, causing the robot to turn at
a constant rate. The control of movement in the forward or backward direction,
discussed in the previous subsection, is also independent of turning rate. Various
combinations of ν+

s and ν+
s have been tested, to exhibit different turning rates in

both forward and backward walking. Figure 4-4 shows a small turning rate produced
by the motor control of ν+

s < ν−s . Figure 4-5 also shows the performance with the
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Figure 4-8: Turning right, with a large
turning rate, produced when ν+

s >> ν−s .
With this controller the robot can effec-
tively turn in place.

Figure 4-9: Turning left, with a large
turning rate, produced when ν+

s << ν−s .
Again the robot can effectively turn in
place

same turning rate, but in the other direction, that is where ν+
s > ν−s . Figures 4-6

and 4-7 show the same behaviors but in the reverse direction. Then, larger turning
rates are produced, when the difference between ν+

s and ν+
s is greatly increased, which

effectively produces turning in place, as shown in Figure 4-8 and 4-9.

4.5 Discussion

The controllers tested for control of forward motion, change of direction and turning
rate, as described in the previous sections, achieved considerable success in displaying
the desired behavior in real world experiments. The results showed that the prelim-
inary controller concepts developed, were sufficient to fulfil the requirements of the
tasks. However, the controllers were all open loop with respect to movement direction
and velocity, and were thus sensitive to slight changes in mechanical biases in the ro-
bot, and environmental irregularities such as frictional differences on the ground and
slight ups and downs of the terrain. To account for these uncertainties closed-loop
control using sensor feedback must be added to these controllers. The selection of
appropriate sensors and their use in a closed-loop control algorithm, are topics of
further investigation. For example, if a sensory device is able to detect a fixed point
(e.g. salient visual cues for landmarks of navigation ) in the environment, angular
deviation toward a target location can be adjusted by using the sensory-motor coor-
dination exploiting the mechanism of turning behavior which was described in this
chapter.

In addition, many other interesting issues with respect to the performance and
control of this robot remain to be investigated. One of the topics includes the self-
stabilizing property of the robot. In this chapter, this property was exploited to
achieve high dynamic stability during locomotion. However, it would be interesting
to focus on this aspect more closely, and explicitly analyze the domain of attrac-
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tion and its relationship to mechanical and control parameters. (This issue will be
discussed in the next chapter.) Another topic of potential interest would be the ac-
curate control of forward velocity. Finally, it would also be interesting to investigate
different gait patterns. The Stumpy mechanical structure is capable of moving in a
variety of different ways, one of which (walking) has been investigated in this work.
The exploration of some of the other dominant modes of locomotion such as run-
ning, quadruped-like lateral bounding, and “diagonal” gaits, will be exciting topics
of further investigation, which will be explained in the next chapter.

4.6 Summary

In this chapter a new kind of hopping robot with two feet, and no legs, has been
presented. It consists of an inverted T-shaped base, connected to a T-shaped pendu-
lum by a rotary joint. The hopping of the feet is induced indirectly by the motions
of the upper body. Control of this novel mechanical structure has been investigated
for walking, changing direction and control of turning radius. Experimental evidence
shows that although it lacks legs, surprisingly, such a robot is capable of efficiently
producing numerous modes of locomotion, while maintaining dynamically stability.
Future work will consider the use of more sensors for achieving further precision in
control and dealing with increased uncertainty in real world applications.
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Chapter 5

Exploiting Friction for the
Locomotion of a Hopping Robot

Abstract

For the locomotion of animals and machines, the friction between the body and the
ground is one of the most crucial factors for stability and mobility. In this chapter, we
investigate how the friction could be exploited for the purpose of adaptive locomotion.
At first, we propose two conceptual working hypotheses, especially focusing on two
important issues, (1) how to control the friction to increase the stability of a locomo-
tive system, and (2) how the friction could mobilize a system for a form of adaptive
locomotion. Secondly, by using a hopping robotic platform we have developed, we
evaluate the proposed ideas with three experimental case studies. The experimental
results show the statistical plausibility of the proposed idea of increasing the stability
of locomotion. Furthermore, it is shown that, by properly taking advantage of the
friction, the robot could enlarge the repertoire of locomotion behaviors, which could
presumably enhance the adaptability of robot locomotion.

5.1 Introduction

Compared to artificial locomotive systems, animals are capable of remarkable adaptive
locomotion in an unpredictable environment. One interesting phenomenon is that,
for locomotion purposes, biological systems adaptively take advantage of the friction
between the ground and the contact points of their body. Moreover, the use of such a
mechanism of locomotion covers a wide variety of species in nature, from worm/snake
style locomotion to shuffling locomotion of legged-animals. In this chapter, by using
synthetic methodology, we investigate how the friction between a system and the
ground could be exploited for the purpose of locomotion.

A number of the snake-like robots developed by Hirose and his colleagues is one of
the pioneering studies in which artificial robotic systems actively exploit the friction

0This chapter is based on the reviewed publications [51, 53].
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Figure 5-1: Concept of increasing stability Figure 5-2: Concept of the locomotion by
exploiting friction

for a form of adaptive locomotion [41]. In these studies, inspired by biological studies
of snakes, they have successfully demonstrated snake-like locomotion. For legged-
locomotion, although the designs of robotic morphology and controllers largely take
account of the friction force, the friction is only partially exploited, i.e. in a hold-
or-release fashion. For example, the ZMP-based control generally assumes that the
friction force should be sufficient to prevent sliding of the legs [121]. One of the
disadvantages of such a design strategy is that the ecological niche of a robot is quite
often very limited, and that it results in a restricted locomotion capability.

To complement these points, in this chapter we propose two working hypotheses
with which artificial systems could actively exploit the friction for locomotion in the
real world. The first hypothesis concerns the stability of the robot locomotion process.
And, for the second hypothesis, we propose a conceptual design principle with which a
legged-robot could actively take advantage of ground friction to mobilize itself. These
hypotheses are then tested by using a hopping robotic platform we have developed.

The structure of this chapter is as follows. We first propose two conceptual design
principles of such a form of locomotion based on simple physics. By using a hopping
robot described in section 3, these design principles are then tested with 3 case studies
explained in sections 4, 5 and 6. We will discuss further issues in section 7.

5.2 Design Principle to Exploit Friction for the Lo-

comotion

In this chapter, we consider how friction could be exploited for a form of locomo-
tion. We propose two working hypotheses; (1)friction could contribute to increase
the stability of locomotion processes and (2)it could be possible to mobilize a system
for a form of adaptive locomotion by properly exploiting the friction. In this section,
we consider simple physics as a basis of argument. Since the physics of friction is
highly complicated and depends on many parameters, the purpose of the following
consideration is not to prove the hypotheses, rather we attempt to characterize the
concepts above.
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5.2.1 Increasing the Stability of Locomotion

Figure 5-1 shows a schematic to consider locomotion stability of a robot. When an
external force F is exerted to an end of the rectangular object on the ground, the
movement of the object could be either translational or rotational with respect to the
ground. In other words, it would slip or fall down. The parameters which determine
the movement are, at least, the friction (coefficient of the friction and mass of the
object), the external force F , and the shape of the object (h and d in Figure 5-1).

Although it is difficult to derive the necessary conditions from this static analysis,
a design principle of a stable system could be shape and mass of the object and
coefficient of the friction. We will discuss further issues of this working hypothesis in
the following sections.

5.2.2 Locomotion by Controlling the Friction

In this subsection, we propose the second hypothesis in which we consider how the
friction could be actively exploited for locomotion. The conceptual idea is illustrated
in Figure 5-2. In this figure, there are two oscillatory forces generated (for instance,
by motors) in an object, Fh and Fv, that are represented as follows.

Fh = A0sin(ω0t) (5.1)

Fv = A1sin(ω1t + φ) + B1 (5.2)

where A0 and A1 are amplitude, ω0 and ω1 are frequency, φ is a phase between two
oscillations, and B1 is a set point. Here, we assume that the friction Fr between the
object and the ground can be approximated by the following equation.

Fr =





µ · Fv : Fv > 0, Fh > 0
−µ · Fv : Fv > 0, Fh < 0
0 : Fv < 0

(5.3)

where µ is a nominal coefficient of friction. Friction force can be generated only when
there is vertical force (i.e. Fv > 0). The equation of the object movement, therefore,
can be represented as follows.

d(mv)

dt
= Fh − Fr

=





A0sin(ω0t)− µ(A1sin(ω1t + φ) + B1) : Fv > 0, Fh > 0
A0sin(ω0t) + µ(A1sin(ω1t + φ) + B1) : Fv > 0, Fh < 0
A0sin(ω0t) : Fv < 0

(5.4)

This equation shows the relation between the control parameters and resultant
behaviors. In the case of locomotion, B1 can be regarded as a gravitational force
induced by the mass of the object itself, therefore it can be assumed as a constant.
From this equation, there are many different forms of locomotion behavior. For
example, under the constraints of ω0 = ω1 and φ = 0, forward locomotion is always
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Figure 5-3: Photograph of the Stumpy robot (Left) and schematic illustration of the
Stumpy robot (Right), with variables which are used in modelling and analysis.

possible when A0 > −µ · (A1 + B1) and A1 > B1.
The intention of introducing this equation is to characterize a conceptual form of

locomotion. Therefore, one of the purposes of this chapter is to elucidate to what
extent this conceptual form of locomotion can be applicable. In the following sections,
we investigate this concept by using a robotic platform we developed.

5.3 Robotic Platform

In this section, we describe the design and control of the Stumpy robot [48, 85, 51]
we have developed as an experimental platform. In the later sections, the behaviors
of this robot will be analyzed to examine the hypotheses explained in the previous
section.

5.3.1 Mechanical Design of the Stumpy Robot

The morphology of the Stumpy robot consists of two “T” shape components, called
“upper body” and “lower body” (Figure ??). The Stumpy robot’s lower body is made
of an inverted “T” mounted on wide springy feet. The upper body is an upright “T”
connected to the lower body by a rotary joint providing one degree of freedom in
the frontal plane. This enables the upper body to act as an inverted pendulum. For
simplicity in nomenclature, we call this the “waist” joint. The horizontal beam of
the upright “T”, is weighted on the ends to increase its moment of inertia. It is
connected to the vertical beam by a second rotary joint, providing one rotational
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Table 5.1: Mass and length parameters of the robot mechanical structure
Param. Description Value
r1, r2 rest length of feet 10 cm

lb length of base 15 cm
l1 length of lower vertical beam 21 cm
l2 length of the upper vertical beam 26 cm
l3 length of shoulder horizontal beam 41.5 cm
m1 mass of lower body 1.2 kg
m2 mass of upper body 0.43 kg
m3 mass on shoulder 0.12 kg
s spring constant of feet 1.11 kg/cm

degree of freedom, in the plane normal to the vertical beam of the upper “T”. This
joint is labeled the “shoulder” joint. Stumpy’s vertical axis is made of aluminum,
while both its horizontal axes and feet are made of oak wood. Table 1 shows more
detailed specifications.

