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Sensing through body dynamics
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Abstract

It has been shown that sensory morphology and sensory–motor coordination enhance the capabilities of sensing in robotic systems. The tasks
of categorization and category learning, for example, can be significantly simplified by exploiting the morphological constraints, sensory–motor
couplings and the interaction with the environment. This paper argues that, in the context of sensory–motor control, it is essential to consider body
dynamics derived from morphological properties and the interaction with the environment in order to gain additional insight into the underlying
mechanisms of sensory–motor coordination, and more generally the nature of perception. A locomotion model of a four-legged robot is used for
the case studies in both simulation and real world. The locomotion model demonstrates how attractor states derived from body dynamics influence
the sensory information, which can then be used for the recognition of stable behavioral patterns and of physical properties in the environment.
A comprehensive analysis of behavior and sensory information leads to a deeper understanding of the underlying mechanisms by which body
dynamics can be exploited for category learning of autonomous robotic systems.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

While design principles of traditional robotic systems as-
sume rigid body materials and high-gain control, there has been
an increasing interest in broader ranges of material properties
and adaptive control. In particular, the use of passive dynamics
for behavior control has provided a significant conceptual im-
pact. One of the most fundamental aspects of passive dynamics,
or more generally body dynamics, lies in the fact that behaviors
and functions should be viewed as a result of the interplay be-
tween morphological properties, control and environment. The
studies of passive dynamic walkers and rapid legged locomo-
tion have nicely demonstrated how morphological properties
are related to the behavior of the system. When a system ex-
ploits morphological properties (e.g. shape, stiffness, friction,
weight distribution), it is possible to simplify the control archi-
tecture and to achieve energy-efficient behavior. Even without
any actuation, for example, passive dynamic walkers are able
to walk down a slope in a very natural way [1,2], and they re-
quire extremely small amounts of energy for walking even on
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level ground [3,4]. For energy-efficient rapid locomotion, in ad-
dition, the use of elastic materials has been successfully applied
in the legged robots [5–7].

A common characteristic of these robots is that their
behaviors are intrinsically dependent on the physical properties
of the environment. For example, passive dynamic walkers can
function only in very limited environmental conditions, i.e. a
slope with a specific angle and a limited range of ground
friction. If the angle of the slope is varied slightly, the passive
dynamic walker is no longer functional and falls over. In order
to deal with complex passive dynamics in the real world, it can
be concluded that the control system has to be adaptive and
dynamic [8–11].

Dynamic system–environment interactions are important
not only for energy-efficient adaptive behavior but also
for sensing. When sensor morphology and sensor–motor
coupling are exploited, a system is able to obtain “structured”
sensory information about the physical properties of the
environment [15]. The concept of sensory–motor coordination
is, in essence, that the constraints of robotic systems derived
from sensory morphology and mobility can be exploited
for simplifying the processes of object recognition [14] and
category learning [16,17] as well as controlling behaviors in
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general. Although these studies of sensory–motor coordination
in robotics implicitly assumed rigid body structures and high-
gain control, some of the biological models in neuroscience
take body dynamics into account. In particular, the so-called
“forward models” are of particular interest because they imply
the fact that animals actually deal with body dynamics in
their sensory–motor control: these models explain the fact that,
rather than directly connecting sensors and motors, biological
systems use the learning functions for complex motor control
of body dynamics (for reviews, see [12,13]). In robotics, the
use of body dynamics for sensing has not been explicitly
explored so far. For example, by using robots with elastic
fingers, feet, or whiskers (made of different kinds of material),
it was shown that dynamic properties of morphology and
materials significantly influence the identification processes of
the environments [18–20].

This paper explores design principles of the whole body
dynamics for the purpose of sensing. By analyzing the
interaction between passive dynamics, motor control, and the
environment, we investigate the roles of the body dynamics
in the generation of information structures in the sensory
input. First, we describe a four-legged robot model tested
in both simulation and the real world. The case studies
show how attractor states of the robot’s locomotion behavior
generated by the intrinsic stability are related to the information
structures in the sensory stimulation. Secondly, we show how
these structures in the sensory information can simplify the
identification of stable behavioral patterns, and the recognition
of physical properties in the environment. The analysis of low-
level motor control and sensory information also provides an
additional insight into the underlying mechanisms by which
body dynamics can be exploited for category learning of
adaptive autonomous robots.

