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Abstract
Scatterplots have been in use for about two centuries, primarily for observing the relationship between two variables and com-
monly for supporting correlation analysis. In this paper, we report an empirical study that examines how humans’ perception
of correlation using scatterplots relates to the Pearson’s product-moment correlation coefficient (PPMCC) – a commonly used
statistical measure of correlation. In particular, we study human participants’ estimation of correlation under different con-
ditions, e.g., different PPMCC values, different densities of data points, different levels of symmetry of data enclosures, and
different patterns of data distribution. As the participants were instructed to estimate the PPMCC of each stimulus scatterplot,
the difference between the estimated and actual PPMCC is referred to as an offset. The results of the study show that varying
PPMCC values, symmetry of data enclosure, or data distribution does have an impact on the average offsets, while only large
variations in density cause an impact that is statistically significant. This study indicates that humans’ perception of correlation
using scatterplots does not correlate with computed PPMCC in a consistent manner. The magnitude of offsets may be affected
not only by the difference between individuals, but also by geometric features of data enclosures. It suggests that visualizing
scatterplots does not provide adequate support to the task of retrieving their corresponding PPMCC indicators, while the un-
derlying model of humans’ perception of correlation using scatterplots ought to feature other variables in addition to PPMCC.
The paper also includes a theoretical discussion on the cost-benefit of using scatterplots.

1. Introduction

A variety of visualizations, such as scatterplots and parallel coordi-
nates plots, have been used extensively for observing correlation in
data. Human perception of correlation from visualizations is likely
to feature a number of cognitive influences. These may include
gestalt laws of grouping, shape interpretation, learned knowledge
about statistical indicators such as Pearson’s product-moment cor-
relation coefficient (PPMCC). In recent years, there has been grow-
ing interest in studying the underlying models of human perception
of correlation (e.g., [RB10, HYFC14, KH16]).

Because an empirical study can typically examine only a few
variables and a small number of variations per variable, the previ-
ous studies, such as [LMVW10,RB10,HYFC14], focused on visual
stimuli featuring data points with normal distributions. This work is
an extension of the previous experiments by examining human per-
ception of correlation under different conditions, e.g., different den-
sities of data points, different levels of symmetry of data enclosure,
and different patterns of data distribution. We hope to establish how
the variations of these conditions impact human perception in re-
lation to the statistical indicator PPMCC. If the impact were in-
significant, it would suggest that human perception of correlation
might be modelled by a relatively simple function, such as the ones
proposed in [SH78,MS92,BK79,CDM82,DAAK07], and more re-

cently in [RB10,HYFC14,KH16]. If the impact were significant, an
appropriate underlying model would have to encode the functional
dependency of humans’ perceived correlation on many visual fea-
tures of datasets in addition to their PPMCC indicators. Developing
functional models for human perception and cognition in visualiza-
tion is an ultimate goal [CM84,Cum13]. This study aims to provide
necessary observations about what variables a model for correlation
estimation may depend on.

Although we used PPMCC as the reference indicator in this
work, it is necessary to note that there are many variances of
PPMCC, such as weighted, reflective, and scaled coefficients.
There are also other mathematical functions for measuring correla-
tion, e.g., mutual information, rank correlation coefficients, and dis-
tance correlation. It is also necessary to assert that values of a math-
ematically computed correlation function should not be regarded as
a ground truth of correlation. In other words, when human percep-
tion differs from a computed indicator, it does not always mean
that the human perception is wrong. Nevertheless, one major ad-
vantage of using a mathematical function, such as PPMCC, is its
determinism and objectivity. We thus used PPMCC as a reference
function in our study. In our discussion, we will use the word “off-
set” (instead of “error”) to denote the amount of deviation from a
human estimation of correlation based on visualization to a value
computed using PPMCC.
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In this work, we consider several types of controlled variations,
including different PPMCC values, numbers of data points (ndp),
levels of reflective symmetry of data enclosures, levels of progres-
sive symmetry of data enclosures, and patterns of spatial distribu-
tion. We measure the offsets of human perception of correlation
when changing 1 or 2 control variables. In addition, we also esti-
mate the just notifiable difference (JND) using different reference
points to define the sensory ranges. Before the study, we speculate
on the likelihood of effects due to these controlled variations. Nev-
ertheless, following the protocol of statistical inference, we define
the following null hypotheses as the unbiased default positions to
be evaluated.

1. Varying a PPMCC value does not affect offsets.
2. Varying the density of data points does not affect offsets.
3. Varying reflective symmetry does not affect offsets.
4. Varying progressive symmetry does not affect offsets.
5. Varying spatial distribution does not affect offsets.
6. Varying a PPMCC reference point does not affect JND.

2. Related Work

It is commonly believed that the scatterplot, which has also been
called scatter diagram, scattergram, and scattergraph, was first in-
troduced in the 18th century, during the boom of statistics graph-
ics [FD05]. There are several variations and extensions, including
animated scatterplot, scatterplot matrix [EDF08] and glyph-based
scatterplot [CLP⇤15]. It can be used for observing correlation, clus-
ters, and outliers (e.g., [LS89, KARC15]).

Psychologists and statisticians have been interested in the per-
ception of correlation since the 1960s. Using two law cases, Bobko
and Karren made a compelling argument of the risk of percep-
tual inconsistency [BK79]. A variety of stimuli, apparatuses and
study methods were used, including audio signals (e.g., [Pol60]),
data tables (e.g., [Erl66]), paper-based plots (e.g., [MS92]), pro-
jector (e.g., [CDM82]), computer screen (e.g., [LP89]), mails
(e.g., [BK79]), individual interviews (e.g., [DAAK07]), and so on.
The numbers of participants varied from 6 [Pol60] to over 100
[CDM82], with 20⇠50 being the most common range.

