DIRECT TEST FOR THE CONSTANCY OF
FUNDAMENTAL NUCLEAR CONSTANTS
USING THE OKLO NATURAL REACTOR

Theory Dept.
Gatch

Leningrad

USSR
A.I. Shlyakhter

Direct test for the constancy of fundamental nuclear constants using the Oklo natural reactor

Leningrad
1976
Первое сообщение в журнале "Nature"

А.И. Шляхтер

Аннотация

Показано, что положения нейтронных резонансов очень чувствительны к изменениям фундаментальных ядерных констант. Из анализа измеренных изотопных сдвигов в естественном ядерном реакторе Окло получены ограничения на скорость изменения констант взаимодействий: сильных - 2×10^{-19} гд^{-1}, электромагнитных - 5×10^{-19} гд^{-1}, слабых - 10^{-12} гд^{-1}. Эти пределы позволяют исключить все обсуждавшиеся в литературе варианты изменения ядерных констант.

Abstract

The positions of neutron resonances have been shown to be highly sensitive to the variation of fundamental nuclear constants. The analysis of the measured isotopic shifts in the natural fossil reactor at Oklo gives the following restrictions on the possible rates of the interaction constants variation: strong $\sim 2 \times 10^{-19}$ yr^{-1}, electromagnetic $\sim 5 \times 10^{-18}$ yr^{-1}, weak $\sim 10^{-12}$ yr^{-1}. These limits permit to exclude all the versions of nuclear constants contemporary variation discussed in the literature.

1. INTRODUCTION

The problem of the possible variation of fundamental constants is being discussed for about 40 years. Milne/1/ and Dirac/2/ were the first to notice that the constancy of physical constants during very long periods of time is a hypothesis needing experimental evidence.

Speaking on the variation of a dimensional constant one always bears in mind some "truly constant" unit of the same dimension. So any change having physical meaning can be reduced to the change of a dimensionless combination of the dimensional constants. There exist many such combinations but all of them are determined by several ones called "fundamental".

Gravitation, electromagnetism and weak interactions are determined by a single constant each (we shall denote them γ, α and β):

$$\gamma = \frac{GM^2}{\hbar C} \approx 5 \times 10^{-39},$$ \hspace{1cm} (1)

$$\alpha = \frac{e^2}{\hbar C} \approx 1/137.$$ \hspace{1cm} (2)
\[
\beta = \frac{g \cdot m^2 \cdot c}{h^3} \approx 9 \cdot 10^{-6}.
\]

(3)

Here \(\beta \) is the Newton's constant of gravitation, \(g \) is the Fermi's weak interactions constant, \(m \) is the nucleon mass. For strong interactions it is unknown which constants pertaining to them should be regarded as fundamental. We shall estimate their variation by the relative change in the depth of nuclear potential well (see Sec. 2).

Versions of the contemporary variation of the constants discussed in the literature give the relative change \(10^{-10} - 10^{-12} \text{yr}^{-1} \) (see refs. 1-7).

Only for a few of the constants suggested had been excluded by the experimental evidence. From the data on \(^{187}\text{Re}\) decay Dyson\(^{18}\) obtained (see also A.M. Wolfe et al. Phys. Rev. Lett. 27, 179 (1976))

\[
\frac{1}{\alpha} \frac{d\alpha}{dt} \leq 5 \cdot 10^{-15} \text{yr}^{-1}.
\]

(4)

For \(\alpha \) and \(\beta \) the experimentally established limits are about \(10^{-10} \text{yr}^{-1} \) and none of the proposed versions of their variation can be excluded.

More accurate restrictions for \(\beta \) are also desirable to have confidence in the correct dating of geological objects. The decay constant of \(\beta \)-active nucleus is proportional to \(\beta^2 \) so the relative change in \(\beta \) about \(10^{-10} \text{yr}^{-1} \) would give an error \(\sim 2 \cdot 10^{-10} \text{yr} \) during the time interval \(t \). For \(t \sim 10^9 \text{yr} \) the error may attain \(\sim 2 \cdot 10^8 \text{yr} \).

The aim of the present paper is to draw attention to the fact that the positions of neutron resonances are very sensitive to the change of nuclear constants.