2. Body dynamics of a quadruped robot

The use of elastic muscle–tendon systems during rapid
locomotion has been investigated in biomechanics, which
leads to the theoretical model of legged animals, the so-
called “spring–mass model” [24–28]. In this model, it was
hypothesized that an animal’s leg could be approximated
by a spring-loaded inverted pendulum. The studies of the
spring–mass locomotion models have shown that, with a proper
implementation of the self-stabilization mechanisms, many
aspects of rapid legged locomotion can be passive or they
require extremely simple control (e.g. [29,30]). In this section,
we introduce how stable locomotion behavior can be achieved
by a minimalistic control architecture in a four-legged robotic
platform [21,22].

2.1. Morphological design

The design of the robot is inspired by the spring–mass model
studied in biomechanics. As shown in Fig. 1, the robot has
four identical legs, each of which consists of one standard
servomotor (KOPROPO PDS947FET) and a series of two
segments connected through a passive elastic joint. We used
Fig. 1. Four-legged robot used in the experiments: (a) a photograph and (b) a
schematic. The circles denote passive joints and the circles with a cross inside
denote the joints controlled by the servomotors. The specifications of the robot
are shown in Table 1.

Table 1
Specification of the robot platform

Parameters Description Value

l0 Length of body 142 mm
l1 Length of upper leg limb 42 mm
l2 Length of lower leg limb 56 mm
l3 Spring attachment 15 mm
l4 Spring attachment 20 mm
s0 Spring constant 40 g/mm
m Mass of the robot 473 g

aluminum for the design of body frame and legs. The physical
dimensions of the robot body are 142 mm long, 85 mm wide
and approximately 75 mm high (refer to Table 1 for more
detailed specifications). The robot has four servomotors, a
micro-controller (Microchip PIC 16F877) and a small weight
to adjust the weight distribution of the body, which result in
a total weight of 473 g. The control signal for the motors and
the electricity are supplied externally through the cables. We
used the standard serial communication protocol to send the
positions of the servomotors from a PC to the micro-controller
that produces the modulated signals for the servomotors.

To gain a higher forward velocity, the robot requires higher
ground friction. For this reason we implemented a rubber
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surface at the ground contact in each leg. Although it is difficult
to quantitatively measure the ground friction during dynamic
interaction between legs and ground, a good estimate is the
coefficient of friction. The static and dynamic coefficients of
friction are approximately 0.73 and 0.55, respectively.

2.2. Motor control

In order to understand the intrinsic body dynamics derived
from the morphological properties, we apply a minimalistic
control strategy, in which no sensory feedback is used at the
level of global function. In the following experiments, the
motors are controlled by a simple oscillatory position control
as follows:

P f (t) = A f sin(ωt) + B f (1)

Ph(t) = Ah sin(ωt + φ) + Bh (2)

where P f and Ph indicate the target angular positions of the
fore (shoulder) and hind (hip) motors, respectively. A and B
designate the amplitudes and the set points of the oscillation,
and the frequency ω and the phase φ the phase delay between
the fore and hind legs. Control of the motors is symmetric in
terms of the sagittal plane, i.e. the control of two fore legs is the
same. The parameters used in the following experiments are
heuristically determined as follows: A f = Ah = 25 (degrees),
B f = 20 (degrees), and Bh = 10 (degrees). The control
parameters of frequency ω and phase φ will be used for the
parameter search.

2.3. Intrinsic stability

Although most of the compliant legged robots use sensory
information to achieve stable rapid locomotion (e.g. [30–32]),
this locomotion model does not: the controller does not need
to distinguish stance and swing phases of the legs, the body
attitude or leg angles with respect to the absolute ground
plane, but stable locomotion behavior can be achieved by
a self-stabilization mechanism exploiting the compliant legs
(Fig. 2, [21,22]). In the first set of experiment, we analyze the
stability of the locomotion method without sensory feedback.
Fig. 3 illustrates typical time-series state variables which
characterize the movement of the robot body during one leg
cycle. For this analysis, the locomotion behavior was recorded
by a high-speed camera (Basler A602fc, 100 fps), and two
tracking points of the robot body were extracted by a standard
visual tracking method, with which its movement can be
identified. As shown in this figure, all five state variables
(i.e. ẋ, y, ẏ, θ , and θ̇ ) go back to the states at the beginning
of the leg step cycle, which ensures the periodic gait pattern.