The most widely studied phenomenon is human participants’
under and overestimation in relation to different PPMCC values
CR. Pollack first observed the varying levels of sensitivity between
low and high CR values in a study with 6 participants [Pol60].
The underestimation when 0<CR < 1 was subsequently confirmed
by many others (e.g., [Erl66, SH78, BK79, DAAK07]). Some have
also observed overestimation when �1 < CR < 0 [Erl66, BK79].
Several functional models were proposed to approximate the sam-
pled human estimation of PPMCC values, ranging from simply C2

R
[SH78,MS92] to 1� (1�C2

R)
0.5 [BK79,CDM82], to more general

polynomials [DAAK07], and to a logarithmic function [Ren13].

Several studied effects of different stimuli variations. Pollack
[Pol60], Erlick [Erl66], Cleveland et al. [CDM82], Lane et al.
[LAK85], and Lauer and Post [LP89] reported the effects caused
by changing the size of point clouds. Bobko and Karren [BK79]
reported no significant effect in varying slope, but this was con-
tradicted by Lane et al. [LAK85], Lauer and Post [LP89], and

Meyer and Shinar [MS92]. Lauer and Post [LP89] reported the ef-
fect caused by varying number of data points, but Doherty and An-
derson [DAAK07] reported no significant effect. Some observed
the effects of knowledge and training by studying participants with
different education backgrounds (e.g., [LAK85,MS92]), while oth-
ers showed that incorrect estimations are common among profes-
sionals with good statistics knowledge (e.g., [SH78, BK79]).

In addition, Bobko and Karren [BK79] observed the effects
caused by outliers and non-elliptical shapes. Meyer and Shinar
[MS92] reported some effects caused by varying among three
shapes of point clouds. Konarski [Kon05] found effects caused
by contamination (points in a different distribution). Bobko and
Karren [BK79] observed the effect caused by removing the mid-
dle section of a point cloud. Beach and Scopp [BS66] studied the
participants’ confidence of estimation in relation to CR. Several re-
searchers studied a phenomenon called illusory correlation (e.g.,
[Cha67, HG76]). Using scatterplots as an example, Wickham et al.
presented a discourse on the mutual complement of statistics and
visualization [WCHB10]. More recently, Pandey et al. examined
the perception of scatterplot similarity [PKF⇤16], while Correll and
Heer studied the perception of regression in scatterplots [CH17].

Doherty and Anderson [DAAK07] first studied the JND in the
perception of correlation. Rensink and Baldridge [RB10] reported
a study, suggesting JND as a linear function of CR. Harrison et al.
[HYFC14] reported a new set of results, suggesting a linear relation
between the change of perception and that of CR. Kay and Heer
[KH16] proposed a log-linear relation based on an analysis of the
results of [HYFC14].

For understandable reasons, some previous studies on the ef-
fects of number of data points, shapes, outliers, and contaminations
were very small. For example, Lauer and Post [LP89] studied 200
vs. 400 data points (27 participants, reporting effect without signifi-
cance analysis), while Doherty and Anderson [DAAK07] studied 9
vs. 100 data points (20 participants, reporting no significant effect).
In Bobko and Karren’s study [BK79], there was only 1 stimulus
featuring outliers, and 1 stimulus featuring a non-elliptical shape,
and they compared such stimuli with stimuli that have different CR
values, though CR was known to have an effect on estimation. In
Meyer and Shinar’s study [MS92], among three shapes, there were
significant differences in two pairwise comparisons. Our hypothe-
ses H2⇠H5 were designed to provide a more comprehensive cover-
age in these aspects. Meanwhile, we use H1 and H6 to synchronize
with the previous findings on under and overestimation and JND.

3. Experiment Overview

This study was conducted as a controlled study in a laboratory
setup. The design of the study will be detailed in Section 4, its
enactment in Section 5, and the analysis of its results in Section 6.
Here we outline the major variables involved in this experiment.

Given a set of bivariate data points, (x1,y1),(x2,y2), . . . ,
(xn,yn), we use Pearson’s product-moment correlation coefficient
(PPMCC) [Pea95] as the reference value of computer-estimated
correlation. Meanwhile, human participants may visualize the cor-
responding scatterplot, and derive an estimation of correlation
within the same range [�1,1] as PPMCC. Referring to the six null
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(a) PPMCC (b) reflective symmetry (c) progressive symmetry (d) distribution

Figure 1: Geometric specifications of four types of variations.

hypotheses in Section 1, the dependent variable measured for the
first five hypotheses is the offset d = e�CR between the reference
PPMCC value CR and a participant’s estimation e. For the 6th hy-
pothesis, the dependent variable g , which has three valid values,
records the notifiable difference in comparing a participant’s esti-
mations based on two juxtaposed scatterplots, Su and Sv. With the
direct rating method for JND [Sjö85], given two estimations eu and
ev in relation to CR,u and CR,v where CR,u 6=CR,v,

g =

8
><

>:

correct if (CR,u �CR,v)(eu � ev)> 0
same if (eu � ev) = 0
wrong if (CR,u �CR,v)(eu � ev)< 0

(1)

The mapping from a set of bivariate data points D to its PPMCC
value CR is a many-to-one mapping. There are numerous ways of
varying D while maintaining the same CR. In this work, we use at-
tributes of a geometric enclosure of D as the control variables. We
generate data points within such an enclosure randomly with a uni-
form distribution. To obtain statistically meaningful observations,
each null hypothesis is associated with 1 or 2 control variables.

H1: Varying PPMCC. For this hypothesis, we use an elliptical en-
closure that is symmetric in relation to both of its axes. Since it was
never a pre-condition that PPMCC should only be applied to data
with a bivariate normal distribution, using an elliptical enclosure
brings about three benefits. (i) It does not require the sampling in
an unbounded space as a bivariate normal distribution would do.
(ii) Controlling the two elliptical axes is more intuitive than con-
trolling mean and standard deviation. (iii) It enables more even dis-
tribution of data points in visual stimuli without cluttering (e.g.,
in the case of a low standard deviation). Figure 1(a) illustrates an
elliptical enclosure. We vary the two axes a and b, in conjunction
with random generation of 80 data points, to obtain stimuli with
CR = �1,�0.9, . . . ,0, . . . ,0.9,1. For a positive CR, a is the major
axis, and is fixed as a = 7. For a negative CR, b is the major axis,
and is fixed as b = 7. For CR = 0, a = b = 7.