Laboratory measurements of the resonance positions during 10 years give the upper limit of the strong interaction constants variation of the same order as cosmological arguments.

On the other hand the data on the resonance positions \(2 \cdot 10^9 \text{yr} \) ago can be obtained from the analysis of the isotopic composition of the elements in the Oklo natural fossil reactor (see Appendix). It allows to impose the limits: several orders of magnitude more accurate excluding all the discussed versions of nuclear constants a contemporary variation by the direct evidence.

2. THE SHIFTS OF NEUTRON RESONANCES CAUSED

BY THE VARIATION OF THE CONSTANTS

For the bombarding neutron a heavy nucleus represents (roughly) a potential well with the depth \(V_0 = 50 \text{MeV}^{1/2} \). If the neutron energy is small enough (\(E \ll 1 \text{keV} \)) the cross section exhibits narrow resonances (Fig. 1). Their positions are known to an accuracy of \(\Delta E_r \sim 10^{-5} \text{eV} \) (see Sec. 3). So there exist two energy scales \(V_0 \) and \(\Delta E_r \).

The main idea of this paper is the following. A change in \(V_0 \) by \(\Delta V_0 \) would cause the shift of all the levels (including the levels of a compound nucleus i.e., neutron resonances) of the same order of magnitude. Experimental evidence for the resonance positions being constant to an accuracy of \(\Delta E_r \) then restricts the possible relative change of \(V_0 \) by

\[
\frac{\Delta V_0}{V_0} < \frac{\Delta E_r}{V_0}.
\]

(5)

The exact neutron–nucleus interaction can be decomposed into a sum of interactions with the average nuclear potential (that gives the single-particle motion) and residual intermucleon interactions \(H_r \). The latter cause the fragmentation of broad single-particle resonances into millions of narrow compound resonances. It is impossible to calculate the properties of a given resonance since the residual interactions are very complex.

A change of the nuclear well depth \(\Delta V_0 \) (for \(H_r = \text{const} \)) would lead to the uniform shift \(\Delta E_r \) of all the resonances equal to that of a single-particle resonance.

A change in residual interactions \(\Delta H_r \) (for \(V_0 = \text{const} \)) would lead to the mutual shifts \(\Delta E_r \) of the resonances which are random in magnitude and direction.

We know nothing on the relation between \(\Delta E_r \) and \(\Delta E_r \). So for a given resonance it may appear that \(\Delta E_r \approx -\Delta E_r \). But the probab-
ility of such a compensation should be small and for several resonances - negligible.

On the other hand it may appear that for some resonance \(\Delta E_0 \) resulting in its high sensitivity to the variation of the constants.

We shall assume the single - particle estimate \(\Delta E_0 \) bearing in mind that \(\Delta \exp \) obtained from the analysis of only one resonance can be relied upon only to the order of magnitude. In order to decrease the uncertainty one should analyse the shifts for a number of resonances.

Following Gamow\(^{11}\) we shall suppose that the strong - interaction constants variation is represented well enough by the relative change of the nuclear potential well depth \(\Delta V_0 / V_0 \).

The restriction on their possible variation is then given by (5). The relative contribution of weak interactions to the energy of the nucleus can be estimated (to the order of magnitude) as \(\beta (\mu / m)^2 \approx 2 \times 10^{-7} \) where \(\mu \) is the pion mass. From (5) we have

\[
\left| \frac{\Delta \beta}{\beta} \right| \leq 5 \times 10^{-6} \frac{\Delta \exp}{V_0}
\]

The variation of the electromagnetic constant \(\alpha \) would lead to a small change in the nuclear radius \(R \) due to the variation of the Coulomb repulsion energy \(E_0 \). We shall estimate this effect using the expression \(^{10}\)

\[
\Delta R = \frac{R}{K A} \left(\frac{\partial E_c}{\partial R} \right)
\]

Here \(K \) is the nuclear compressibility coefficient (\(K \approx 135 \ \text{MeV} \)).

For nuclei with \(A \approx 150 \) \(E_0 \approx 500 \ \text{MeV} \), and the relative change in \(R \) is about 2.5% of the change in \(\alpha \). Thus the restriction on the \(\Delta \alpha \) variation is about 20 times less accurate than that given by (5).