5.3.2 Control of the Robot

Stumpy is controlled to move in a unique way by actuating its waist joint, with a
right and left swinging motion. This motion of the upper body imparts angular
momentum to the base which creates a rhythmic hopping motion. In this study, we
employ a proportional control to track simple sinusoidal target trajectories for this
upper body oscillation. For the sensory feedback, the angular position of the upper
body with respect to the base is acquired by a potentiometer incorporated in the
waist joint. The parameters we tested in the following experiments are, therefore,
set point, amplitude, and frequency of the sinusoidal oscillation. The second motor
which is equipped in the shoulder joint is also controlled in a oscillatory manner,
although we did not use the potentiometer feedback, but it is simply synchronized to
the control of waist motor.

5.3.3 Friction

The friction during the operation of Stumpy is very difficult to measure, but a good
estimate to represent the friction between the robot and the floor would be a nominal
coefficient of friction. In the following sections of this chapter, we will conduct com-
parative studies of robot’s behaviors in two different flat terrains in order to compare
the effect of different friction force to the behaviors of robot, which we call “Terrain
0” and “Terrain 1” for the sake of convenience. The nominal friction coefficients are
approximately, 0.29 in Terrain 0, and 0.46 in Terrain 1. This data provide us a good
approximation of the slipperiness of these two environments, i.e. Terrain 0 is more
slippery than Terrain 1 for the robot.
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Figure 5-4: Intrinsic stability of Stumpy. This graph shows the time series pressure
data installed on the right and left feet (top and bottom graphs, respectively). The
gait is disturbed by an external force around time step 150. A time step corresponds
roughly to 1/20 seconds.

5.4 Stability and Gait Analysis

In addition to the static stability which is achieved by a wide base and four feet, the
dynamical stability is one of the major features in the behavior of Stumpy. Figure
5-4 shows the time-series pressure data measured at the feet of Stumpy. At around
time step 150 an external force disturbance is exerted. The rhythmic pattern of
the ground contact is generally retrieved after a certain period of chaotic behavior,
in the figure after roughly 100 time steps. In this section, we explain the first set of
experiments, in which we analyze Stumpy’s typical gaits and its stability by using only
the waist motor (Figure 5-10). Note that, in this chapter, we use the term “gait”
in a broad sense. Generally a gait represents a spatiotemporal pattern of ground
contacts of an interested subject, however, in this chapter, we call the spatiotemporal
“pressure” patterns at the ground contacts instead. Namely, we call two different
pressure patterns two different gaits, even if all of the feet are on the ground and stay
at the same positions.

For the purpose of measuring such pressures at the ground contacts, we installed
pressure sensors on the right and left soles of the robot. These sensors output analog
signals which are digitized with 10-bit resolution and stored in a host computer.

5.4.1 Method of the Experiment and Observed Gaits

In the first set of experiments, we use only the waist motor and a potentiometer. The
target trajectory is a sinusoidal oscillation of the upper body with a fixed set point
at the middle, i.e. the center of oscillation is upright with respect to the lower body.
Under this condition, we analyzed the relation between the gait of the robot and
the target oscillation trajectories, i.e. the amplitude and the frequency parameters.
We conducted 100 experiments each in Terrain 0 and 1. In each experiment, we set
different parameters of amplitude and frequency in which the amplitude ranges from
2.5 to 25 degrees in steps of 2.5 degrees, and the frequency from 0.3 to 2.3 Hz at
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Figure 5-5: Three typical gaits, Shuffling (Top), Walking (Middle), and Hopping
(Bottom). Each diagram includes time series values of pressure sensors on the right
foot(Top), the left foot(Middle) and the angle between the upper and lower bod-
ies(Bottom).

0.2 Hz stepwise. At the same time the potentiometer and pressure sensor signals
were registered for 500 operation cycles of the host computer (one operation cycle
is 20ms). By analyzing the pressure sensor data, we categorized the gait observed
during each experiments into 5 categories listed in Table 2. The time series data
of three typical pressure patterns, thus “gaits”, are plotted in Figure 5-5. The
first gait, “Shuffling gait”, is usually observed when the upper body oscillates at a
smaller amplitude. In this gait, the robot simply swings the upper body which does
not affect lower body very much. From Figure 5-5 (Top), the feet of the robot are
mostly on the ground during the shuffle gait, and the pressure sensors indicate the
lower state only for a short time in one cycle of the upper body oscillation. The
second gait, “Walking gait”, can be observed when the amplitude and frequency of
the waist motor oscillation are increased, in which one of the feet is off the ground
while the other foot is on the ground. As shown in Figure 5-5, this behavior is clearly
distinguishable from the shuffling gait by comparing the period of time during which
one of the feet is on the ground. The “Hopping gait” is then emerged at even
larger amplitude of the waist motor oscillation, in which both of the feet are off the
ground during a certain period in a cycle of the upper body oscillation. This gait
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Figure 5-6: Gait distribution diagrams in Terrain 0 (Top) and Terrain 1 (Bottom).
Numbers of the texture patches correspond to “4”: Hopping, “3”: Walking, “2”:
Shuffling, “1”: Unstable, and “0”:Fall.

can be also clearly distinguished from the shuffling and walking gaits by comparing
the two pressure sensor values on the right and left soles. Another category of
the gaits is called the “unstable gait”, in which there is no stable gait pattern. The
typical behavior in this category shows two foot-steps during one foot-step of the
other foot. A similar behavior can sometimes be observed during a mixture of the
walking and hopping gaits, which is also included in this category. Finally, the
fifth category is called “Fall”, in which the robot falls down to the ground and fails
to continue the operation.

5.4.2 Stability Analysis

Based on the category above, we analyze the gait at each amplitude and frequency
of the oscillation. Figure 5-6 shows the result of this analysis, in which rectangular
texture patches denote the observed gait. Comparing these two gait distribution
diagrams, a salient difference is the large regions of “Fall” and “Unstable” in the
diagram of Terrain 1. Moreover, there is a relatively larger regions of the walking and
hopping gait in the diagram of Terrain 0, whereas these regions are squeezed by the
“Fall” and “Unstable” regions in the diagram of Terrain 1.
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Table 5.2: The observed gaits and identification numbers which are used in Figure
5-6.

No. Gait

4 Hopping
3 Walking
2 Shuffling
1 Unstable
0 Fall

Figure 5-7: Two typical locomotion behaviors of lateral bounding; Ipsilateral bound-
ing (Right) and contralateral bounding (Left).

The main conclusion derived from these experimental results is that, statistically,
slippery interactions between the robot and the ground, such as the experiments in
Terrain 0, could increase the stability, particularly during the hopping and walking
gaits. In addition, a design which exploits such a slippery property could suppress
instability of oscillatory processes and avoid fatal crush.

5.5 Lateral Bounding

A novel locomotion method called the “lateral bounding” was previously proposed
and tested in [85]. By using the “waist” motor with a biased set point of the oscil-
lation, Stumpy can move in lateral direction. The previous experiments have shown
two unique lateral locomotion behaviors, so-called “ipsilateral bounding” and “con-
tralateral bounding”, which are illustrated in Figure 5-7 and Figure 5-10. In this
section, we investigate this interesting phenomenon further.
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Figure 5-8: Gait distribution diagrams of the lateral bounding experiments on Terrain
0 (Top) and Terrain 1 (Bottom).

5.5.1 Experiments of the Lateral Bounding and the Observed
Gait

We have performed another set of experiments in a similar manner to the experiments
described in section 4. In this experiment, however, we set the set point at 30 degree
to the right side and conducted 100 sets of experiments each on Terrain 0 and Terrain
1. We applied the same range of amplitude and frequency parameters as were used
for the experiments in section 4.

There are 4 different locomotion behaviors observed during these experiments, i.e.
ipsilateral locomotion, contralateral locomotion, the mixture locomotion of these two
behaviors, and “Fall”. Again we define the categories for these behaviors, “Right”,
“Left”, “Stay”, and “Fall”, respectively. These behavior categories are determined by
measuring the physical displacement (a threshold of 30 cm from the starting location)
of the robot, after 500 operation cycles. Concerning the gait in the lateral bounding,
we did not observe the walking gait, only shuffling and hopping gaits, by applying
the same categorization framework which was used in section 4. In total, therefore,
there are 7 different patterns of behaviors in these experiments as shown in Table 3.
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Table 5.3: Observed gaits and behaviors during the lateral bounding experiments and
identification numbers which are used in Figure 5-8.

No. Gait Behavior

6 Right
5 Hopping Stay
4 Left
3 Right
2 Shuffling Stay
1 Left
0 Fall

5.5.2 Gait Analysis

Figure 5-8 shows the gait distribution diagrams of the lateral bounding experiments.
One of the major contrasts between the gait distributions in Terrain 0 and 1 is a region
of the “Fall” category shown in the Terrain 1 diagram, whereas it does not appear in
the Terrain 0 diagram, which is similar to the results shown in Figure 5-6 explained
in the previous section. This result can also be another evidence that supports the
hypothesis of increasing the stability of locomotion by exploiting friction.

Another interesting contrast of the diagrams in Figure 5-8 is the fact that the
number of different types of behaviors observed in Terrain 0 is greater than that in
Terrain 1. More specifically, in the Terrain 0 diagram, “Right” and “Left” behaviors
were observed in both “Hopping” and “Shuffling” gaits. On the contrary, the Terrain
1 diagram shows mostly “Stay” behavior except for a relatively small region of the
“Hopping Right” behavior.

Note that the informal experiments have shown that the gait distribution is also
dependent on the set point. For example, the gait distributions of the set points 30
degrees and 45 degrees would be different. Further comprehensive analysis of this
phenomenon is expected.

An important aspect of these experimental results is that, by using a simple 1-
DOF inverted pendulum oscillation, Stumpy shows 6 qualitatively different behaviors
in one dimensional lateral locomotion, which are controlled by 4 partially coupled
redundant parameters, i.e. friction coefficient, amplitude, frequency and the set point
of the oscillation. This variety of behaviors could probably enhance the adaptability
of a locomotive system. For instance, the ipsilateral bounding is faster and more
unstable than contralateral bounding [85]. Therefore, the ipsilateral behavior could
be used for emergency situation. The contralateral one is, on the other hand, stable
and robust which can be viable for practical long-term applications.
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5.6 Controlling the Turning Rate

In this section, we reconsider another locomotion method of Stumpy originally pro-
posed in [48], in which the robot is capable of moving forward, reversing direction,
and changing the turning rate as shown in Figure 5-9.

The control of moving forward/backward direction can be realized as follows. The
waist motor oscillation with constant amplitude and frequency generates a periodic
gait of either hopping or walking. And at the same time, the robot rotates the
shoulder motor also in a oscillatory fashion by synchronizing with the waist motor
oscillation. With this control, the oscillatory yaw momentum produced by the swing
of the shoulder beam drives one foot in the air moving forward or backward. Thus,
the periodic operation of this control results in either moving forward or backward,
and the direction of the robot’s movement can be controlled by changing the phase
between the waist and shoulder motors by 180 degrees.

The control of turning rate uses the same principle, although the speed of shoulder
beam oscillation should be biased, i.e. the clockwise speed is faster than that of
counter-clockwise, or vice versa. Therefore the turning rate of the locomotion can be
approximately proportional to the speed difference between clockwise and counter-
clockwise.