H2: Varying Density. For this hypothesis, there are two con-
trol variables, the number of data point ndp, and minor axis
b of an elliptical enclosure. The former takes values ndp =
40,60,80,100,120, and the latter takes values b = 4,3,2.5, which
correspond to CR = 0.3,0.5,0.7. Similar to H1, the major axis is
set to a = 7, and data points are randomly generated within the el-
liptical enclosure.

H3: Varying Reflective Symmetry. This hypothesis explores one
type of geometric variation that is commonly exhibited in a data
set. The underlying reason for such a variation is due to the di-
vergence of the two statistical distributions governing the bivariate
data points. When the two normal (or near-normal) distributions
have different centers, means, or standard deviations, the symmetry
along at least one elliptical axis will be compromised. Correlation
analysis (such as PPMCC) is routinely applied to such datasets.
As illustrated in Figure 1(b), we use two half-ellipses to model
the asymmetry along the minor axis. These two half-ellipses have
the same major axis a = 7, but different minor axes b1 and b2,
which are defined as the control variables for this hypothesis. We
refer to the level of such symmetry as reflective symmetry in ref-
erence to the constant major axis. We chose nine different pairs of
(b1,b2), which fall into three equally-sized groups corresponding
to CR = 0.5,0.7,0.9.

H4: Varying Progressive Symmetry. This hypothesis explores one
type of geometric variations. Such a variation may be caused by the
divergence of the two underlying statistical distributions. It may
also be caused by a hidden cluster existing within the dataset be-
cause of some unknown factors. As illustrated in Figure 1(c), the
cluster is difficult to identify as it overlaps with other data points
in the dataset. Nevertheless, correlation analysis is commonly ap-
plied to such datasets. We introduce a circular enclosure overlap-
ping with the elliptical enclosure used for H1 and H2, and fix the
circle close to the top of the ellipse. The level of such symmetry is
referred to as progressive symmetry in reference to increment along
the major axis. We controlled the variations using two variables,
the radius of the circle r, and the minor axis of the ellipse b. We
maintain the major axis a = 7, the number of data points ndp = 80
with 40 in each enclosure, and CR = 0.7.

H5: Varying Spatial Distribution. This hypothesis explores an ex-
treme scenario of variations, where a dataset contains visible clus-
ters. Many would advise against correlation analysis without first
studying the clusters with care. Nevertheless, in automated data
processing pipelines, PPMCC values are often obtained for such
datasets without humans in the loop. It is thus interesting to ex-
amine this extreme scenario as part of this study. As asymmetry,
which is studied in H3 and H4, can potentially be a confound-
ing effect, we introduce two clusters at each side of the main
elliptical enclosure (a = 7,b = 3). As illustrated in Figure 1(d),
both additional clusters have the same circular enclosure with a
fixed radius r = 1. The control variable is the relative density
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Figure 2: The set values for different control variables associated with the six null hypotheses. For H6 (fine set), the 3rd row consists of the
four PPMCC reference points, each of which is to be paired with the six sets of control values below.

of data points in the three clusters. In terms of the numbers of
points in the three clusters (circle-ellipse-circle), seven different ra-
tios are used, ranging from 0:80:0 to 30:20:30, corresponding to
CR = 0.5,0.25,�0.1,�0.3,�0.5,�0.7,�0.9.

H6: Varying JND References. The evaluation of just notifiable
difference (JND) typically requires a series of tests that compare
one fixed reference-estimation pair (CR,0,e0) with k other pairs
(CR,1,e1), (CR,2,e2), . . ., (CR,k,ek), where the distance from CR,0 to
CR,1,CR,2, . . . ,CR,k increases. Using Eq. 1, we can obtain a ternary
series g1,g2, . . . ,gk. By integrating such ternary series obtained
from different participants, we can compute an accuracy curve or
an NND (no-notifiable-difference) curve, from which a JND value
is usually estimated [Kru89, Mor78, Sjö85].

This hypothesis is concerned with whether or not a change
of the PPMCC reference point CR,0 could affect the JND in hu-
mans’ perception of correlation. The main control variable is thus
the reference point CR,0, which are set to �0.7,�0.3,0.3,0.7.
For each instance of CR,0, we define a set of six increasing dis-
tances 0.05,0.1,0.15,0.25,0.3,0.35. To obtain CR,1,CR,2, . . . ,CR,6,
we add these distances to CR,0 in the cases of CR,0 = �0.7,0.3
(i.e., “above”) and subtract them from CR,0 in the cases of CR,0 =
�0.3,0.7 (i.e., “below”). All stimuli for this hypothesis use the ba-
sic elliptical enclosure as shown in Figure 1(a). The major axis is
fixed at 7 as in H1. The minor axis is used to control the changes
of CR,0,CR,1, . . . ,CR,6. All stimuli have 80 data points.

The tables in Figure 2 summarize the set values for different
control variables discussed above. Because we restricted each hy-
pothesis to be evaluated with only 1 or 2 control variables, we
were able to prevent the explosion of stimuli due to multivariate
combinations. These set values represented different samples were
taken discretely along the continuous axes of CR, a, b, and r, or
sparsely along the discrete axis ndp. This approach to sampling
was also necessary for a manageable empirical study. Inevitably,
the between-group variations would likely depend on the resolution
of intervals. If the intervals were too coarse, we could miss some
important variations. If the intervals were too fine, many pairs of
samples (especially with a small distance) would exhibit insignifi-
cant variations.

Figure 3: Each trial consists of two stimuli. This generic design
enables trials for JND (Just Noticeable Difference) evaluation to
be integrated with other trials seamlessly.