By searching through the control parameters, we observed
at least two qualitatively different gaits which are labeled “Gait
0” and “Gait 1”, as shown in Fig. 2. In Gait 0, the hopping
height is larger than in Gait 1, which results in the four legs
being clearly off the ground for some duration in a leg cycle.
Gait 1 generally exhibits larger forward velocity. The intrinsic
stability of the locomotion method can be demonstrated by
switching between the control parameters of these gaits. A
Fig. 2. Illustration of the behavior of the real and simulated robot. Time-series
photographs during (a) “Gait 0” (frequency = 3.2 Hz, phase = 0 rad) and
(b) “Gait 1” (frequency = 4 Hz, phase = 0.5 rad). The behavior of the robot
is visually registered while running on a treadmill. The interval between two
pictures is approximately 30 ms. (c) Behavior of simulation model.

typical response induced by the change of the gait is shown in
Fig. 4 (the control parameter of phase φ is varied at time t = 0).
Generally the stable gait patterns can recover within one or two
leg steps after the switching of the control parameters.

In general, there exist multiple stable gait patterns in this
framework of quadrupedal locomotion, and the number largely
depends on the ground friction. However, even during the
unstable locomotion, it does not fall over but maintains the
locomotion process.

2.4. Simulation model

In order to complete our comprehensive behavior analysis,
we have constructed a simulation model of the running
quadruped robot. The simulation was conducted in Mathworks
Matlab 7.01 together with the SimMechanics toolbox. We
developed this model to reflect the essential characteristics of
the real robot in a planar environment. It consists of 5 body
segments (a pair of two-segment legs and a body segment), two
linear springs, and two motors in shoulder and hip joints with
angular position feedback (for simulating the servomotors). We
made use of a ground friction model which is well studied
in biomechanics [23]. As a result, the simulated dynamic
locomotion is fairly comparable to the real one, as shown in
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Fig. 3. Time-series changes of the state variables during one leg step cycle, (a) horizontal, (c) vertical, (e) angular movement and their velocity (b), (d), (f).
Fig. 4. A typical recovery response from the change of the gait. (a) The time-
series of the vertical movement of the body is shown before and after changing
the frequency parameter at time = 0, and (b) its phase plane trajectory.
Fig. 2. The following experimental results are obtained by using
this simulation model.

3. Behavior and sensory information

Sensory information acquired during the locomotion process
is explored in this section. We conducted three simulation
experiments to characterize the relation between locomotion
behavior, control and the sensory information.

By tuning the control parameters, stable running behavior of
the simulated robot could be achieved, as shown in Fig. 5(a).
During this locomotion process, we registered the time-series
response of several different sensory channels, i.e. a pressure
sensor on the sole of hind leg, an angle sensor of the hind
passive joint, an inertia sensor in the body segment, and a motor
torque sensor in the hip joint. As shown in Fig. 6(a), all of
the sensory signals show a periodic response due to the stable
locomotion behavior.

In the second experiment, the coefficient of ground friction is
varied, which results in unstable locomotion behavior with the
same control parameters. Fig. 5(b) illustrates a typical unstable
behavior of the system: some periodic patterns are disappearing
after a few leg steps due to accumulation of small slippage
and undesired touch-down angles of the legs. Consequently,
the sensory response also shows unstable patterns (Fig. 6(b)):
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Fig. 5. Stick figures illustrating three different behaviors in simulation. The body postures are illustrated every 100 and 1000 simulation steps (gray and black stick
figures, respectively). Black dots represent the trajectories of the shoulder joint. (a) ω = 4.7 Hz, φ = 0.3 in the ground friction 0.9 (static) and 0.8 (dynamic). (b)
The same control parameters in the ground friction 0.7 (static) and 0.6 (dynamic). (c) In the same ground friction as (b) with the control parameters ω = 4.9 Hz,
φ = 0.4.
Fig. 6. Sensory information acquired during the behaviors shown in Fig. 5. From top figure to bottom: pressure sensor in the hind leg, angle of the hind passive
joint, acceleration of the body, and motor output torque of the hind leg. (See the text for more details.)
the ground reaction force and the motor torque in particular are
substantially different compared to Fig. 6(a).
In the third set of experiments, the control parameters
are adjusted for stable locomotion behavior in a different
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environment. Although this locomotion exhibits slightly slower
forward speed and larger hopping height, it is possible to
achieve comparable stability to that of the first experiment
(Fig. 5(c)). The sensory information also shows stable periodic
patterns very similar to the first ones (Fig. 6(c)).