The control of turning rate is a very good practical case study in which the second
hypothesis described in section 2 is effectively used. In this control of Stumpy, by
analogy, the oscillation of the waist motor produces Fv and the oscillation of the
shoulder motor gives Fh. It is observed that, for the control of the robot moving
direction and turning rate, the gait of the robot does not need to be walking, but
it can also be hopping or shuffling. The significance of this fact is, again, that the
qualitative diversity of the behaviors.

An interesting argument is that, Stumpy has a rotational oscillation provided by
the swing of its shoulder, whereas the second hypothesis in section 2 assumes a linear
oscillation. Interestingly, due to its rotational momentum, rather than a linear one,
Stumpy can produce 3 degrees-of-freedom movement in two-dimetional space, i.e.
moving forward/backward, right/left, and rotating on its own axis. This argument
needs to be elaborated in the future.

5.7 Discussion

In this chapter, we propose two working hypotheses described in section 2 with respect
to how the friction could contribute to a form of locomotion. In this section, we discuss
further issues on these hypotheses.

Concerning the first hypothesis mentioned in subsection 2.1, the experimental
results in section 4 and 5 show that the friction can be one of the significant parameters
which largely increases the stability of a locomotion process. However, it is still an
open question regarding to what extent this hypothesis could be applicable. As
mentioned in section 2, the principle of increasing the stability depends not only on
the friction force, but also on the shape of the object (e.g. d and h in Figure 5-1),
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the external force, at least. Additional comprehensive experiments and analysis on
this issue is expected, including Stumpy’s morphological design of lb, r, l1, and l2 in
Figure 4.

Another interesting discussion would be whether the variety of locomotion behav-
iors on Terrain 0 in Figure 5-8 could be explained by the second working hypothesis
described in subsection 2.2. In these experiments, by analogy, one could assume that
the swing of the inverted pendulum (i.e. the oscillation of the upper body) produces
both the vertical force Fv and horizontal force Fh in equation(4). If this is the case, the
friction coefficient µ could be a control parameter for locomotion as well as amplitude
A and frequency ω. However, it has to be mentioned that these control parameters
are only partially independent in such a sense that the friction force cannot be larger
than the horizontal force Fh.

As mentioned in section 2, there are two possible ways to control the friction.
According to equation (3), one is to control the coefficient of friction, µ, and the
other is to control the vertical force Fv at the ground contact. The former one mainly
depends on the material property, and the latter is mostly realized by shifting the
center of gravity of a locomotive system. The material property of the sole, therefore,
plays a very important role in locomotion of the robot, which can be categorized as the
first point. However an active control of the friction coefficient could be potentially
an alternative parameter to control the locomotion.

In relation to the vertical force Fv, the springs which are vertically installed in
the Stumpy robot would also be a point of dispute, since they significantly affect the
force Fv and most probably also the phase φ in equation(4). As has been known
in biological studies of running animals (e.g. [1]), the passive spring component can
increase the energy efficiency, i.e. converting the kinetic energy to the potential elastic
energy. However, the vertically equipped springs could also be an additional control
and design parameter for the locomotion exploiting the friction force.

Finally, the concept of locomotion presented in Figure 5-2 assumes two oscillatory
forces given to the system. In this chapter, therefore, we have applied only simple
sinusoidal oscillation controls. Considering that the friction is usually a highly non-
linear interaction, an adaptive control method (e.g. one used by [114]) might enhance
the locomotion stability of the system as well.

5.8 Summary

In this chapter, we propose two working hypotheses in which we discuss how an arti-
ficial system could actively exploit the interaction between a system and the ground
for the purpose of adaptive locomotion. In order to test these hypotheses, we have
conducted three case studies by using a robotic platform which we have developed.
The experimental results show the statistical plausibility of the first hypothesis, where
stability of locomotion could be increased by properly exploiting the friction. Further-
more, it is shown that, by properly taking advantage of the friction, the robot could
enlarge the repertoire of locomotion behaviors. A criticism to what we discuss in this
chapter might be whether it is worth exploring all the possible locomotion behaviors
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exploiting the slippery interaction between a system and the ground, since the energy
efficiency of locomotion is always lower with respect to traveling distance as long as
there is a friction force. However, our interest of this research is not to focus on
the efficiency, rather we are interested in a comprehensive understanding of adaptive
locomotion, where a repertoire of locomotion behavior would play an important role.

60



Figure 5-9: Locomotion behaviors of Stumpy observed from top (The unit of these
graphs is meters). Stumpy can control its movement direction, turning rate (Top
and Middle panels), and lateral bounding (Bottom panels) by changing only a few
control parameters. Black dots denote the trajectory of the body center, and the line
illustrates the orientation of bottom base.
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Figure 5-10: Typical gait patterns of Stumpy (Walking, Hopping, Lateral Bounding
from left to right).
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Chapter 6

Cheap Rapid Locomotion of a
Quadruped Robot

Abstract

The legged animals are capable of rapid, energy efficient, and adaptive locomotion in
a complex environment. Toward a comprehensive understanding of the nature of such
ecologically balanced legged locomotion, in this chapter, we propose a novel method
to achieve a form of bounding gait for a quadruped robot by using a minimalistic
approach. Although this method uses a simple sinusoidal position control with no
global sensory feedback, it is shown that the rapid bounding is possible in a relatively
robust manner by properly exploiting the intrinsic dynamics and the interaction with
the environment. The behavioral analysis with the robot experiments show that
this relatively complicated dynamic locomotion is achieved even with a simple con-
troller mainly because of a self-stabilization mechanism. Moreover, by exploiting this
mechanism of self-stabilization, we propose a unique approach to control the forward
velocity of the locomotion.

6.1 Introduction

The locomotion capability is one of the most essential functions for an adaptive robot.
However, in order to understand the nature of adaptability, locomotion cannot be seen
in isolation, rather a multi-functional perspective is crucial. From this viewpoint, a
set of design principles have been proposed for the autonomous agents, which include
the principle of “cheap design” [89]. This principle suggests that if a robot could
properly exploit the given ecological niche, the control effort could be significantly
simplified. The studies of the passive dynamic walking have nicely illustrated this
principle [73, 20]. Even without any control and actuation, a robot can achieve a
relatively complicated behavior of dynamic walking if it is properly designed for its
ecological niche. Another good example is the rapid legged locomotion, since the use

0This chapter is based on the reviewed publication [52].
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of cheap design is particularly important when the temporal constraint of the system
is demanding.

The bounding gait is a form of legged locomotion, which is generally observed
when a quadruped animal is running at the highest speed. In this gait, the animal
lands with both of its front feet and brings the hind legs forward, then lands with both
of the hind feet to swing the front legs forward for the next leg step. Biomechanics
studies have extensively investigated the mechanisms of this running behavior of the
legged animals. The use of the elastic components in the muscle-tendon system has
been analyzed and a theoretical model of legged animals, the so-called “spring-mass
model” was proposed [1, 75]. In this model, it was hypothesized that an animal’s
leg could be approximated by a spring loaded inverted pendulum. Interestingly the
studies of the spring-mass locomotion models have shown that, with a proper im-
plementation of the self-stabilization mechanisms, many aspects of rapid legged lo-
comotion can be passive or they require extremely simple controls (e.g. [64, 103]).
Based on these biomechanical investigations, the study of running robots has been
conducted during last couple of decades, and the mechanism of running behavior has
been successfully engineered. The pioneering work by Raibert [96] has shown that
the task of a hopping machine can be decomposed into three problems, namely (1)
regulating periodic hopping height; (2) maintaining body attitude; and (3) controlling
the desired forward speed. Then these control problems can be solved by switching
between two control strategies for stance and flight phases. During the stance phase,
the robot controls for problems (1) and (2), and during the flight phase, the problem
(3) is dealt with. On the basis of this principle, monopod, biped, and quadruped
robots have demonstrated dynamical hopping/running behaviors [96]. By following a
similar approach, it has been shown that, only by regulating the appropriate angle of
attack at touchdown during a flight phase, a quadruped can maintain its balance and
control the forward velocity[91, 14]. All these studies are based on a method in which
there are two independent control phases. Therefore the robot needs to identify the
phase at every computational step by using contact detectors on the feet.

By following the hypothesis of the spring loaded inverted pendulum model, the
challenge addressed in this chapter is whether it is possible to achieve the bounding
behavior of a quadruped robot without sensory feedback at the level of global body
function, i.e. no sensory feedback from, for example, gyros, inclinometers and con-
tact detectors. In order to realize such a locomotion method, we have to carefully
consider the intrinsic body dynamics which self-stabilizes into a periodic stable gait.
Compared to the phase based control scheme, this approach provides a physiologically
cheaper design, i.e. no wire transmitting sensory signals is required, and a coherent
controller, which reduces the computational cost. Moreover, as shown later in this
chapter, the coherent control scheme provides the significant flexibility in controlling
the locomotion behaviors such as the forward locomotion velocity.

The structure of this chapter is as follows. In section 2, we describe the design
and control of our quadruped robot which is used for the experiments explained in
section 3. Issues leading to further design principles will be discussed in section 4.
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Figure 6-1: Left: A photograph of the quadruped robot. Right: A schematic of the
robot. The circles denote passive joints and the circles with a cross inside denote
the joints controlled by the servomotors. The triangles with a number show the
locations of LEDs which are used for visual tracking of the body geometry during the
locomotion experiments.

6.2 Design and Control of a Quadruped Robot

6.2.1 Morphological Design

The robot is designed based on the so-called spring-mass model, which is an abstract
model of musculoskeletal structure in legged animals(Figure 7-1). Despite its sim-
plicity, it has been shown that legged locomotion of biological systems are very well
characterized by this model[75, 7, 103].

The physical dimensions of the robot body are as follows: It is 170mm long,
135mm wide and approximately 200mm high (refer to Table 1 for more detailed
specifications). The robot has 8 standard digital servomotors (Hitec HS-5945MG)
in the shoulder, elbows, hip, and knees. Batteries and a micro controller are also
implemented in the robot body, which results in a body weight of 1.5 kg. We employ
a three-segment model of animal legs, where two motors and one springy passive joint
in the ankle are implemented. We have applied exactly the same leg design to all four
legs for the sake of simplicity, whereas the hind and fore legs of animals are generally
very different.

In the experiments shown in the following section, we deliberately installed slip-
pery materials on the soles of the robot. The intention of this slippery interaction is
two fold: On the one hand, the informal experiments showed that the robot locomo-
tion requires more torque and it is unstable if the robot has non-slippery interaction.
On the other hand, for the running/hopping behavior, the high friction force would
not always be required, because of the relatively high vertical force against the ground
induced by hopping dynamics. Although it is difficult to quantitatively measure the
slipperiness during dynamic interaction between legs and ground, a good estimate
could be the coefficient of friction. The static and dynamic coefficients of friction are
approximately 0.20 and 0.13, respectively.
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Figure 6-2: Behavior analysis of a running experiment. The upper graph shows the
behavior of whole body extracted from the visual tracking of LEDs attached to the
leg joints. The lower graph shows the trajectory of a virtual linear hind leg.