4. Study Design

User Interface and Task Design. Each stimulus for the first five
hypothesis, H1⇠H5, can be evaluated independently, while H6 re-
quires the consideration of two stimuli at the same time. In order to
provide a coherent user interface to accommodate all six hypothe-
ses, we defined a common task, that is, to estimate the PPMCC
value of a given scatterplot stimulus. A common user interface, as
shown in Figure 3, presented two stimuli to participants in each
trial. The participants were asked to estimate the PPMCC values of
the two stimuli independently of one another. Only for H6, com-
parative results were recorded. Two slider bars were provided to
adjust the estimation ranging from [�1,1] with 0.05 step size. The
selected value is shown in red above the slider.

Stimuli Generation. For all hypotheses, we first defined a set of
PPMCC values, CR, as shown in cyan color in Figure 2. For each
specific CR in a hypothesis, we estimated the relevant geometric
variables, a, b, b1, b2, or r, by randomly generating a number of
bivariate datasets. Note that a pre-defined geometric enclosure does
not guarantee a unique CR. For each given geometric enclosure,
therefore, we randomly generated 20 datasets and then selected one

c� 2017 The Author(s)
Computer Graphics Forum c� 2017 The Eurographics Association and John Wiley & Sons Ltd.



Varshita Sher et al. / On the Reliability of Perceiving Correlation Indices using Scatterplots

(a) stimuli for H1, varying PPMCC (CR =�0.9,0,0.5) (b) stimuli for H2, varying density (nd p = 40,60,120)

(c) stimuli for H3, reflective symmetry (b1:b2 = 3:3,5:2,7:1) (d) stimuli for H4, progressive symmetry (r = 1,3,5)

(e) stimuli for H5, spatial distributions (f) stimuli for H6, four JND references (CR =�0.7,�0.3,0.3,0.7)

Figure 4: A selection of stimuli that are designed for different hypotheses.

with a PPMCC value C0
R such that D = |CR �C0

R| is the smallest. In
some cases where D � 0.001, we manually modified a data point in
the dataset to ensure D < 0.001.

Stimuli with the Same Geometry Characteristics. It is necessary
to generate stimuli from the same geometric enclosure for H6 and
training stimuli. For example, H6 required at least two stimuli to
be computed from the geometric enclosure [CR = 0.4,a = 7,b =
3.5,nd p= 80]. For all multiple stimuli with the same geometric en-
closure, we ensured that they were rendered from different datasets
generated using the above procedure. From Figure 2, one can also
observe some other duplications. For example, the basic elliptical
enclosure [CR = 0.7,a = 7,b = 3,nd p = 80] can serve H1, H2, H3,
H5, and H6. In this latter case, the response of such a stimulus can
be reused for evaluating a difference hypothesis.

Stimuli Organization. This study consisted of 100 trials, 5 in the
training session and 95 in the main session. In each trial, partici-
pants were presented with two stimuli. The 10 stimuli shown in the
training session were designed to enable participants to familiar-
ize themselves with the user interface and typical visual patterns in
the stimuli. They also allowed them to synchronize their estimation
with the actual PPMCC values, while provided the study organizers
with any signs of poor understanding or random clicks. Among the
190 stimuli shown in the main session, 5 were used as checkpoints
for poor attention or random clicks, providing further validation of
the experimental data captured in the study. There were thus 185
stimuli, which contributed directly to the evaluation of the six hy-
potheses.

Using a C++ program, we generated 72 unique stimuli datasets.

Figure 4 shows 18 example stimuli used for evaluating hypotheses
H1-H6. All stimuli were drawn with the same visual mapping onto
a region of [10,100]⇥ [10,100]. The canvas region x,y 2 [0,10)
was intentionally avoided to prevent perceptual errors that may
be caused by the two axes. Each stimulus had an encrypted la-
bel, which was used by experimenters to identify the numerical
attributes of the stimulus and the corresponding hypothesis in a
confidential manner.

The pairing of stimuli in each trial was manually assigned to en-
sure the correct coverage for H6, while mixing stimuli for different
hypotheses in non-H6 trials. The left or right positions of the two
stimuli in each trial were determined randomly. The 95 trials in the
main sessions were ordered pseudo-randomly. The reason for man-
ual adjustment was to ensure that no stimulus would be repeated
in nearby trials. A pixel-based visualization is given in the supple-
mentary materials, depicting the distribution of the 72 stimuli in
relation to different hypotheses and trials.

5. Study Implementation

Apparatus. The study took place in a laboratory, where each com-
puter had 24 inch LCD display with 1920⇥1200 pixels. The soft-
ware was implemented using HTML, JavaScript and PHP, and was
run using Chrome web browser in the full screen mode. About
6⇠10 computers were used during each experimental session and
they were connected to a PHP server.

The software was used to structure the study, and record partic-
ipants’ inputs. It runs the pre-experiment data collection, training
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session, and main study session. After each trial, it displays a noise-
based masking screen for 2 seconds to neutralize the effect of the
two stimuli just shown. It computes various measurements, includ-
ing the offset between a participant’s estimation, and the original
PPMCC value for each stimuli, and the JND classification. It sends
the captured records back to the server in a .txt file, while keeping
a backup copy (a downloadable .json file) on the client in case of
technical emergency.

Procedures. Before the study, participants were given an Informa-
tion Session. The experimenters explained the aim of the research,
the structure of the study, and the remuneration for their time.
The experimenters presented various examples of scatterplots, and
showed how they correspond to PPMCC correlation values. (None
of these scatterplots were stimuli used in the study, except ones with
CR =±1.) During this session, participants could read the consent
form provided and ask questions about the study and the use of
their data. The information session lasted about 10⇠15 minutes,
depending on participants’ questions.

The experiment started with Pre-experiment Data Collection for
basic demographic information (e.g., gender, age group and educa-
tion level). This was followed by a Training Session, which com-
prised of 5 trials (each with 2 stimuli). As mentioned in Section 4,
these trials were means for quality assurance, including familiar-
ization of visual display and interaction, synchronization of partic-
ipants’ estimation, and validation of usability of the captured data.

The Main Study Session comprised of four sections, with 20, 25,
25, and 25 trials respectively. At the end of each section, partic-
ipants were required to have a break for at least 2 minutes. Any
longer break was at participants’ own discretion.