There are two implications from these experimental results.
Firstly, the magnitude of the ground friction is reflected in four
sensory channels (i.e. foot pressure, joint angle, acceleration,
and motor torque sensors). This is possible because the
intrinsic stability of the locomotion process is achieved through
the body dynamics: the dynamic locomotion process results
from a number of different physical interactions, and the
different physical properties of the environment influence these
interactions. In this case study, for example, there are, at least,
the ground reaction force exerted at the feet, the force generated
in the elastic passive joints, the output torque of actuators, and
the momentum of the large masses in the body.

Secondly, the relation between control parameters and
sensory stimulation has to be considered further. Assuming
that a sensory–motor control maintains a stable locomotion
process, the sensory stimulation of the four sensory channels
in different environments would not be significantly different:
in the third experiment, because the control parameters are
adjusted for the different environment, the sensory patterns of
the first and the third experiments (Fig. 6(a) and (c)) are difficult
to distinguish. From this example, it can be concluded that the
sensory stimulation has to be considered in relation to body
dynamics and sensory–motor coordination. This point will be
discussed further in Section 6.

4. Sensing body dynamics

In the following experiments, we investigate the influence of
frequency ω and phase φ on the locomotion behavior. These
parameters significantly change the locomotion behavior; the
robot exhibits a stable rapid locomotion; it runs slowly or hops
in place; it exhibits unstable behavior; or it falls over.

This dynamic locomotion behavior can be identified in a
relatively simple manner by analyzing temporal patterns of the
sensory signals. We implemented two sensors in the simulation
model, i.e. a ground contact detector in the fore foot and a
speed detector at the body segment. First, a ground contact
detector (an on-off mechanical switch in the fore foot) is
tested. By measuring the duration of a swing phase (i.e. the
duration of the leg in the air), the stability of the locomotion
behavior can be estimated. In Fig. 7, the duration of the swing
phase during the 10 s of experiment is plotted against the
phase parameter φ. This figure shows that the stability of the
locomotion can be identified by measuring the duration. For
instance, with the phase parameter around 1.0 rad, the duration
is relatively constant at approximately 0.1 s, which indicates
that the locomotion behavior is periodic. By contrast, the
locomotion with values φ between −1.5 and 0.5 shows a large
variance, which can be interpreted as the locomotion being
rather unstable. The stability of locomotion is more clearly
shown by calculating the standard deviation (SD) (Fig. 7(b)):
the lower the value of SD, the more stable locomotion. Note
Fig. 7. Body dynamics during the locomotion experiment measured by a
contact detector. (a) Distribution of the flight phase durations against the phase
parameter, and (b) its standard deviation.

that the plots of SD = 0.0 indicate that the robot could not
successfully finish 10 s locomotion experiment, but it fell over
(e.g. −3 < φ < −1.8).

In a similar way, we have conducted simulation experiments
by changing both parameters of frequency and phase. Fig. 8(a-
0) shows the distribution of SD. From this figure, we could
see how periodic the sensory information is for each set of
control parameters. In the remainder of this paper, we call this
two-dimensional diagram the “behavior landscape”. The range
of the frequency parameter is set to 3–5 Hz, reflecting the
constraints from the hardware.

Now we introduce another sensory channel which measures
the average forward speed of locomotion. (We assume that the
robot has a vision sensor which measures the optic flow, for
example.) The average forward speed also contains temporal
information which indicates the characteristics of locomotion
behavior. For example, the average forward speed is generally
faster when the locomotion behavior is periodic. Fig. 8(b-0)
shows the behavior landscape in terms of the average forward
speed. The average forward speed is obtained in the same 10 s
locomotion experiments in which the SD of the swing phase
was measured.

It is important to mention that there is a certain “structure” in
these behavior landscapes. To make it more visible, we applied
some threshold values, and the behavior landscape is redrawn
with the white and black patches, as shown the Fig. 8(a-1-3)
and (b-1-3). For example, figure (a-1) has a white region at the
right side, which indicates “periodic” locomotion; figure (a-2)
shows a large white region in the right half which corresponds
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Fig. 8. Behavior landscapes from various sensors. (a-0) ground contact
detector, and (b-0) speed detector. This landscape is then segmented by various
thresholds (a-1-3) and (b-1-3). White and black patches denote the values above
and below the thresholds.

to “relatively stable” locomotion; and figure (a-3) shows the
regions of“unstable” locomotion. Similarly, figure (b-1) shows
the regions of “fast” locomotion; (b-2) “relatively fast”. Note
that all these physically meaningful terms of stability and
velocity (the words with double quotes) are from an observer’s
perspective, and the robot itself does not “know” what these
values mean. However, these physically meaningful states can
potentially be discretely identified due to the attractor landscape
that has its origin in the body dynamics.