Table 6.1: The specification of the robot mechanical structure
Param. Description Value

l0 length of body 170 mm
l1 length of upper leg limb 70 mm
l2 length of middle leg limb 80 mm
l3 length of lower leg limb 120 mm
l4 point of lower joint attachment 70 mm
l5 point of s1 attachment 45 mm
l6 point of s0 attachment 30 mm
s0 spring constant 13.9 g/mm
s1 spring constant 20.8 g/mm
m mass of the robot 1.5 kg

6.2.2 Controller

In this chapter, we focus only on the hip and shoulder motor controls, i.e. the motors
in the elbows and knees are fixed. For the control of shoulder and hip motors, we
employ a simple oscillatory position control, and the motor commands are symmetric
in terms of the sagittal plane, i.e. the control of two fore legs is the same. The target
motor positions are determined as follows.

Pf (t) = Afsin(ωt) + Bf (6.1)

Ph(t) = Ahsin(ωt + φ) + Bh (6.2)

where Pf and Ph indicate the target angular positions of the fore (shoulder) and hind
(hip) motors, respectively. A and B determine the amplitudes and the set points of
the oscillation, and φ determines the phase delay between these two oscillations of the
fore and hind legs. The parameters used in the following experiments are heuristically
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Figure 6-3: The definitions of touchdown, lift-off angles and body pitch used in the
analysis.

Figure 6-4: The relation between touchdown and lift-off angles. The touchdown
angles and lift-off angles are normalized by the corresponding mean touchdown and
lift-off angles.

determined as follows. Af = Ah = 25(degree), Bf = 20(degree), Bh = 10(degree),
ω = 7.0 (1/sec, 0.90 Hz). The coordinate of these set points is set to perpendicular
with respect to the spine. This control method does not require any global sensory
feedback: The controller does not need to distinguish stance and flight phase, the
body attitude or leg angles with respect to the absolute ground plane. Therefore, the
main interest of the following experiments is how the robot could self-organize into
a periodic gait primarily by the intrinsic body dynamics and its interaction with the
environment.

6.3 Experiments

In this section, firstly, we explain the methods of experiments and behavior analy-
sis. Then, we analyze how the stabilization of the periodic bounding gait can be
achieved in the proposed locomotion control. Finally, by exploiting the stabilization
mechanism, a control scheme of forward locomotion velocity is proposed.
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Figure 6-5: The conceptual illustration of foot placement. If the touchdown angle is
appropriate, the trajectory of body mass can be symmetry as shown in (b). Otherwise
the lift-off angle can be higher (a) or lower (c).

6.3.1 Experimental Method

We conducted behavior analysis of the robot movement during the running behavior.
In this analysis, first, we attached 9 LEDs at every joint as visual tracking points
labeled LED 0 to 8 as shown in Figure 7-1. Then we recorded the running behavior
from a side view by using a standard video camera. These tracking points were
extracted by visual tracking processing at 25 frames per second. Figure 6-2 shows a
typical running behavior of the robot as acquired from this visual tracking analysis.

For further analyses explained in this section, we use “a virtual linear (hind)
leg”, i.e. a virtual line between the hip joint and toe (LED 5 and 8). For reasons
which become clear later in this chapter, the running behavior of the robot is well
characterized by analyzing the virtual linear leg, instead of using all of the joint
trajectories including knees and ankles. A typical behavior trajectory of the virtual
linear (hind) leg is shown in Figure 6-2.

A set of experiments have been conducted in terms of the phase parameter φ in
equation 7.2. The reason to focus on the phase parameter is that the self-stabilization
mechanism and its use are very well characterized as explained in detail later. In the
following experiments, we analyzed the behavior of 6 leg steps from a side view.
We repeated the same experiments by changing the phase parameter φ from -1.6 to
0.2 (radian) by 0.2 step. This range of the parameter is chosen based on informal
experiments, in which a stable bounding gait is possible.

6.3.2 Stability Analysis

To achieve the stable periodic gait, the legs need to touchdown and lift-off at con-
stant angles with respect to the ground plane. In this subsection, we first analyze the
behavior of a hind leg and elaborate the self-stabilization mechanism of the bounding
gait. More specifically, by analyzing touchdown and lift-off angles of a virtual linear
leg, we explain how the controller is interacting with the environment which leads
to the stable gait. Secondly we focus on how the self-stabilization mechanism could
result in a whole body coordination by analyzing the dynamics of body pitch. (The
touchdown, lift-off angles and the body pitch are explained in Figure 6-3.)
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Figure 6-6: Typical transitions of lift-off angles with different phase parameters. (The
phase 0.2 (Top), 0.8 (Middle), and 1.0 (Bottom) radian.)

Self-stabilization during the Stance Phase
In the first analysis, we measured the touchdown and lift-off angles of the virtual linear
hind leg with respect to the ground plane (the absolute coordinate) by using joint
geometries gained from the visual tracking. The touchdown angles and the successive
lift-off angles (the lift-off angles following the corresponding touchdown angles) of 60
leg steps are normalized by the mean touchdown and lift-off angles respectively, and
are plotted in Figure 6-4. As shown in the figure, the lift-off angle is, on average,
proportional to the touchdown angle, i.e. the lower touchdown angles result in lower
lift-off angles, and vice versa.

It has been found that the angle of attack at touchdown is one of the most im-
portant parameters for a legged running behavior [96, 103]. The basic principle is
illustrated in Figure 6-5. In this principle, if the touch down angle of a linear springy
leg is appropriate, the trajectory of the body mass can be symmetric with respect to
the vertical line at the foot contact, as shown in the middle illustration. Otherwise
the lift-off angle can be lower or higher. Figure 6-4 shows that this principle holds
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Figure 6-7: Relation between the normalized lift-off angles of two successive leg steps.
The variable s represents the index of leg step.

also for the experimental results of the virtual linear leg.

Self-stabilization during the Flight Phase
In the next analysis, we analyze the stabilization of locomotion during the period of
several leg steps by using the same joint geometry data above. As shown in Figure
6-6, the fluctuations of successive lift-off angles against the ground are generally
maintained within a certain range. To show this more clearly, the relation between
two successive lift-off angles is plotted in Figure 6-7. This figure shows that, when
a lift-off angle is lower than average, the subsequent lift-off angle tends to be larger,
and vice versa. Given the relation between touchdown and lift-off angles during the
stance phase, the leg behavior during the flight phase is typically such that a lower
lift-off angle leads to a higher touchdown angle and vice versa, which results in the
stable gait over multiple leg steps.

It has been shown that the principle of foot placement can be used for the speed
control of some legged hopping robots by adjusting the touchdown angle during a
flight phase [96, 91]. However, in this experiment, the angle of attack was not
controlled but self-stabilized without sensory feedback; the robot cannot recognize
flight/stance phase nor the body pitch to estimate the touchdown angle of the legs.

Full Body Coordination
By using the same joint geometry data above, we analyzed the movement of the body
pitch. The body pitch is measured as the angle of spine with respect to the ground
plane as shown in Figure 6-3. Figure 6-8 shows a few typical angular movements of
the body pitch. As shown in these graphs, the spine rotation is changed from a steep
zigzag movement to a relatively stable flat movement depending on the phase. The
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Figure 6-8: Typical time series movement of body pitch with respect to the ground
plane. The phase parameter of 0.2 (Top graph) and -0.8 (Bottom) radian.

average angular velocity against the phase parameter is plotted in Figure 6-9, which
shows that the movement of body pitch as measured by angular velocity accurately
corresponds to the phase between front and hind leg oscillations. This is possible
only when the front and hind legs are self-stabilizing their touchdown angles. More
precisely, to maintain a constant touchdown angle with respect to the ground plane,
the motor angles of hip at touchdown, i.e. Ph(touchdown) in equation 7.2, should be
changed according to the phase parameter, which would result in this characteristics
of body pitch movement.

6.3.3 Forward Speed Control

In this section, the forward locomotion speed with respect to the phase parameter
φ is analyzed. The velocity is also visually estimated by using the center of the
body (LED 0), where we measured the horizontal distance traveled and the duration
during 6 leg steps for the values of the phase parameter φ. As shown in Figure 6-
10, the speed can be controlled in the range from 20 to 50 cm/sec by changing the
phase. A possible explanation of the speed difference shown in this figure could be
that, considering the fact that relatively higher velocity is achieved at a larger body
movement, i.e. the phase range from -0.4 to 0.2, the fluctuation of body pitch could
provide smaller touchdown angle even with the same amplitude of motor oscillation,
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Figure 6-9: Average body rotational angular velocity versus the phase parameter.

which is required for the faster legged locomotion. An explanation of the relation
between the phase and the forward locomotion speed need to be corroborated, but,
at least, this experimental result shows that the speed of locomotion can in principle
be controlled by changing only the phase parameter.

6.4 Discussion

The findings discussed in this chapter are of potential interest to both engineers and
biologists. One of the most significant contributions is that the proposed control
scheme adds another variation of rapid bounding locomotion method. In most of
the existing controllers for the bounding behavior, the controllers need to detect two
states, i.e. flight and stance phases, whereas it requires no need of the global state
recognition in the proposed method.

From an information theoretic viewpoint, there are a number of interesting as-
pects. Firstly, the flow of information is unidirectional and there is no signal feedback
loop running all through the body, but the loop is only local, i.e. only in the ser-
vomotors. This experimental result achieved by a synthetic investigation could help
understanding the physiological nature of legged rapid locomotion. Secondly, the
control of speed cannot be computationally cheaper than the proposed phase control,
since there is no sensory feedback, on the one hand, and the phase is equivalent to a
low-pass filter or a simple time delay, on the other. Given the fact that the property
is possible mainly due to the self-stabilization mechanism, the design of controller
strongly depends on the stabilization mechanism including the morphological design
of legs and body. From this perspective, although we only focus on a simple sinu-
soidal position control, the adaptability of the controller (e.g. the biological controller
models investigated by [63, 33]) would be another interesting topic to be investigated
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Figure 6-10: Average speed versus the phase parameter.

in the future. Thirdly, it is also worth to mention that, owing to the self-stabilization
mechanism, there are many other parameters such as the frequency, the set points,
and the spring constants (if possible) which can potentially control the forward ve-
locity in addition to the phase parameter. The diversity and the flexibility of the
proposed control scheme is another interesting aspect to be explored further.
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Chapter 7

Sensing through Body Dynamics

Abstract

Passive dynamics has generally been investigated for generating energy efficient be-
haviors of robots. This paper explores another aspect of passive dynamics for the
purpose of sensing. Through particular system-environment interaction derived from
intrinsic body dynamics, the system is able to acquire sensory information with a set
of discrete states in a continuous multi-modal sensory space. A locomotion model
of a four-legged robot in both simulation and real world is used for a case study.
It is demonstrated that this locomotion model is able to achieve stable behavior by
using a simple control architecture which provides a basic setup for sensing. A com-
prehensive analysis of behavior and sensory information leads to additional insights
of the relation between control, body dynamics and sensory information processing,
which provides further conceptual implications for the task of object recognition and
category learning of autonomous robotic systems.