At the end of the study, participants were asked to complete
a paper-based Post-Experiment Survey with three multiple choice
questions. It was designed to collect participants’ subjective assess-
ment as to how easy it is to infer correlation values from scatterplots
showing different visual features (e.g., positive vs. negative corre-
lation, symmetric vs. asymmetric enclosure, and sparse vs. dense
data points).

Data Validation. Stimuli exhibiting full positive and negative cor-
relation (i.e., CR = ±1) were expected to be answered correctly
throughout the study. We used five such checkpoints in the main
study session to detect poor attention or random clicks.

Participants. A total of 37 participants took part in the experiment
in return for a £10 Amazon gift voucher. There were 27 males
and 10 females. Among them, 25, 10, and 2 were in the 20⇠29,
30⇠39, 40⇠49 age groups respectively. They include 27 university
students, 9 university staff, and 1 other (unspecified). Two partici-
pants’ responses were excluded from analysis. One (male, 20⇠29)
failed to estimate easy correlation (i.e., CR = ±1) in the training
session, possibly due to poor understanding. One (female, 30⇠39)
passed the training but failed the validation during the main session
with 3 incorrect estimations for the 5 check points, suggesting ran-
dom clicks possibly due to boredom. Therefore, the responses of
35 participants were included in the results analysis in Section 6.

6. Results and Analysis

In this section, we present the results for each hypothesis. We will
discuss our main findings in Section 7.

Following the study, the captured data records were first divided
into groups according to hypotheses. For hypotheses H1⇠H5, each
stimulus had 3 or more repeated measures per participant. Let ei, j,k
be the kth repeated measure for the jth stimulus from the ith partici-
pant. A signed offset is thus di, j,k = ei, j,k �CR, j. For each (i, j), we
compute three types of averages over m repeated measures. They
are:

Qi, j =
Âk di, j,k

m
, Fi, j =

|Âk di, j,k|
m

, Yi, j =
Âk |di, j,k|

m
.

For n participants, the Mean Signed Offset (MSO) for the jth stimu-
lus is thus Âi Qi, j/n. The Absolute Mean Offset (AMO) is Âi Fi, j/n.
The Mean Absolute Offset (MAO) is Âi Yi, j/n.

H1: Varying PPMCC. Figure 5(a) shows the MSOs (lilac), and
MAOs (green) for CR between [�0.9,0.9] with a 0.2 interval. Posi-
tive MSOs suggest overestimation, and negative MSOs suggest un-
derestimation, while MAOs are always � 0. We can thus observe
the symmetric pattern of overestimation when CR < 0, and under-
estimation when CR > 0. This result synchronizes well with most
of the previous findings in the literature (e.g., [Erl66, BK79]).

When we examine in detail the range [0.0,0.9] with a 0.1 interval
as shown in Figure 5(b), we can observe the pattern of increasing
underestimation when CR � 0.6, and some underestimation around
CR = 0.2. Further examining the numbers of participants who pro-
duced positive, zero, and negative offsets for CR � 0 in Figure 5(c),
we can find that there were strong biases towards underestima-
tion, when CR = 0.1,0.2 and CR = 0.7,0.8,0.9. Only when CR = 0,
most participants estimated correctly. Symmetrically, for CR < 0 as
shown in Figure 5(d), there were strong biases towards overestima-
tion, when CR = �0.9,�0.7. When CR = ±0.5, a similar number
of positive and negative offsets were recorded, while its MAO is
similar to that of CR =±0.3.

For the MSOs (lilac) shown in Figure 5(a), the ANOVA analy-
sis indicates F(9,340) = 32, p < 0.01, and for the MSOs in Figure
5(b), F(9,340) = 13, p < 0.01. Both suggest that there are signif-
icant between-group variations. Figure 5(e) shows the p-values af-
ter applying t-Test (unpaired, two-tailed, Bonferroni correction) to
each pair of the MSOs (lilac) in Figure 5(b). The last three columns
in Figure 5(e) provide overwhelming evidences for supporting dif-
ferences between the set {CR = 0.7,0.8,0.9} and the other samples,
while the variations among the three samples within the set are less-
ened because of the closer CR distances.

Meanwhile, the variation between the sample CR = 0.2 and those
nearby (i.e., CR = 0.0,0.1,0.3,0.4,0.5) also suggest that the vari-
ation at CR = 0.2 shown in Figure 5(b) is significant. The sine
wave pattern of the MSOs (lilac) between �0.5 and 0.5 in Fig-
ure 5(a) also suggests that the variations around CR = ±0.2 will
be interesting to study in the future. Out of the 45 pairs of t-Tests
for the MSOs in Figure 5(a), 29 tests show p < 0.05/45. The ma-
jority counts confirm that the variations observed are not acciden-
tal. Out of the 45 pairs of t-Tests for the MSOs in Figure 5(b), 18
tests show p < 0.05/45. As shown in Figure 5(e), {0.7,0.8,0.9}
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(a) CR 2 [�0.9,0.9] with a 0.2 interval (b) CR 2 [0,0.9] with a 0.1 interval
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 6.E-04 7.E-06 0.27 0.36 0.59 1.E-04 1.E-07 3.E-10 2.E-09 0.0
0.1 0.04 0.27 0.21 0.15 0.07 9.E-04 2.E-06 2.E-06 0.1
0.2 0.01 0.01 0.01 0.96 0.17 3.E-03 1.E-03 0.2
0.3 0.90 0.71 0.02 4.E-04 2.E-06 1.E-06 0.3
0.4 0.81 0.01 3.E-04 1.E-06 8.E-07 0.4
0.5 0.01 2.E-04 1.E-06 7.E-07 0.5
0.6 0.24 0.01 3.E-03 0.6
0.7 0.10 0.04 0.7
0.8 0.58 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bonferroni correction: 0.05/45 = 0.00111

(c) CR 2 [0,0.9] with a 0.1 interval (d) CR 2 [�0.9,�0.1] (e) p-values resulting from pairwise t-Tests

CR = 0.0 CR = 0.1 CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9 

(f) 10 examples of the stimuli used for testing H1, CR 2 [0.0,0.9], corresponding to (b), (c), and (e)

Figure 5: Summary statistics for H1: Varying PPMCC. (a) MSOs and MAOs for CR 2 [�0.9,0.9], indicating a symmetric pattern between
positive and negative CR values; (b) MSOs and MAOs for CR 2 [0.0,0.9], showing a non-linear pattern of underestimation. (c) the numbers
of participants with positive, zero, and negative offsets while estimating non-negative correlation, (d) while estimating negative correlation,
and (e) p-values for pairwise t-tests (in terms of MSOs, CR 2 [0.0,0.9]) with insignificant pairs marked in red.

vs. {0.0,0.1,0.3,0.4,0.5} is significant. As H1 postulates a simi-
lar mean across different CR, the result clearly contravenes this null
hypothesis.