5. Sensing physical properties

This section explores how the measurement of body
dynamics can be used for sensing. Two case studies will be
introduced, in which two physical parameters were changed. In
the first series of experiments, we set the body mass of the robot
at three different values, and then analyze how the robot could
discriminate these differences through two sensory channels. In
the second series of experiments, the coefficient of friction is
examined also with three different values.

5.1. Effect of body mass

We conducted the three simulation experiments in the same
way as described in the previous section, but with three different
body mass of 0.5, 1.0 and 1.5 kg by increasing the weight
of the body segment. And again, the stability of the behavior
is analyzed with respect to SD and average forward speed
by varying the motor control parameters. The result obtained
Fig. 9. The different dynamics measured by the contact detector for different
body masses: (a) 0.5, (b) 1.0 and (c) 1.5 kg. The landscape is then segmented
by threshold in (a,b,c-1).

Fig. 10. The different dynamics measured by the speed detector for different
body masses: (a) 0.5, (b) 1.0 and (c) 1.5 kg. The landscape is then segmented
by threshold in (a,b,c-1).

from the contact detector is shown in Fig. 9, and the one from
the speed detector in Fig. 10. As shown in Fig. 9, the rough
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Fig. 11. The different dynamics measured by the contact detector for different
ground friction: (a) 0.5, (b) 0.65 and (c) 0.8. The landscape is then segmented
by threshold in (a,b,c-1).

Fig. 12. The different dynamics measured by the speed detector for the
different ground friction: (a) 0.5, (b) 0.65 and (c) 0.8. The landscape is then
segmented by threshold in (a,b,c-1).

structures of the figures (a,b,c-0) are somewhat similar: the
area of “unstable” locomotion is in the upper left corners; the
area of “periodic” locomotion is at the upper right regions. To
show it more clearly, we again applied a threshold value as
shown in Fig. 9(a,b,c-1). (The value of the threshold has been
heuristically determined.) By setting a threshold, we could see
that the stable region moves toward higher frequency as the
body mass increases. The average forward speed shows an even
clearer tendency; with the light body mass, there are two peaks
in the landscape, i.e. the regions at the lower middle and at the
upper right, whereas the lower middle region disappears as the
body mass increases.

An important implication from these experiments is that
the difference of the body mass can be identified by using
two different sensory channels, i.e. the contact detector and
the vision sensor. This is because the physical differences are
reflected in the dynamic behavior of the body; as a consequence
the foot contact and the forward speed are physically related
to the body mass. For example, with the light body weight,
periodic running behavior can be inferred from the sensors
at the range of middle motor frequency, whereas the sensors
indicate more unstable locomotion as the weight increases.

5.2. Effect of ground friction

The next case study focuses on the difference in the
environment, rather than the body of the robot itself. By
following the same procedure as in the previous experiments,
we now examine the behavior landscape with three different
friction coefficients of the ground, i.e. 0.5, 0.65, and 0.8.
(The body mass is set to 0.5 kg.) The distribution of SD is
shown in Fig. 11 and the average forward speed in Fig. 12.

From the distribution of SD shown in Fig. 11, the difference
in the ground friction can be clearly identified between (a-1)
and (c-1): the white patches in the motor parameters around
frequency 3.5 Hz and phase 0 degree disappear as the friction
coefficient increases. For average forward speed, on the other
hand, there is a large white region at the upper right with the
high ground friction (Fig. 12(c-1)).

This experimental result again shows that both the contact
detector and the visual sensor are able to display the difference
in the ground friction. For example, when the ground friction
is changed from low to high, periodic running behavior is no
longer possible at the low frequency motor control, as can be
detected by a contact detector and a vision sensor.

6. Discussion

Because the body dynamics of biological systems are
generally controlled by sophisticated sensory–motor processes,
it is often difficult to extract the underlying principles of
how morphological properties of the body can be used
for the purpose of sensing. However, by developing and
analyzing artificial creatures as demonstrated in this paper,
the design principles of morphology and body dynamics can
be conceptualized for a comprehensive understanding of the
perception mechanisms. Based on the experimental results
of this paper, in this section, we discuss the roles of body
dynamics with respect to two fundamental functions of adaptive
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autonomous systems, i.e. recognition and category learning of
physical properties in the environment.