7.1 Introduction

While design principles of traditional robotic systems assume rigid body materials
and high-gain control, there has been an increasing interest in broader ranges of ma-
terial properties and adaptive control. In particular, the use of passive dynamics
for behavior control has provided a significant conceptual impact. One of the most
fundamental aspects of passive dynamics, or more generally body dynamics, lies in
the fact that behaviors and functions should be viewed as a result of the interplay
between morphological properties, control and environment. The studies of passive
dynamic walkers and rapid legged locomotion have nicely demonstrated how mor-
phological properties are related to behavior of the system. When a system exploits
morphological properties (e.g. shape, stiffness, friction, weight distribution, etc.), it
is possible to simplify control and to achieve energy efficient behavior. Even without
any actuation, for example, passive dynamic walkers are able to walk down a slope
in a very natural way [73, 20], and they require extremely small amount of energy for

0This chapter is based on the reviewed publications [55, 57, 56].
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(a) (b)

Figure 7-1: (a) A photograph of the quadruped robot. (b)A schematic of the robot.
The circles denote passive joints and the circles with a cross inside denote the joints
controlled by the servomotors. The specifications of the robot are shown in Table 1.

walking even on the level ground [123, 21]. By exploiting compliant material prop-
erties, as another example, a number of robots demonstrated energy efficient rapid
legged locomotion [96, 17, 14].

A common characteristics of the systems exploiting body dynamics is that their
behavior is generally dependent on the physical conditions of the environment. For
example, the passive dynamic walkers can function only in a very limited environ-
mental conditions, i.e. a slope with a specific angle and a limited range of the ground
friction. If the angle of the slope is varied slightly, the passive dynamic walker is no
longer functional and falls over. Although the dependency of behavior to the environ-
ment is not preferable for design and control of certain desired behavioral functions,
it is potentially important for the purpose of sensing. When material properties and
active control are exploited, a system is able to obtain more sensory information
about the physical properties of the environment. There are a few related issues
that partially cover this concept. Previously, by implementing various materials in
some parts of the body (e.g. elastic fingers, feet, or whiskers), it has been shown that
slight differences of physical properties in the environment and the objects can be
categorized (e.g. [43, 105, 27]).

This paper explores the sensory information acquired during dynamic behavior
exploiting whole body dynamics in order to gain broader perspective of the relation
between body dynamics, control, behavior and sensory information. A four-legged
robot model will be examined in this paper as a case study of body dynamics for
sensing. Because it exploits a self-stabilization mechanism derived from passive dy-
namics, the locomotion behavior is intrinsically stable, but at the same time, de-
pendent on the physical conditions of environment. A comprehensive analysis of the
behavior and the corresponding sensory information will demonstrate that, when the
system exploits the intrinsic stability derived from body dynamics, sensory informa-
tion acquired during the interaction with the environment contains discrete states
in multi-modal continuous sensor space. We will then speculate how such sensory
information provides further insights in the mechanisms of object recognition and
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Table 7.1: Specification of the robot platform
Param. Description Value

l0 length of body 142 mm
l1 length of upper leg limb 42 mm
l2 length of lower leg limb 56 mm
l3 spring attachment 15 mm
l4 spring attachment 20 mm
s0 spring constant 40 g/mm
m mass of the robot 273 g

category learning.

7.2 Body Dynamics of a Quadruped Robot

The use of elastic muscle-tendon systems during rapid locomotion has been investi-
gated in biomechanics, which leads to the theoretical model of legged animals, the
so-called “spring-mass model” [15, 1, 2, 75, 7]. In this model, it was hypothesized
that animal’s leg could be approximated by a spring loaded inverted pendulum. The
studies of the spring-mass locomotion models have shown that, with a proper imple-
mentation of the self-stabilization mechanisms, many aspects of rapid legged loco-
motion can be passive or they require extremely simple control (e.g. [64, 103]). In
this section, we introduce how a stable locomotion behavior can be achieved by a
minimalistic control architecture in a four-legged robotic platform [52, 56].

7.2.1 Morphological Design

The design of the robot is inspired by the spring-mass model studied in biomechanics.
As shown in Figure 7-1, the robot has four identical legs each of which consists of
one standard servomotor (KOPROPO PDS947FET) and a series of two segments
connected through a passive elastic joint. We used aluminum for the design of body
frame and legs. The physical dimensions of the robot body are 142mm long, 85mm
wide and approximately 75mm high (refer to Table 1 for more detailed specifications).
The robot has 4 servomotors, a micro-controller (Microchip PIC 16F877) and a small
weight to adjust the weight distribution of the body, which result in a total weight
of 273g. The control signal for the motors and the electricity are supplied externally
through the cables. We used the standard serial communication protocol to send
the positions of the servomotors from a PC to the micro-controller that produces the
modulated signals for the servomotors.

To gain a higher forward velocity, the robot requires higher ground friction. For
this reason we implemented a rubber surface at the ground contact in each leg. Al-
though it is difficult to quantitatively measure the slipperiness during dynamic inter-
action between legs and ground, a good estimate could be the coefficient of friction.
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(a) (b) (c)

Figure 7-2: A time series photographs during “the gait 0” (a) and “the gait 1” (b).
The behavior of the robot is visually registered while running on a treadmill. The
interval between two pictures is approximately 30ms. (c) Behavior of simulation
model.

The static and dynamic coefficients of friction are approximately 0.73 and 0.55, re-
spectively.

7.2.2 Motor Control

For the detailed observation of the intrinsic body dynamics derived from the mor-
phological properties, we apply a minimalistic control strategy, in which no sensory
feedback is used at the level of global function. In the following experiments, the
motors are controlled by a simple oscillatory position control as follows:

Pf (t) = Afsin(ωt) + Bf (7.1)

Ph(t) = Ahsin(ωt + φ) + Bh (7.2)
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Figure 7-3: Time-series changes of the state variables during one leg step, (a) hori-
zontal, (b) vertical, (c) angular movement and their velocity (d, e, f).

where Pf and Ph indicate the target angular positions of the fore (shoulder) and hind
(hip) motors, respectively. A and B determine the amplitudes and the set points
of the oscillation, and the frequency ω and the phase φ determines the phase delay
between these two oscillations of the fore and hind legs. Control of the motors is
symmetric in terms of the sagittal plane, i.e. the control of two fore legs is the same.
The parameters used in the following experiments are heuristically determined as
follows. Af = Ah = 25(degree), Bf = 20(degree), and Bh = 10(degree). The control
parameters of frequency ω and phase φ will be used for the parameter search. The
coordinate of these set points is set as illustrated in Figure 7-1.

7.2.3 Intrinsic Stability

Although most of the compliant legged robots use sensory information to achieve
stable rapid locomotion (e.g. [103, 91, 46]), this locomotion model does not; The
controller does not need to distinguish stance and flight phase, the body attitude or
leg angles with respect to the absolute ground plane, but stable locomotion behavior
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(b) Phase plot of vertical movement

Figure 7-4: A typical recovery response from the change of the gait. (a) The time-
series vertical movement of the body is shown before and after the trigger at time = 0,
and (b) its phase plot.

can be achieved by a self-stabilization mechanism exploiting the compliant legs [52].
In the first set of experiment, we evaluate the stability of the locomotion method
without sensory feedback. Figure 7-3 illustrates typical time-series state variables
which characterizes the movement of the robot body during one leg cycle. For this
analysis, the locomotion behavior was registered by a high-speed camera (Basler
Basler A602fc, 100fps), and the movement of the body segment was extracted by a
standard visual tracking method. As shown in this figure, all five state variables (i.e.
ẋ, y, ẏ, θ, and θ̇) go back to the states at the beginning of the leg step, that ensures
the periodic gait cycle.

By searching through the control parameters, we observed, at least, two qualita-
tively different locomotion gaits which are labeled “gait 0” and “gait 1”, as shown
in Figure 7-2. In the gait 0, the hopping height is relatively lager than the gait 1,
which results in the four legs clearly off the ground for some duration in a leg cycle.
And the gait 1 generally exhibits larger forward velocity. The intrinsic stability of
the locomotion method can be demonstrated by switching between the control para-
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meters of these gaits. A typical response induced by the change of the gait is shown
in Figure 7-4 (the control parameter of phase φ is varied at time t = 0). Generally
the stable gait patterns can be recovered within one or two leg steps after the switch
of the control parameters.

In general, there exist multiple stable gait patterns in this framework of quadrupedal
locomotion, and the number of stable patterns are largely dependent on the ground
friction. However, even during the unstable locomotion, it is possible to maintain the
locomotion process owing to the intrinsic stability of the locomotion model.

7.2.4 Simulation Model

For the sake of comprehensive behavior analysis, we have constructed a simulation
model of the running quadruped robot. The simulation was conducted in Mathworks
Matlab 7.01 together with SimMechanics toolbox. We developed this simulation
model in the same scale as that of real robot in a planar environment; It consists
of 5 body segments (a pair of two-segment legs and a body segment), two linear
springs, and two motors in shoulder and hip joints with angular position feedback.
With a biomechanical ground friction model, the simulated dynamic locomotion is
fairly comparable to the real one, as shown in Figure 7-2. The following experimental
results are obtained by using this simulation model.

7.3 Behavior and Sensory Information

Sensory information acquired during the locomotion process is explored in this sec-
tion. We conducted three simulation experiments to characterize the relation between
locomotion behavior, control and the sensory information.

By tuning control parameters, the simulated robot is able to achieve a stable
running behavior as shown in Figure 7-5(a). During this locomotion process, we
registered time-series response of several different sensory channels, i.e. a pressure
sensor on the sole of hind leg, a angle sensor of the hind passive joint, an inertia
sensor in the body segment, and a motor torque sensor in the hip joint. As shown
in Figure 7-6(a), all of the sensory signals show a periodic response due to the stable
locomotion behavior.

In the second experiment, the coefficient of ground friction is varied, which results
in unstable locomotion behavior with the same control parameters. Figure 7-5(b)
illustrates a typical unstable behavior of the system; The behavior is mostly chaotic,
and some periodic patterns are generally disappeared after a few leg steps due to
accumulation of small slippage and undesired touch-down angles of the legs. Conse-
quently, the sensory response also shows chaotic patterns; The ground reaction force
and the motor torque particularly represent substantial differences compared to the
previous ones in Figure 7-6(a).

In the third experiments, the control parameters are tuned for a stable locomotion
behavior even in the coefficient of friction used in the second experiment. Although
this locomotion exhibits slightly slower forward speed and larger hopping height, it is
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(a)

(b)

(c)

Figure 7-5: Stick figures of behaviors in simulation. The body postures are illustrated
every 100 and 1000 simulation steps (gray and black stick figures, respectively). Black
dots represent the trajectories of the shoulder joint. (a)ω = 4.7Hz, φ = 0.3 in the
ground friction 0.9 (static) and 0.8 (dynamic). (b) the same control parameters in
the ground friction 0.7 (static) and 0.6 (dynamic). (c) in the same ground friction as
(b) with the control parameters ω = 4.9Hz, φ = 0.4.

possible to achieve comparable stability as the first experiment (Figure 7-5(c)). The
sensory information also shows stable periodic patterns very similar to the first ones.