Meanwhile, when we consider MAOs (green) in Figure 5(a), we
can observe an increasing trend from ±0.1 to ±0.9. The t-Tests
show that the differences of all five pairs are insignificant, i.e.,
�0.1 ⇠ 0.1, . . . ,�0.9 ⇠ 0.9. Here a ⇠ b denotes that the differ-
ence of a vs. b is insignificant. Similarly ⌧ denotes significant.

We also compared MAOs and AMOs for CR = 0,0.1, . . . ,0.9. We
observed that the differences appeared to depend on the values of
CR. It means that when AMOs reduce noises in repeated measures,
they may also remove a small amount of the effect due to varying
CR. We thus consider only MAOs below.

H2: Varying Density. Figures 6(a,b) show the participants’ re-
sponses to 15 stimuli, which represent combinations of 5 density
levels (40, 60, 80, 100, 120 data points) and 3 PPMCC values
(CR = 0.3,0.5,0.7). Between three PPMCC values, we can observe
the increasing underestimation, which is consistent with the finding
for CR > 0 in H1. We can also notice that the responses to stimuli
with 40 data points appear to be more different.

Since the analysis of H1 showed that CR has an impact on

participants’ estimation, we thereby applied ANOVA analysis to
each condition of CR separately. For CR = 0.3, the ANOVA analy-
sis yields F(4,170) = 4.4, p < 0.01. When we exclude the sam-
ple of ndp = 40, the analysis indicates insignificant variations
F(3,136) = 0.9, p = 0.45. This suggests that the between group
variations are mainly contributed by the sample of ndp = 40. This
can be confirmed by observing the pairwise t-Test results in Figure
6(c).

For CR = 0.5, the ANOVA analysis yields F(4,170) = 7.4,
p < 0.01. When the sample of ndp = 40 is excluded, we have
F(3,136) = 3.7, p = 0.01. A further examination of Figure 6(c)
shows that both samples of ndp = 40,60 contribute to the detected
variations.

For CR = 0.7, the ANOVA analysis yields F(4,170) = 13.6,
p < 0.01. When we exclude the sample of ndp = 40, the analysis
indicates insignificant variations F(3,136) = 0.5, p = 0.65 Figure
6(c) also shows that the sample of ndp = 40 is the main contributor
of the variations.

No significant difference was detected in other two-sample com-
parisons, including all pairings of nd p = 80,100,120. This sug-
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Bonferroni correction: 0.05/10 = 0.005
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(c) p-values resulting from pairwise t-Tests

ndp=40 ndp=60 ndp=80 ndp=100 ndp=120 

(d) 5 examples of the stimuli used for testing H2, CR = 0.5

Figure 6: Summary statistics for H2: Varying Density.

gests that the impact of varying density only occurs when there is a
large difference in numbers of data points.

Our result of 40 ⌧ {60,80,100,120} contradicts the finding in
[DAAK07] ([ndp]: 9 ⇠ 100). It provides more concrete evidence
in supporting the observation in [LP89], which did not report any
analysis of variance for evaluating their hypothesis (200 vs. 400).
In addition to an improvement of the ndp resolution from two sam-
ples to five samples, we had a larger group of participants than
that in [DAAK07] (i.e., 35 vs. 20), we had tested more CR values
than [LP89] (3 vs. 1).

From Figure 6, one may suggest an explanation for the more
noticeable underestimation when ndp = 40, that is, a sparse dis-
tribution might affect one’s perception of a geometric enclosure,
or the confidence associated with the perception. Unconsciously
one might “downgrade” an estimation towards less correlation. If
this hypothesized explanation could be verified in future studies, it

would be a positive confirmation of humans’ ability to perceive and
reason about uncertainty in visualization.

H3: Reflective Symmetry. Figures 7(a,b) show the responses to
9 stimuli, which represent combinations of 3 levels of symmetry
and 3 PPMCC values (CR = 0.5,0.7,0.9). In each CR set, the first
stimulus with b1 = b2 are used to synchronize with the results in
H1. There is a common pattern that the most asymmetric stimulus
(rightmost) in each set has the highest level of underestimation. The
ordering of the other two sets does not show a consistent pattern.

Because of the potential impact of CR, we applied ANOVA anal-
ysis to each condition of CR separately. For CR = 0.5, the ANOVA
analysis yields F(2,102) = 2.9, p = 0.06, indicating insignificant
variation. For CR = 0.7, the ANOVA analysis gives F(2,102) =
6.0, p < 0.01, suggesting some significant variation. For CR = 0.9,
the ANOVA analysis returns F(2,102) = 3.4, p = 0.04, also sug-
gesting some significant variation.

By having a closer look at the t-Test results in Figure 7(c), we
can observe some pairwise variations, such as:

For CR = 0.7, [b1 : b2] : 5 :1 ⌧ {2.5:2.5, 4:1.5}
For CR = 0.9, [b1 : b2] : 3 :1 ⌧ 2.5:1.5

In general, the experiment shows some significant variations when
CR = 0.7, and CR = 0.9, suggesting the possibility to negate the
null hypothesis for H3. However, because we cannot confidentially
eliminate the possibility of accidental errors in sampling, further
studies with a higher sampling resolution in terms of [b1 : b2] will
be necessary for rejecting H3 conclusively.