Summing, we can conclude that an experimental evidence for the resonance positions being constant to an accuracy of \(\Delta \exp \) during the period of time \(T \) would impose the following restrictions on the possible rates of variation of the constants:

\[
\left| \frac{1}{V_0} \frac{d V_0}{d t} \right| \leq 5 \times 10^{-7} \frac{\Delta \exp}{T}
\]

for the electromagnetic

\[
\left| \frac{1}{\alpha} \frac{d \alpha}{d t} \right| \leq 0.1 \frac{\Delta \exp}{T}
\]

for the weak

3. EVIDENCE CONCERNING THE SHIFTS OF RESONANCES

For many low - lying neutron resonances their positions had been measured to an accuracy of \(\Delta \exp \approx 10^{-3} \ \text{eV} \) as long as 15 years ago.\(^{13(1)}\). For example the energy of the first resonance in \(^{155}\)Gd had been measured in 1960 its value being \((0.0268 \pm 0.0002) \ \text{eV} \). The value obtained in 1969 is just the same.\(^{14(1)}\). Assuming \(T = 10^9 \) yrs we come to the direct laboratory established evidence concerning the variation of the strong - interaction constants:

\[
\left| \frac{1}{V_0} \frac{d V_0}{d t} \right| \leq 2 \times 10^{-12} \ \text{yr}^{-1}
\]

Similar restriction has been obtained by Davies\(^{15(1)}\) using Dyson's cosmological arguments.

The resonance positions as long as \(2 \times 10^9 \) years ago can be determined using the Oklo natural reactor data (see Appendix).

The positions of the low - lying resonances determine the capture cross section for the thermal neutrons. For a single resonance at \(E_N \) having neutron and capture widths \(\Gamma_n \) and \(\Gamma_c \) the capture cross section of neutrons with the energy \(E \) (wavelength \(\lambda \)) is given by the Breit - Wigner formula:

\[
\Gamma_c = \frac{\hbar}{2} \lambda \frac{\Gamma_n \Gamma_c}{(E - E_N)^2 + \left(\frac{\Gamma_n + \Gamma_c}{2} \right)^2}
\]
Here \(g \) is the statistical factor. We see that the large thermal cross section values are the most sensitive to the resonance shifts. These values are caused by the resonances lying near the thermal energy region. The variation of the thermal capture cross section of \(^{149}\text{Sm}\) caused by the resonance shift \(\Delta \) is shown on Fig. 2.

The cross section value \(2 \times 10^9 \) years ago can be determined from the measured isotopic shifts at Oklo. Naudet et al.\(^{16} \) measured the isotopic composition of \(^{235}\text{U}, \text{Nd}, \text{Sm}\) in 50 samples from the reactor core. They managed to determine the fluence of thermal neutrons and the conversion coefficient \(C \) (see Appendix) from the data on \(\text{U} \) and \(\text{Nd} \) for 36 samples. In the rest cases the following diffusion of the natural elements was too large.

The cross section for \(^{149}\text{Sm}\) can be determined from the equations (4.2) and (4.4) (see Appendix):

\[
\Gamma_{149} = \frac{N_{149} + N_{148}}{N_{149}} \times \frac{\Gamma_{149}^{235} (l-\xi)^c}{\Gamma_{235}^{235} (l-\xi)^c}.
\]

Here \(\Gamma_{149}^{235} \) and \(\Gamma_{235}^{235} \) are the thermal capture cross sections of \(^{149}\text{Sm}\) and \(^{235}\text{U}\), \(\xi_{149} \) and \(\xi_{235} \) are concentrations, \(\Gamma_{147}^{235} \) fission yield of \(^{147}\text{Sm}\) (they are taken from \(^{129}\text{U}\)).

Thus we get at the "experimental" value of \(^{149}\text{Sm} \) capture cross section \(\Gamma_{Oklo} \), which had been "measured" about \(2 \times 10^9 \) years ago:

\[
\Gamma_{Oklo} = (55 \pm 8) \times 10^3 \text{ barn}.
\]

Taking into account two standard errors we come to the following restriction on the possible shift of the first resonance in \(^{149}\text{Sm}\) (see Fig. 2):

\[
| \Delta \exp | \leq 20 \times 10^{-3} \text{ ev}.
\]

Such a small shift would not change the capture cross sections of \(\text{Nd} \) and \(\text{U} \) isotopes. So the direct use of the neutron fluence from\(^{15}\) is correct.