There are two implications from these experimental results. One point is that
the different ground friction is reflected on four sensory channels. This is possible
because the intrinsic stability of the locomotion process is achieved through the body
dynamics; The system is, on the one hand, able to maintain the (unstable) locomotion
process without any control in different environment, and on the other, a number of
different physical interactions react to it. In this case study, for example, there are, at
least, the ground reaction force exerted at the feet, the force generated in the elastic
passive joints, the output torque of actuators, and the momentum of the large masses
in the body.

Secondly, the relation between stable behavior pattern and sensory information
has to be considered further. It was shown that, when the behavior is stabilized by
tuning the control parameters, the amount of information about the environmental
properties can be reduced considerably. In the third experiment, for example, because
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(a) (b) (c)

Figure 7-6: Sensory information acquired during the behaviors shown in Figure 7-5.
From top figure to bottom: Pressure sensor in the hind leg, angle of the hind passive
joint, acceleration of the body, and motor output torque of the hind leg.(a)Coefficients
of ground friction (CGF) are 0.9(static), 0.8(dynamic), motor frequency 4.8 Hz, (b)
CGF 0.7 (static) and 0.6 (dynamic), motor frequency 4.8 Hz, (c)CGF 0.7 (static) and
0.6 (dynamic), motor frequency 4.4 Hz.

the control parameters are tuned for the different environment, the sensory patterns
of the first and the third experiments are difficult to distinguished.

7.4 Situated Sensing of Body Dynamics

In the following experiments, we investigate the influence of frequency ω and phase
φ to the locomotion behavior. These parameters significantly change the locomotion
behavior; it exhibits a stable rapid locomotion; it runs slowly or hops at place; it
exhibits chaotic behavior; or it falls over.

This dynamic locomotion behavior can be recognized in a relatively simple manner
by analyzing temporal patterns of the sensory signals. We implemented two sensors in
the simulation model, i.e. the ground contact detector in the fore foot and the speed
detector at the body segment. First, a ground contact detector (an on-off mechanical
switch in the fore foot) is tested. By measuring the duration of a swing phase (i.e.
the duration of the leg in the air), the stability of locomotion can be estimated. In
Figure 7-7, the duration of the swing phase during 10 seconds of experiment are
plotted with respect to the phase parameter φ. This figure shows that the stability
of the locomotion can be identified by measuring the duration. For instance, with
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Figure 7-7: Body dynamics during the locomotion experiment measured by a contact
detector.(a) distribution of the flight phase durations against the phase parameter,
and (b) its standard deviation.

the phase parameter around 1.0 radian, the duration is constant at approximately
0.1 second, which indicates that the locomotion behavior is periodic. By contrast,
the locomotion with values φ between -1.5 to 0.5 shows a large variance, which can
be interpreted that the locomotion is rather chaotic. The stability of locomotion is
more clearly shown by calculating the standard deviation (SD) (Figure 7-7(b)), in
which the lower the value of SD, the more stable locomotion. Note that the plots of
SD = 0.0 indicate that the robot could not successfully finish 10-second locomotion
experiment, but it fell over.

In a similar way, we have conducted the simulation experiments by changing both
parameters of frequency and phase. Figure 7-8(a-0) shows the distribution of SD. In
the rest of this paper, we call this two-dimensional diagram “behavior landscape”.

Now we introduce another sensory channel which measures the average forward
speed of locomotion. (We assume that the robot has a vision sensor which measures
the optic flow, for example.) The average forward speed also contains temporal
information which indicates the characteristics of locomotion behavior. For example,
the average forward speed is generally faster when the locomotion behavior is periodic.
Figure 7-8(b-0) shows the behavior landscape in terms of the average forward speed.
The average forward speed is obtained in the same 10-second locomotion experiments
in which SD was measured.

It is important to mention that there is a certain “structure” in these behavior
landscapes. To show them clearly, we applied some threshold values. With these
thresholds, we re-draw the behavior landscape with the white and black patches,
which indicate the values of +1.0 and -1.0, respectively, as shown the Figure 7-8(a-
1-3 and b-1-3). For example, the figure (a-1) has a white region at the right side of
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Figure 7-8: Behavior landscape obtained by a ground contact detector (a-0), and
the visual velocity detector (b-0). This landscape is then segmented by threshold in
(a-1-3) and (b-1-3).

the figure, which indicates the “periodic” locomotion; the figure (a-2) shows a large
white region in the right half which corresponds to “relatively stable” locomotion;
and the figure (a-3) shows the regions of“unstable” locomotion. In a similar way, the
figure (b-1) shows the regions of “fast” locomotion; (b-2) “relatively fast”. Note that
all these physically meaningful terms of stability and velocity (the words with double
quotations) are from observer’s perspective, and the robot itself does not “know”
what these values mean. However, these physically meaningful states can potentially
be discretely identifiable owing to the landscape structures originated in the body
dynamics.

7.5 Sensing Physical Properties

This section explores how the measurement of body dynamics can be used for sensing.
Two case studies will be introduced by using the above-mentioned simulation, in
which two physical parameters were changed. In the first series of experiments, we
set the body mass of the robot with three different values, and then analyze how
the robot could be discriminate these differences through two sensory channels. In
the second experiment, the coefficient of friction is examined also with three different
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Figure 7-9: The different dynamics ob-
served by the contact detector with re-
spect to the different body mass of (a)
0.5, (b) 1.0 and (c)1.5 kg. The land-
scape is then segmented by threshold in
(a,b,c-1).

Figure 7-10: The different dynamics ob-
served by the speed detector with re-
spect to the different body mass of (a)
0.5, (b) 1.0 and (c)1.5 kg. The land-
scape is then segmented by threshold in
(a,b,c-1).

values.

7.5.1 Effect of Body Mass

We conducted the three simulation experiments in the same way as described in
the previous section, but with three different body mass of 0.5, 1.0 and 1.5 kg by
increasing the weight of the spinal segment. And again, the stability of the behavior
is analyzed with respect to SD and average forward speed by varying the motor
control parameters. The result obtained by the contact detector is shown in Figure
7-9 and the one by the speed measurement is shown in Figure 7-10. As shown in
Figure 7-9, the rough structures of the figures (a,b,c-0) are somewhat similar; the
area of “unstable” locomotion is in the upper left corners; the area of “periodic”
locomotion is at the upper right regions. To show it more clearly, we again applied a
threshold value as shown in Figure 7-9(a,b,c-1). (A value of threshold is heuristically
determined.) By setting a threshold, we could see that the stable region moves toward
higher frequency as the body mass increases. The average forward speed shows an
even clearer tendency; with the light body mass, there are two peaks in the landscape,
i.e. the regions at the lower middle and at the upper right, whereas the region of lower
middle disappears as the body mass increases.
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Figure 7-11: The different dynamics ob-
served by the contact detector with re-
spect to the different ground friction of
(a) 0.5, (b) 0.65 and (c)0.8. The land-
scape is then segmented by threshold in
(a,b,c-1).

Figure 7-12: The different dynamics ob-
served by the speed detector with re-
spect to the different ground friction of
(a) 0.5, (b) 0.65 and (c)0.8. The land-
scape is then segmented by threshold in
(a,b,c-1).

An important implication from these experiments is that the difference of the
body mass can be identified by using two different sensory channels of the contact
detector and the vision sensor. This is because the physical differences are reflected
in the dynamic behavior of the body, and the foot contact and the forward speed
are physically related to the body mass. As more concrete example, with the light
body weight, the periodic running behavior is observed by the sensors at the range
of middle motor frequency, whereas the sensors indicate more unstable locomotion as
the weight increases.

7.5.2 Effect of Ground Friction

The next case study focuses on the difference in the environment, rather than the
body of the robot itself. By following the same procedure as the previous experiments,
we now examine the behavior landscape with three different friction coefficients in the
ground interaction model, 0.5, 0.65, and 0.8. (The body mass is set to 0.5kg.) The
distribution of SD is shown in Figure 7-11 and the average forward speed in Figure
7-12.

From the distribution of SD shown in Figure 7-11, the difference in the ground
friction can be clearly identified between (a-1) and (c-1); the middle region at low
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frequency disappears as the friction coefficient increases. For the average forward
speed, on the other hand, there is a large white region at the upper right with the
high ground friction (Figure 7-12(c-1)).

This experimental result again shows that both contact detector and visual sensor
are able to display the difference in the ground friction. For example, when the ground
friction is changed from low to high, the periodic running behavior is no longer possible
at the low frequency motor control, which can be detected by a contact detector and
a vision sensor.

7.6 Discussion

The experimental results presented in this paper demonstrated potential importance
of body dynamics for sensing. This section speculates the implications of the exper-
imental results with respect to the task of object recognition and category learning,
which are two fundamental functions for adaptive autonomous systems.

Recognition through body dynamics
From the experimental results shown in this paper, it is shown that the stability
of dynamic system-environment interaction can be exploited for the recognition of
physical properties in the environment. For example, because the locomotion model
has a preferred control parameters in a specific environmental condition, a distinctive
behavior pattern is induced in a different environmental condition even with the
same control parameters. The substantial change of behavior is then reflected in the
sensory channels with discretely identifiable states (i.e. the white regions in Figure
7-11 and 7-12). One of the benefits gained from this approach is that recognition
process of the environment can be very simplified; A simple thresholding is sufficient
to discriminate the environmental properties. In other words, the interaction derived
from body dynamics can “structure” the sensory information for the recognition of
the environment.

Another significant benefit of this approach is that the body dynamics plays a
role of “interpreter” of physical properties for the sensory system. As shown in this
paper, for example, the body mass and the ground friction can be estimated by using
a visual sensor, an on-off contact detector, an inertia sensor, a joint angle sensor and
a motor torque sensor. The underlying mechanism of this unique characteristic is
that, because the environmental properties are reflected in the behavior patterns of
the body, the properties can be estimated through the behavior of each component
contributing to the whole body dynamics. As a result, many sensory channels can
potentially be used for estimating these properties.

Toward category learning
The feature of multi-modal sensing is particularly important for situated systems, i.e.
the systems that acquire the information about the environment through their own
sensory systems. For a situated system, the sensory information acquired through
one sensory channel is not very meaningful. Generally in the conventional robotic
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systems, sensory information is interpreted by a human designer and implemented
in a control program. For a system which grows through the interaction with the
environment, however, grounding is a fundamental issue as pointed out by the so-
called “symbol grounding problem” [102, 37, 127]. For the symbol grounding problem,
sensory information becomes more “meaningful” by correlating multi-modal sensory
information. Because information from each sensory channel is generated by a certain
physical interaction, the robot is able to learn the relation between different physical
interactions by correlating the respective information. For example, the body mass
can actually be measured by a single sensory channel, a simple pressure sensor on
the foot. The information extracted from this sensory channel, however, becomes
more meaningful if it is combined with information from other sensory channels, e.g.
locomotion speed, the force exerted on the leg joints, energy consumption, and motor
signals. The robot might be able to “understand” the meaning of the slope angle or
of high friction, by correlating sensory patterns from different channels.