H4: Progressive Symmetry. Figures 8(a,b) show the responses to
6 stimuli (all with CR = 0.7). Among these r = 0 corresponds to
an elliptical enclosure in H1 without an additional cluster, while
r = 5,4,3,2,1 correspond to different sizes of clusters that were
added to the main elliptical enclosure. While the numbers of under-
estimation are similar, there are noticeable changes in magnitudes.
The nearly symmetric pattern in Figure 8 centered around r = 0
(i.e., the normal elliptical enclosure) also suggests the unlikelihood
of any major accidental error. Meanwhile, Figure 8(c) shows a con-
sistent pattern of underestimation by a noticeable amount.

The ANOVA analysis yield F(5,204) = 17.5, p < 0.01, indi-
cating significant between-group variations. When we examine the
15 two-sample comparisons using t-Test, 6 pairs have insignificant
differences. These are all occurred at either sampling pairs next to
each other, or at the opposite sides of the symmetric pattern in Fig-
ure 8. Hence the null hypothesis for H4 can be rejected.

H5: Spatial Distribution. Figure 9(a) shows the responses to 7
stimuli. Among these ndp = 0:80:0 corresponds to an elliptical en-
closure (CR = 0.5) in H1 without any additional cluster. The other
6 stimuli all have three clusters, one main elliptical shape and two
additional clusters. The sizes of three enclosures and the total num-
bers of data points remain the same, but the 80 data points are dis-
tributed differently.

Visually, we can observe the noticeable changes from ndp = 0 :
80 : 0 to other distributions in terms of both the numbers and mag-
nitudes of overestimation. This becomes more dramatic in compar-
ison with the changes observed in the context of H1 as shown in
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(d) 9 examples of the stimuli used for testing H3, corresponding to (a) and (b) from left to right

Figure 7: Summary statistics for H3: Reflective Symmetry. Samples labelled with 3 : 3, 2.5 : 2.5, and 2 : 2 are symmetric samples. The
variations between them and asymmetric samples are observable. However, finer sampling will be desirable for a conclusive finding.
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(d) 6 examples of the stimuli used for testing H4, corresponding to (a) and (b) from left to right, CR = 0.7

Figure 8: Summary statistics for H4: Progressive Symmetry. The comparisons between r = 0 and r > 0 show significant variations.

Figure 9(c,d). Although the PPMCC values of the 7 stimuli in H5
are CR = 0.5,0.25,�0.1,�0.3,�0.5,�0.7,�0.9, the magnitudes
of overestimation resulting from six of these stimuli (i.e., except
ndp = 0 : 80 : 0,CR = 0.5) are significantly higher than the corre-
sponding stimuli in H1 without two additional clusters. Note that
there is no stimulus in H1 featuring CR = 0.25. We actually use the
average of the statistical indicators of CR = 0.2 and CR = 0.3 here.

This noticeable variation due to different spatial distribution can
also be observed by comparing Figure 9(b) with Figure 9(e). Much
of the underestimation for CR = 0.25,�0.1,�0.3,�0.5 in Figure
9(d) has been replaced with overestimation in Figure 9(b).

Each of the 7 stimuli in H5 features distinct PPMCC values,

as well as different spatial distributions. It is thus not appropri-
ate to apply ANOVA directly to the data collected in the exper-
iment without removing the impact of CR as shown in H1. We
thus used the individual participants’ offsets for H1 as the base
line and subtract these from the offsets of the same participants for
H5, and then apply ANOVA to the difference values. The mean
differences are shown in Figure 9(c). The ANOVA analysis yields
F(6,238) = 30.7, p < 0.01, indicating significant between-group
variations.

We further examine each pair of samples between H1 and H5 for
CR = 0.25,�0.1,�0.3,�0.5,�0.7,�0.9 using t-Test. As shown in
Figure 9(f), all p-values are well below 0.05/6 (Bonferroni cor-
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10:60:10 0.26 4.3E-04 0.11 0.09 10:60:10
15:50:15 0.01 0.45 0.41 15:50:15
20:40:20 0.17 0.20 20:40:20
25:30:25 0.94 25:30:25
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t-Test between samples in H1 and H5 for the same PPMCC values

differences computed by subtracting individuals' offests in H1

Bonferroni correction: 0.05/6 = 0.00833

Bonferroni correction: 0.05/21 = 0.00238

(d) MSOs: H1 samples vs. H5 samples (e) # different offsets (H1) (f) p-values from pairwise t-Tests

5:70:5 0:80:0 10:60:10 15:50:15 20:40:20 25:30:25 30:20:30 

(g) 7 examples of the stimuli used for testing H5, corresponding to (a) and (b) from left to right

Figure 9: Summary statistics for H5: Spatial Distribution. In (d) and (f), comparisons with MSOs in H1 indicate significant variations.

rection). The individual pairwise comparisons among the differ-
ence values obtained for the 7 samples show that ndp = 0 : 80 : 0
and ndp = 5 : 70 : 5 contributed main variations. In other words,
the other five samples show a similar as well as a significant
amount of deviations from the mean offsets for H1. Essentially,
almost all participants were not able to estimate the impact of the
two additional clusters on the PPMCC value. In the cases of ndp
= 10 : 60 : 10,15 : 50 : 15,20 : 40 : 20 where the actual PPMCC val-
ues became negative (CR = �0.1,�0.3,�0.5, most still returned
positive estimations. In the cases of ndp = 25 : 30 : 25,30 : 20 : 30
when the actually PPMCC values would suggest strong negative
correlation (CR = �0.7,�0.9), most participants returned estima-
tions indicating no correlation. Clearly the null hypothesis for H5
can be rejected.

H6: Varying JND References. Let D be the distance between two
PPMCC values, CR,a and CR,b. The JND trials were divided into
two sets. The first set was designed to make a coarse examination
of JND at the very unlikely range D � 0.2. There were 4 variations
D = 0.2,0.4,0.6,0.8. Each group consisted of 3 trials with varying
CR,a and CR,b. There were only a few errors. 100% accuracy was
attained for nine trials, 97% for two trials (D = 0.2, D = 0.4), and
94% for one trial (D = 0.2).