Table 1 is a list of the upper limits obtained from (15) and (8 -10) assuming \(T = 2 \times 10^9 \) years. For comparison the earlier limits by Dyson\(^{8} \) and Davies\(^{15} \) are also listed below.

<table>
<thead>
<tr>
<th>Relative change</th>
<th>Dyson, (\frac{dV_{0}}{dt})</th>
<th>Davies</th>
<th>Present work</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\alpha} \frac{d\alpha}{dt})</td>
<td>2 \times 10^{-12}</td>
<td>5 \times 10^{-15}</td>
<td>5 \times 10^{-18}</td>
</tr>
<tr>
<td>(\beta \frac{d\beta}{dt})</td>
<td>(1 \times 10^{-10})</td>
<td>10^{-12}</td>
<td>10^{-12}</td>
</tr>
</tbody>
</table>

It is interesting to observe that the rate of the variation \(> 10^5 \) times exceeding these limits would cause a drastic change of many capture cross section values during \(\sim 10^5 \) years. On the other hand it would make the reliable interpretation of the isotopic shifts at Oklo almost impossible.

On the other hand \(^{235}\text{U}\) would appear to be a strongly capturing nucleus during some period of time. It would turn the spontaneous chain reaction in the uranium deposits into a usual occurrence. The isotopic composition of natural uranium would then vary considerably from place to place.

Thus the fact that the \(^{235}\text{U}\) abundance is remarkably uniform everywhere (except Oklo) is one more argument in the favor of the constancy of the fundamental nuclear constants.
4. WHAT IS INTERESTING TO MEASURE AT OKLO?

The results of Sec. 3 permit to exclude all the versions of the nuclear constants contemporary variation discussed in the literature. But the constants may appear to vary in some unpredictable way. So it is an important task to obtain as precise and reliable restrictions as it is possible.

We have seen in Sec. 3 that the large capture cross-section values are the most sensitive to the shifts of neutron resonances. Unfortunately the equilibrium concentration of the strong capturers at Oklo is exceedingly low (see Appendix). The following diffusion and the change of isotopes between different elements cause the change in isotopic composition of the same order.

For this reason it is desirable to perform the accurate measurements of the isotopic composition of all rare earth fission products (in a given sample). The data obtained would allow to determine \(\Delta_{cf} \) for several resonances, thus raising the reliability of the restrictions. The existing data are scarce and insufficiently accurate giving \(\Delta_{cf} \) for exceeding (15).

It should be emphasized that apart from the assumptions made in Sec. 2 the very fact of the neutron resonance shift really occurring would appear to be an important discovery. It would show that some fundamental constants do really vary with time thus compelling a reconsideration of the basic physical theories.

The author is grateful to Yu. V. Petrov for numerous helpful discussions, to A. A. Anselm, V. E. Bunakov, A. N. Erykalov, V. A. Erlemeier, I. A. Sily, V. A. Ruban, and Yu. M. Shabelsky for stimulating discussions and valuable comments.

APPENDIX. THE OKLO NATURAL FOSSIL REACTOR

We shall briefly discuss here some facts concerning the "Oklo phenomenon". The majority of the review and original papers is contained in refs. 16, 17.

The natural uranium consists of two isotopes: \(^{238}\text{U}\) (\(T_{1/2} = 4.51 \times 10^{9}\) yr) and \(^{235}\text{U}\) (\(T_{1/2} = 0.71 \times 10^{9}\) yr). Only the latter undergoes fission being irradiated by thermal neutrons. The contemporary enrichment of natural uranium by \(^{235}\text{U}\) is too low for the spontaneous chain reaction occurring in uranium deposits.

But in the remote past the natural abundance of \(^{235}\text{U}\) was greater (Fig. 3, curve 1). Two billion years ago it exceeded 3% being the same as in modern power producing reactors.