From the experimental results of multi-modal sensory information, we could ob-
tain an additional implication in terms of control strategy and category learning. As
demonstrated in the experimental results in section 3, no significant differences can
be acquired in the sensory information for categorization when the behavior is ac-
tively stabilized by tuning the control parameters. However, as shown in Figure 7-11
and 7-12, because the system requires the different control parameters in a different
environment for the stable locomotion process, the motor control parameters in isola-
tion can be used for the identification of the environment. This might be the reason
that efferent copy plays an important role for the task of categorization in biological
systems.

7.7 Summary

This paper presents a few case studies demonstrating the conceptual strategy to
exploit body dynamics for sensing. By exploring a dynamic locomotion model of
a four-legged robot in simulation and the real world, a number of benefits of this
approach are explained in concrete terms. In particular, it is shown that, by exploit-
ing the system-environment interaction derived from body dynamics, a few physical
properties can be reflected in the sensory information with a set of discretely iden-
tifiable states over multi-modal sensory space. Although we still have to elaborate
what are the “good” body dynamics for sensing, the experimental results are highly
encouraging toward our further understanding of the relation between morphological
properties, body dynamics, control and sensing particularly for object recognition
and category learning of embodied autonomous systems.
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Chapter 8

Final Discussion

In this thesis, we have discussed conceptual principles of cheap design, behavioral
diversity, and cognitive processes through experimental studies, using several real-
world robots. Although these principles provide significant insights, they need to be
elaborated further with a number of additional case studies. This chapter summarizes
the results and contributions of this thesis and speculates about broader perspectives.

8.1 Summary of Results

In Chapter 2, based on the biological knowledge of visual navigation in flying insects,
we investigated a computational model of Elementary Motion Detectors (EMDs) and
its response to the movement of a robotic platform. The EMD model was then imple-
mented in a control architecture for course stabilization and visual odometry, which
are the mechanisms required for goal-directed visual navigation. This control archi-
tecture was tested in a two-dimensional simulation environment in order to analyze
the feasibility of the navigation model. Sensory morphology and the number of EMD
modules were identified to be important parameters to achieve visual navigation in
an environment with noise.

In Chapter 3, the control architecture investigated in Chapter 2 was augmented
for three-dimensional goal-directed navigation by integrating a reflex which compen-
sates for the vertical movement. An untethered flying robot was used to investigate
the control architecture in an unstructured environment. It was shown that three-
dimensional goal-directed navigation is possible by using the course stabilization and
odometry mechanisms, but the odometry performance was somewhat dependent on
the route that the robot traveled. This dependency of the odometry response to the
route, however, can be corrected through a learning process, if the sensory morphology
is properly taken into account.

Chapter 4 introduced the behavioral diversity of a locomotion robot, Stumpy,
which is driven by an inverted pendulum. Even though the robot has only two ac-
tuated joints, it is able to exhibit a rich variety of locomotion behaviors with several
different gaits and locomotion directions. It was shown how the morphological prop-
erties, such as body dimension, weight distribution, and intrinsic stability achieved
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by the wide elastic feet, can be exploited for the purpose of locomotion.
The behavioral diversity of Stumpy was explored further in Chapter 5. We have

observed several different kinds of behaviors including different locomotion gaits and
directions by using a single actuated joint. The influence of ground friction was
also investigated, and it was shown that the behavioral diversity of the robot relies
significantly on the intrinsic stability in different kinds of behaviors and environments.

In Chapter 6, another type of locomotion system of a four-legged robot, Puppy,
was investigated. Although this robot has a more complicated design of the body
(which contains 8 actuated and 4 passive elastic joints), rapid legged locomotion
was demonstrated without the need of sensory feedback, owing to the intrinsic self-
stabilizing character. In addition, the use of the self-stabilization mechanism leads to
the computationally simplest control of forward velocity.

And finally in Chapter 7, the influence of dynamic locomotion behavior on cogni-
tive processes was explored by using a four-legged robot simulation. Because dynamic
locomotion is relying considerably on body design and environmental constraints,
body mass and ground friction were recognized through dynamic locomotion behav-
ior by using a number of different sensory channels including an on-off touch sensor
and a visual motion detector. It was shown that the physical properties of body
and environment were reflected on the sensory information though the dynamic lo-
comotion behavior. Further speculation suggests that such a “structured” sensory
information can simplify the tasks of cognitive processes such as object recognition,
symbol grounding, and category learning.

8.2 Evaluation and Perspectives

Although we have discussed the conceptual design principles (i.e. body dynamics,
sensory systems, and adaptive control) in Chapter 1, the exploration is still in a
premature stage, and therefore needs to be elaborated with many more case studies.
In fact, we still do not know how to design and construct “good bodies” for dynamic
behavior. For example, Stumpy and Puppy have been designed and constructed with
much know-how developed through a number of cycles of trial and error, which remain
to be formulated further in dynamics, control engineering and information theoretic
terms.

The direct contribution of this is two-fold: On the one hand, the conceptual design
principles are explained with a set of concrete experimental work, and on the other,
the experimental studies suggest a few potential real-world applications. Because the
latter contribution is rather self-explanatory from the technical details outlined in the
previous chapters, here we evaluate how the conceptual design principles are related
to further issues in the fields of robotics, artificial intelligence, biology, psychology,
and neuroscience.

In summary, these further issues can be categorized into the following three di-
rections of research. Firstly, we have shown that the synthetic methodology (i.e.
understanding by building robots) is a powerful explanatory tool, with which we
can model the mechanisms of interest and test them in the real world for a system-
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atic exploration. Especially for biological sciences such as ethology, neuroscience,
and biomechanics, it is often difficult to estimate how much biological systems rely
on “cheap” mechanisms to achieve adaptive behavior. For example, as discussed in
Chapter 1, Behavior Types I and II are particularly difficult to investigate without
synthetic studies. Obviously, the cheap mechanisms introduced in the case studies do
not explain the entire range of adaptive behavior of complex biological systems, but
they provide significant insights which are usually difficult to identify in the investiga-
tion of living organisms (refer to section 8.3, for example). Secondly, the case studies
explored in this thesis provide additional evidence that the adaptive behavior cannot
be fully understood only by investigating the “body” and the “mind” independently.
Especially, we have demonstrated that “high-level” cognitive processes can emerge
from the “low-level” specifications such as morphology, material properties, and the
environment dependency of control (see section 8.4.). And thirdly, the case studies
of cheap design and behavioral diversity provide a number of implications for the
progress of further challenging topics such as an incremental design strategy. By un-
derstanding the underlying “cheap” mechanisms for adaptive behaviors, we are able
to obtain additional insights into the evolutionary and ontogenetic developmental
processes (see section 8.5).

In the following sections, we will speculate about these issues further based on the
achievements laid out in this thesis.

8.3 Body Dynamics in Nature

As explained in Chapter 1, one of the major contributions of this thesis is to demon-
strate the behavioral diversity by using Behavior Types II and III. Some of the future
work includes how the design principles of body dynamics can be applied for our
further understanding of adaptive behaviors in nature.

8.3.1 Cheap Design for Speed and Precision

Since the foundation of behavior-based robotics, one of the main interests in the
field of adaptive behavior study has been speed. It has been explored how quickly
robots can achieve complicated adaptive behavior (e.g. [42]). The robots presented in
this thesis also exhibit rapid behaviors, as shown in dynamic locomotion of Stumpy
and Puppy. The navigation mechanism investigated in the case study of the flying
robot could potentially be applied also for fast movement, although the behavior of
this robot is relatively slow due to its small motors. In general, cheap design makes
rapid behavior possible because the systems require less control by exploiting the
constraints derived from morphological properties and the ecological niche. However,
an open question is how the systems can achieve speed and precision? As in nature,
some of the biological systems are able to catch a tiny moving fly; juggle 5 balls with
two hands; hit a small ball traveling at 150km/h. The case studies in this thesis
suggest a few potentially important implications for this open problem.
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A self-stabilization mechanism exploiting the morphological properties is a fasci-
nating issue for achieving both speed and precision of behaviors. For example, even
though we employed open-loop control without sensory feedback, the dog robot Puppy
achieved a stable running behavior by exploiting morphological properties. For stable
legged locomotion, the interaction of the four legs with the ground has to be precise,
as an imprecise touch-down angle of one of the legs, for example, could cause a fatal
instability and the robot could fall over. Compared to conventional legged robots
which generally make use of precise sensing of, for example, body attitude and leg
angles, Puppy has no sensor and relies on the self-stabilization mechanism derived
from the compliant legs as explained in Chapter 6. Designers of robotic systems often
make a significant effort to implement powerful actuators in order to mimic animals’
rapid and precise behaviors and their extremely high muscle performance. However,
it has been known that the material properties are often exploited to generate some
of the rapid and precise behaviors even in biological systems (for examples of arm
movement, see [124, 28], and for leg movement, see [2, 74, 40]).

Despite the importance of morphological self-stabilization mechanisms, an addi-
tional improvement could be made by utilizing control. So far, it is only partially
understood how to apply sensory feedback while exploiting body dynamics. In other
words, the question is how the various Behavior Types can be integrated into a system,
as investigated in the hand-eye coordination behavior of human (e.g. [124, 117]). It
is interesting to explore this line of research in relation to the mechanisms of learning
and body schema, since the physical body properties are required for feedforward con-
trol. Another approach is the use of informational dynamics which is intrinsic to some
of the neural structures, such as central pattern generator models (e.g. [114, 63, 59]).
Because of the self-organizing character of these models (such as the entrainment
phenomenon), the sensory information could be “loosely” processed without losing
the characteristics of exploiting body dynamics as discussed in Chapter 1. A question
that arises from this argument seems to be how the balance between body dynamics
and informational dynamics would be achieved as discussed in [62].

8.3.2 Body Dynamics of Artificial and Biological Systems

In this thesis, we have focused on how adaptive behaviors can emerge from the interac-
tion between morphology, control, and environment by using the synthetic methodol-
ogy. This approach also contributes considerably to understanding animals’ behavior
as shown in the navigation of bees (Chapter 2 and 3, see also [122]). From the case
studies shown in this thesis, one of the issues that needs to be discussed is in which
level we should abstract animals’ adaptive behaviors. For example, all of the legged
robots can be biologically plausible in a sense.

In contrast to the conventional two-legged robots, a distinctive approach is shown
in Figure 8-1, which demonstrates one of the mechanisms from a recent comparative
study of bipedal locomotion in a human and a robot [58]. Although the passive
dynamic walking provided a significant impact on the mechanism of walking behavior,
it could not explain the complicated behavior of the knee joint, which generally has
three-peak cycles of angular movement. This is important for three purposes: At
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Figure 8-1: (a) Schematics of the robot design, (b) Photograph of the robot with
the supporting rotational bar, (c) Knee and ankle angular trajectories and ground
reaction force of human locomotion, and (d) Those from the robot experiment.

the beginning of the stance phase (the left region in the figure), the angle of the
knee joint goes down (flex) to avoid impact, then it goes up (extend) to support the
body. Finally it decreases (flex) again to achieve ground clearance during the swing
phase. Because the passive dynamic walking does not explain this leg operation
during walking behavior, it is still believed that a lot of control is involved in the
walking behavior of humans. However, the newly developed model which consists of
passive knees and ankle joints and an elastic tendon system show that, by exploiting
the interaction between the actuated joint, passive joints and the ground reaction
force, we found it possible to achieve a biologically plausible walking behavior with
Behavior Type II. An implication from this example is that the knee movement can
be generated by the intrinsic body dynamics derived from the specific morphological
properties.