The second set of trials focused on the detection of JND in rela-

tion to four reference points where CR = �0.7,�0.3,0.3,0.7. The
goal was to observe the possible JND points by varying the dis-
tances at a fine interval of 0.05. As defined by Eq. 1, we clas-
sify each pair of responses to a JND trial as “correct”, “same”, or
“wrong”. At D = 0.05, t-Test (unpaired, two-tailed) indicates that 4
(out of 6) two-sample comparisons show significant differences be-
tween some reference points, i.e., �0.7 ⌧ {�0.3,0.3} (p < 0.01),
and 0.7 ⌧ {�0.3,0.3} (p = 0.01,0.02). At D � 0.1, all differences
are insignificant. The result offers a weak rejection to the null hy-
pothesis of H6. However, further examination with finer intervals
between D = 0.05 and D = 0.15 will be necessary to provide an
absolute confirmation.

Because we used direct rating (DR) [Sjö85] for our JND tri-
als, we classify each pair of responses to a JND trial as “correct”,
“same”, or “wrong”. We can thus estimate JND using two esti-
mation methods, for both forced binary choice (FBC) and direct
rating (DR) [Kru89]. Given a pair of stimuli in a JND trial, let
Nc,Ns,Nw denote the numbers of “correct”, “same”, and “wrong”
answers from all participants. For calculating accuracy typically
used in conjunction with FBC, we assign half of Ns to Nc and half
to Nw by assuming a random choice when a “same” answer is given.
For calculating not-notifiable-difference in DR, we assume that all
“wrong” answers result from random choices, and the number of

c� 2017 The Author(s)
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Figure 10: Summary statistics for H6. (a) The results of two sets
of JND trials for two negative reference points. (b) Results for two
positive reference points.

“correct” answers resulting from random choices is  Nw. Thus,
the percentages of both can be computed as:

PAcc =
Nc +0.5Ns

Nc +Ns +Nw

PNND =
Ns +Nr

Nc +Ns +Nw
, where Nr =

(
2Nw Nw  Nc

Nw +Nc Nw > Nc

Figs. 10(a,b) show the PAcc and PNND for the four ref-
erence points. Each polyline represents trials with D =
0.05,0.1,0.15,0.25,0.3,0.35. As 75% is the commonly-used JND
threshold for FBC, and 50% for DR, we can easily observe that
PAcc and PNND are close to each other for all four reference points.

7. Discussions and Conclusions

This study has provided strong evidence for rejecting the null hy-
potheses H1 (varying PPMCC), H4 (varying progressive symme-
try), and H5 (varying spatial distribution). It has also shown that
the null hypothesis of H2 is partially incorrect (i.e., for large vari-
ations of density), and that of H3 (varying reflective symmetry)
is unlikely but requires confirmation from further studies. Judging
from the numbers and magnitudes of under or overestimation, we
must conclude that humans’ estimation of PPMCC values when
observing arbitrarily-given scatterplots is rather unreliable.

This leads to an anxious reflection and a new hypothesis as to
the benefit of scatterplots. In fact, it is inappropriate to use PPMCC
in most of the conditions of H5, and highly risky in those of H4.
Without visualization, a user would not know the multiple clusters

as exemplified by H5 or H4, and using PPMCC would lead to in-
correct inferences.

To echo what was found in [KARC15], the main benefits
of visualization may not be value retrieval tasks. Information-
theoretically, the benefit of scatterplots can be explained using the
cost-benefit metric in [CG16]. The input alphabet to PPMCC is the
data space of numerous bivariate datasets. In most application con-
texts, the number of letters (i.e., possible datasets) is huge. On the
other hand, the output from the PPMCC is a much smaller alpha-
bet. For example, there are 2001 letters for CR 2 [�1,1] with an
accuracy at three decimal places, which is normally sufficient for
most correlation analysis. Hence the scale of alphabet compression
using PPMCC is huge. Meanwhile the potential distortion is also
very high.

Given a CR value, many people would normally imagine an ellip-
tical point cloud. However, experienced analysts know that CR ' 0
does not always imply a circular point cloud, and there are many
corresponding possible scatterplots that feature strong correlation
patterns (e.g., points distributed along two opposite diagonal lines).
Similarly, given CR = 0.7, there are many corresponding scatter-
plots where the suggested correlation is rather doubtful (e.g., some
stimuli for H4). Viewing a scatterplot can quickly reduce such po-
tential distortion, though using it to estimate CR would lead to nu-
merical distortion and high cognitive load. Hence, the best prac-
tice would be to have both for correlation analysis, and viewing
both a scatterplot and the corresponding PPMCC value does not
cost much more than viewing either. This also suggests that it is
highly risky to include PPMCC calculations in fully-automated
processes without any normality test. When no reliable normality
test is available, it is necessary to involve humans to validate the
necessary conditions for PPMCC calculations using scatterplots.
In fact, this is exactly what Anscombe tried to enlighten us through
his quarte [Ans73].

The JND part (H6) of the study confirmed the effect of ref-
erence points as shown in [RB10, HYFC14]. Our estimated JND
values at CR = ±0.3 are close to [HYFC14] but much lower than
[RB10]. Those at CR = ±0.7 are close to [RB10], but higher than
[HYFC14]. Although this study was not intended to evaluate the
question on linearity [HYFC14, KH16], it shows that such func-
tional approximation should be restricted to the conditions that the
bivariate dataset satisfies bivariate normal distribution in both di-
rections. At the moment, we do not know if JND values are affected
by conditions in H2⇠H4. The results of this study indicate such a
possibility. In addition, JND values could also be affected by other
factors such as training [LAK85, MS92]. When we divided the 35
participants into four bands of mean NND, we observe noticeable
differences in NND values (from 0.11 to 0.75). An additional vi-
sualization is given in the supplementary materials. The non-trivial
numerical differences in terms of JND values among these three
studies also suggest that further empirical studies will be desirable.
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