The chain reaction could start spontaneously if the conditions were favourable /18, 19/. As the result the \(^{235}\text{U}\) enrichment in the deposit would be at least lower than everywhere. But the search for an anomaly of \(^{235}\text{U}\) enrichment in uranium deposits brought no result for a long time.

It was only in 1972 that the abnormal isotopic composition of uranium had been found in the deposit at Oklo (Gabon) /20/. The average enrichment was about 0.6% in 500 tons of uranium ore and in several samples – lower than 0.3%.

The systematic study of this phenomenon had been carried out within a specially established "Project Francoville" headed by R. Faudet (French Atomic Energy Commission).

It appeared that about 2 \(\times 10^{9}\) years ago several natural reactors had been acting at Oklo deposit (Fig. 4). The total energy released equals to about \(10^{11}\) kwh, the neutron fluence at certain points exceeded \(1.5 \times 10^{21}/\text{cm}^2\).

The fact of spontaneous chain reaction having occurred at Oklo is now considered to be proved.

Let us reveal briefly the simplest methods used to estimate the parameters essential for the present work. Duration of the reactions is determined supposing that their rate was constant. \(^{235}\text{U}\) is formed from \(^{238}\text{U}\) according to the
we are led to the equation:

\[
\frac{N_{143}}{N_{149}} = \frac{N_{235}}{N_{233}} = \frac{N_{233}}{N_{149}} \cdot \mathcal{L} \quad (A.2)
\]

where \(\mathcal{L} \) is the fission yield of \(^{147}\)Sm etc., \(\frac{N_{235}}{N_{233}} \) is the ratio of the average \(^{235}\)U concentration during the period of the reaction to its final concentration, \(\mathcal{C}_{149} \) is the \(^{149}\)Sm capture cross section (\(\mathcal{C}_{149} \approx 60 \cdot 10^3 \, \text{barn} \)), and \(\mathcal{L} \gg 10^{-20} \, \text{n/cm}^2 \).

The average value of the ratio \(\frac{N_{147}+N_{148}}{N_{149}} \) exceeds 100, while for the fission products and natural \(^{147}\)Sm equilibrium concentration should be very small. Hence, the average value of the ratio \(\frac{N_{147}+N_{148}}{N_{149}} \) exceeds 100, while for the fission products and natural \(^{147}\)Sm equilibrium concentration should be very small.

The fluence \(\mathcal{L} \) can also be determined from the analysis of the Nd isotopic composition. For example, the \(^{143}\)Nd concentration can be described by the system:

\[
dN_{143}/dt = (\mathcal{L}_{143} \cdot \mathcal{S}_{235} \cdot N_{235} - \mathcal{S}_{143} \cdot N_{143}) dt, \quad (A.3)
\]

\[
dN_{235}/dt = -\mathcal{S}_{235} (1 - \mathcal{L}) N_{235} dt. \quad (A.4)
\]

Here \(\mathcal{S}_{235} \) is the \(^{235}\)U fission cross section, \(\mathcal{C} \) is the "conversion coefficient" - the fraction of \(^{235}\)U formed by the reactions (A.1).

Adopting several simplifying assumptions (giving an uncertainty about 20%) one can determine \(\mathcal{L} \) and \(\mathcal{C} \) from the measured isotopic composition of \(^{235}\)U and \(^{149}\)Sm.

The fluences determined in such a way are about \(10^{21} \, \text{n/cm}^2 \). They vary smoothly across the reactor core showing that the mutual displacement of the different parts of the reaction zone during \(2 \cdot 10^9 \) years was small.
The energy dependence of total cross section of the neutron scattering by 252Th.

Fig. The energy dependence of the 149 thermal (kT=0.025eV) neutron capture cross section caused by uniform shift of all resonances (with parameters 13)
Fig. 5. The variation of the natural uranium isotopic composition (curve I). The same for a sample at Oklo (curve II). As it represents the reaction.

Fig. 4. Six reaction zones known in 1975. Zones No.1 and No.2 had been partially exploited before the discovery of the anomaly.
References

17. R. Maund, E. Berson, ibid., p. 265.
18. J. E. Dusc, M. Neuilly, ibid., p. 357.