As shown in this case study, one of the notable implications of this thesis is the
fact that a different level of abstraction in adaptive behaviors in nature (i.e. body
dynamics) is introduced. Throughout this thesis, by considering Behavior Type II
and III, we have been able to develop and test a set of novel models that have not
been explored for the comprehensive understanding of adaptive behaviors in nature so
far. The investigation at the abstraction level of body dynamics will lead to further
investigations of prosthetic applications and the “mutual adaptation” of biological
and artificial systems [125].

8.4 From Locomotion to Cognition

Inspired by long-distance navigation of bees, the flying robot experiments demon-
strated that a form of memory can actually be very simple for the purpose of navi-
gation: The optical flow can be used for the measurement of traveling distance and
course stabilization, with which the flying robot is able to learn how to reach the tar-
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get locations smoothly. One of the implications from this case study suggests that the
cognitive processes such as the structure of memory, cannot be viewed in isolation,
but it is important to consider the cognitive processes in relation to the behavior and
the active interaction with the environment.

Another case study, shown in Chapter 7, demonstrated how behaviors and the in-
teractions with the environment can be related to the problem of “symbol grounding”.
This case study illustrated how the symbols could be grounded through a dynamic
interaction with the environment. In particular, the intrinsic body dynamics is an in-
teresting property for constructing discrete sensory states. Moreover, it is important
to note that these sensory states are physically grounded by exploiting the discrete
behavior patterns such as locomotion gaits of the legged system.

There are, at least, three potential research directions. Firstly, it is important to
consider scalability of the principle of body dynamics for sensing. In Chapter 7, we
investigated how movement of the whole body can be influenced by the physical prop-
erties in the environment. The concept of body dynamics for sensing is, however, also
applicable locally. For example, whiskers of rodents and skin of human fingers have
intrinsic dynamics optimized for sensing, and these topics have been investigated in
robotic platforms (e.g. [43, 68]). It is highly interesting to explore how local and global
body dynamics can explain the higher levels of complexity in cognitive processes. Sec-
ondly, the relation between body dynamics and sensory-motor coordination has to
be considered in terms of informational structures. As discussed in Chapter 7, infor-
mational structures in sensory input can be generated through dynamic interactions
with the environment, while it has also been previously shown that sensory infor-
mation can be structured through sensory-motor coordination [101, 83, 71]. It is an
important issue how these two mechanisms are related to each other, and how the
quality and complexity of informational structures can be enhanced by using both
mechanisms. And thirdly, processing of structured sensory information has to be
explored further. Particularly, as discussed in Chapter 1, it is still an open question
how the multi-modal sensory information generated through body dynamics can be
correlated to generate “meaningful” discrete states.

8.5 Embodied Incremental Development

We have built a number of robots during this thesis project (Figures 8-3, 8-4, 8-5,
8-6). Some of them function, others do not. Yet every one of them was a necessary
step to develop the concepts and ideas described in this thesis. In other words, the
robots that we are interested in are by no means complete at the beginning, but
have to be built on the basis of previous developments. Interestingly, through the
development of all these robots, similar kinds of technology result in diversification
and optimization: On the one hand we have many different species such as flying,
running, brachiating, and swimming robots, on the other hand, we have the step-
by-step optimization as shown in the series of flying robots, Stumpy, and the dog
robots. This was actually one form of evolutionary process. Owing to this series of
developmental processes, there are a number of implications that provide additional
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Figure 8-2: From simulation to the real world. Although the overall behavior looks
similar in simulation and the real world, the control architectures of these two systems
are very much different due to the simplified model of physics in simulation (e.g. the
bar does not bend, and there is no friction at the passive joint)[32].

insights into the mechanisms of the incremental developmental strategy, which is
potentially important for understanding the origin of adaptive behavior as discussed
in Chapter 1.

8.5.1 Simulation and the Real World

A question often addressed in this line of research is why we do not use simulation to
design and develop such complicated robots, instead of the “hands-on evolution”. Al-
though we have tried simulation-based rapid prototyping (see Figure 8-2 and [32]), we
found that there are a few fundamental reasons why we often cannot use a computer
simulation.

One of the most significant questions of adaptive behavior in biological systems
is how animals adapt to new kinds of environments and, as a result, extend their
ecological niche by means of evolutionary and developmental processes. However, the
physical interaction models in computer simulation are always restricted to explore
such adaptation phenomena due to the boundary conditions and the approximation
of the models. For example, typically the models of friction, material properties, and
fluid dynamics can be only applicable within a certain range.

Secondly, in order to explore the adaptation mechanisms, the systems of interest
have to be investigated in an environment with a certain degree of complexity. For
example, the learning of long-distance visual navigation of bees cannot be studied
in a extremely simple environment, because no visual motion can be detected. It
is quite often more complicated to program a certain degree of complexity into the
environment than building a real-world robot. Therefore, it is important to use the
world as its own model, rather than attempt to create a model of the world for the
“embodied incremental development”.
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8.5.2 Design Principles for Incremental Development

Nature often makes use of similar components, and as a result, bodies are composed
of repetitive structure. For example, most animal bodies contain repetitive structures
of skeleton, muscles, sensory systems, cells and tissues. As another example, many
design modules employ very similar mechanisms throughout different species. One
of the fundamental questions in the study of incremental development of adaptive
systems is the underlying mechanisms of evolutionary and ontogenetic developmental
processes [29, 86, 72, 25]. In particular, what are the mechanisms that generates
a form of modular and hierarchical structure that leads to adaptive functions and
behaviors? Some of the mechanisms have been explained, for example, in the context
of genetic regulatory networks e.g. [8, 5], and in the concept of “freezing and freeing”
joint movement in a complex musculoskeletal system e.g. [6, 69].

A series of robots that were developed during this project contain such repetitive
structures: For example, the visual system of flying robots comprises of a number
of motion detector modules; most of the locomotion robots use similar actuation
modules, for example. From this perspective, there are a few important principles for
the evolutionary and developmental design strategies that we could learn from the
case studies presented in this thesis. Here we discuss three conceptual implications.

Firstly, a modular structure is intrinsically robust against unstructured environ-
ment due to its redundancy. In Chapter 3, for example, the flying robot uses thou-
sands of the same motion detector modules running in parallel. Although the exper-
iment was conducted in some unstructured environments, and some of the motion
detectors could not measure the proper optical flow, there were many more that
worked properly. On average, therefore, it functions in a relatively robust manner.
More generally, redundancy derived from a modular structure can increase robust-
ness of the desired functions. It is important to note that, although a single module
is sufficient to perform one kind of behavior, the redundancy results in behavioral
diversity, which leads to the second implication.

Namely, because of their morphological properties, the sensors can often play
more than one role. For example, the flying robot uses the same kind of elementary
motion detector modules for detecting rotational, horizontal, and vertical movement
depending on its sensory morphology. From the viewpoint of incremental develop-
ment, therefore, redundant structures provide a possibility to emerge the behavioral
diversity. Even if the modules are the same, they provide different functions because
of the physical constraints such as morphology.

And thirdly, repetitive structure are important to preserve the previously devel-
oped ecological balance. A developmental process can change (remove, add or modify)
only some parts of the system, and it should avoid large changes as well as starting up
a completely new mechanism from scratch. In other words, a completely new device
or mechanism should not be added suddenly because it might destroy the balance,
or interdependencies, of the entire system. Quite often this aspect of the natural de-
velopmental process is ignored when building artificial systems. As another example,
the system should be able to preserve previously developed “behaviors”, i.e. body
dynamics and a type of system-environment interaction. For example, as discussed
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in chapter 6, rapid legged locomotion is relying on the intrinsic body dynamics, which
is determined by body weight distribution, motor torque, body dimensions, and en-
vironmental factors. If a heavy device in a part were added all at once, or if the
actuators were substantially changed, the resonance frequency of the whole body
would be varied, and the rapid locomotion might no longer be possible.

Although the implications explained here suggest only a few potential underlying
mechanisms, further exploration of cheap design and behavioral diversity will provide
clues to understand the hierarchical structures and the modularity for incremental
developmental processes.

8.6 Conclusion

The concept of cheap design provided a significant paradigm shift for designing and
understanding artificial systems. Compared to the conventional design methodology,
the most salient feature of cheap design is that behaviors and functions of the systems
are dependent on the physical properties derived from the body and the environment.
Although it is generally more complicated to develop systems by following the prin-
ciple of cheap design, it is the fundamental issue for a comprehensive understanding
of adaptive behavior and cognitive processes. By using the synthetic methodology,
this thesis explored two types of behaviors (i.e. Behavior Type II and III), which
provided a set of in-depth implications for our understanding of behavioral diversity
and cognitive processes in autonomous adaptive systems. Through the case studies
presented in this thesis, the following conceptual principles have been demonstrated.

Body dynamics Because behavior is a result of system-environment interactions, it
cannot be viewed in the framework of control and symbol processing only, but the
morphological properties are essential. We have explored how body dynamics is re-
lated to behavioral diversity in terms of multiple attractor states and self-stabilization
mechanisms.

Body dynamics for sensing Because the behavior of an embodied system is de-
pendent on system-environment interactions, physical properties of the environment
can be estimated by sensing the behavior of the system. By following this approach,
the system is able to acquire (a) multi-modal sensory information through body dy-
namics and (b) discrete structures in a continuous sensory state.

Control for behavioral diversity By exploiting sensory-motor coordination, sen-
sor morphology, and spatio-temporal patterns of sensory information, a system is able
to achieve stable behavior processes and rich behavioral diversity. When the design
of a system takes these points into account, a form of goal-directed behavior can be
achieved by simple control.

The hands-on evolution over 30 individual robots made it possible to develop the
conceptual studies of adaptive systems presented in this thesis. A unique aspect
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of building robots is that we could provide concrete case studies of modeling, test-
ing, and applications. This methodology also helps to communicate among various
scientific disciplines such as biology, psychology, neuroscience, artificial intelligence,
robotics, and other engineering sciences. Although we are still at the beginning of
our exploration, investigations using real-world robots are highly expected to provide
additional insights into complex organisms in nature.

98



Figure 8-3: Flying robots: Melissa I, Melissa II, and 10 flying robots built for the
Science Fair at the Zurich Main Station (From left to right).

Figure 8-4: Stumpy robots: Stumpy I, Stumpy II, Stumpy III, Stumpy IV, and Mini-
Stumpy.
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Figure 8-5: Dog robots: Geoff, AILab-scout, Puppy, Mini-Dog I, Mini-Dog II, Mini-
Dog6M, Mini-Dog1M, and Mini-DogExpo.

Figure 8-6: Other robots: StumpDog, Monop0, Monop1, Biped, Dumbo, Monkey,
and The Fish Robot called Wanda.
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