The relation between body dynamics and the recognition
process was demonstrated in Section 3. As shown in Fig. 5(a)
and (b), salient behavioral differences occur in different
environments. More specifically, because the stable locomotion
process results from the system–environment interaction,
differences in ground friction influence the way in which the
passive joints and the feet interact with the ground. These
salient differences in the behaviors can be used to estimate the
differences in environment by measuring its own behaviors.
In this sense, morphological properties can be exploited to
magnify the influence of the physical properties for the purpose
of sensing. As a result, calculating standard deviations and
simple thresholding can be sufficient to discriminate different
environments. More precise information about the physical
properties of the world can be acquired through accurate motor
control and multi-modal sensory channels (see the experimental
results in Section 5). For example, by comparing Fig. 11(a-1)
and (b-1), the coefficients of ground friction 0.5 and 0.65 can
be identified by the ground contact detector, when it runs with
the control parameters of frequency 3.5 Hz and phase 0 degree:
in the former case it is in the white (stable) region; in the latter
in the black (unstable) region.

A problem of this recognition process is a large time delay,
i.e. a few leg steps are required to identify the environment.
These implications are, however, particularly interesting in
the context of developmental process of autonomous systems.
During a development phase with no good capability of
motor control, the system is able to acquire multi-modal
sensory information. For a situated system, the sensory
information acquired through one sensory channel only is not
very meaningful. Generally in conventional robotic systems,
sensory information is interpreted by a human designer and
implemented in a control program. For a system which grows
through the interaction with the environment, however, it
is a fundamental issue how the system interprets acquired
sensory information as pointed out by the so-called “grounding
problem” [33–35]. For the grounding problem, sensory
information becomes more “meaningful” if it is correlated
with information from other sensory modalities. Because
information from each sensory channel is generated by a
certain physical interaction, the robot is able to learn the
relation between different physical interactions by correlating
the respective information. For example, the body mass can
actually be measured by a single sensory channel, a simple
pressure sensor on the foot. The information extracted from
this sensory channel, however, becomes more meaningful if
it is combined with information from other sensory channels,
e.g. locomotion speed, the force exerted on the leg joints,
energy consumption, and motor signals. The robot might be
able to “understand” the meaning of the slope angle or of high
friction, by correlating sensory patterns from different channels,
for example.

With a sensory–motor coordinated action, the salient
differences in sensory information can be significantly reduced
due to the stable behavioral patterns. For example, the sensory
information of Fig. 6(a) and (c) is qualitatively very similar.
This experimental result implies that, with a sensory–motor
control which maintains a stable locomotion process, the
apparent sensory input cannot always provide the information
about the environment, but the motor output has to be
considered as well. With similar patterns in sensory stimulation
(as in Fig. 6(a) and (c)), the physical properties can be estimated
from the motor output. In this sense, the sensory–motor control
is an important requirement for the function of categorization. It
would be interesting to investigate further how we could design
body dynamics that can be used for better categorization by
using motor signals.

Body dynamics becomes more important in the context of
category learning. The influence of body dynamics for category
learning is indirectly demonstrated in the fact that we need
to search only through two-dimensional behavior landscapes
for effective control parameters which generate a relatively
complex running behavior of the quadruped robot. Because of
the intrinsic body dynamics, there are only a few parameters
that need to be explored to find particular behaviors for sensing.
Although we still do not fully understand how a system
can deal with the balance between rich sensory information
and stable locomotion behaviors, the parameter space for the
sensory–motor coordination can be significantly reduced by
taking body dynamics into account.

7. Conclusion

This paper presents a few case studies demonstrating body
dynamics can be exploited for sensing. By exploring a dynamic
locomotion model of a four-legged robot in simulation and
the real world, a number of benefits of this approach are
explained in concrete terms. In particular, it is shown that,
by exploiting the system–environment interaction derived from
body dynamics, a number of physical properties are reflected
in the multi-modal sensory information (e.g. body weight,
ground friction). Although we still have to elaborate what
the “good” body dynamics for sensing is, the experimental
results are highly encouraging. Given the fact that all sensing
in biological systems is through body dynamics, static or quasi-
static sensory stimulation represents only special cases of the
general phenomenon. From this perspective, we hope that the
exploration of body dynamics for sensing will lead to our
further understanding of the relation between body dynamics,
control and sensing for the purpose of object recognition and
category learning of adaptive autonomous systems.
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