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Abstract 
We present a simple method for estimating uncertainty in 

modeling and forecasts based upon an analysis of errors 
in old measurements and projections. Probabilities of 

large deviations are parametrized by an exponential 

function with one free parameter. We illustrate this 
formulation by quantifying uncertainties in national 

population projections and by estimating the probability of 
extreme sea-level rise resulting from global warming. 

1 Introduction 

Science policy frequently hinges on reliable assessment 
of the uncertainties in predictions derived from model 
based forecasting 11.21. Our analysis of several datasets of 
physical measurements. U.S. energy demand, and 
population projections [3-61, shows that there is a general 
pattern of overconfidence in empirical probability distribu- 
tions. The errors are manifest in the normalized deviations 
of the new values from the old ones. Although the exact 
causes of such errors are specifii to each discipline, the 
pattern of overconfide~ in measurements and model 
results are common. We find that the probability of large 
deviations from the expected means can be conveniently 
parametrized by exponential functions. In this paper we 

build on earlier work [l-7] and develop an empirical 
method of quantifying the uncertainty in a time-series of 
historical forecasts for which the actual values are now 
known. The goal here is to illustrate the method by 
applying revised uncertainty estimates to curmnt 

forecasts. 

2 Distribution of Uncertainties in Physical 
Measurements 

A convenient measure of the deviation of “old” values 
from the “true” values is x = (a - Al/A, with a the exact 
value, A the previously measured value, and A the old 
standard error. For physical measurements, it is usually 
assumed that x values follow normal distributions. We 
recently analyzed several datasets of physical mea- 
surements 13-63. The results indicate that large deviations 
from the previously estimated values occur much more 
often than is predicted by the Gaussian distribution. This 
is illustrated in Figure 1 where the “empirical” cumulative 
probability distributions of 1x1 for five datasets derived 
from nuclear physics are shown together with the 
cumulative Gaussian curve, which obviously grossly 
underestimates probability of large deviations (see 151 for 
details regarding these data). The discrepancy between 
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the Gaussian distribution of uncerknties and distributions 
observed experimentally cannot be removed simply by 
inflating the normal distribution by increasing its variance. 
Eva an inflated Gaussian distribution is a poor fit to the 
data: as seen in Figure 1 the data follow exponential 
distribution which is a straight line in semi-log plots while 
Gaussian curves are parabolic. 

Bukhvostov [Sl and Shlyakhter and Kammen 13.41 put 
forward simple arguments to justify an exponential 
parametrization. Let us assume that the mean, A. is 
unbiased but that the estimate of the true standard 
deviation, A’, is randomly biased by systematic errors with 
a distribution f(t) where *AI/A. Bere A is the estimated 
standard deviation. In other words we assume that 
I=@-AI/A’ follows the standard normal distribution while 
x values follow a normal distribution with standard 
deviation t: 

X2 -- 

p,(X) = IL e 2t2(l) 

@cc 

Integrating aver all values of t gives a compound 
distribution: 

-2 P(X)=-& o s -“t” f(&% 
(2) 

If f(t) has a sharp peak near t=l, FIq. (2) reduces to the 
normal distribution. If f(t) is broad, however, the result is 
different. For simplicity, we shall consider only the 
asymptotic behavior of p(x) when / x I >>l. In this case, 
the value of the integral in Eq.(2) is determined by the 
asymptotic behavior of f(t) as t+m. since for small t the 
exponent is nearly zero. Let us assume that for t >> u f(t) 
follows a Gaussian law: 

- t2 (31 

unlmownsystematiccomponentofthetotalerrorand 
quantifiestbeunce&mybintheestimatiatofA.At 
1 x 1 >>l the mahl contribution to the integral iu Eq.(l) 

comes from the vicinity of the saddle point whem the 
exponential term reaches a maximum (for t=L: 
t?-=u 1 x ( ). For 1 x I ~1, the probability distribution is 
not Gaussian but e~onenfiul: 

- 2-c I 

p(x)- U 
(4) 

In this paper we use a truncated normal distribution for 
f(f); where f(t) is zero for t<l and follows Gaussian 
distribution with the mean value f=l and standard 
deviation u for t>l (multiplied by a factor of two to 
maintain the proper normalization of the probability 
density). Formally, we have: 

l?(t) =o, ts1 

4-- 

(t-1)2 
f(t)= $& 

-- 
2u2 ,t>1 

(5) 

This choice off(t) is consistent with Eq. (2) and reflects 
the fact that kl is highly improbable as it corresponds to 
under-confidence (estimated standard deviation A’ < A) 
and negative values of t that are physically impossible. 
Note that in [4] we used slightly different form of f(t) 
(truncated at t=O instead of t=l). A family of JTt) for 
different u values is shown in Figure 2. The 
parametrization chosen here has the advantage that the 
effect of truncation does not depend on the value of II. 
Integrating Eq. (2) gives the cumulative probability S(X) 
of deviations exceeding 1 x ) : 

f(t)=e 2uL '- 
For 1~0 Eq. (6) is reduced to S(x)=erfc( 1 x I/42) and the 

where u=WA. The new parameter u, comprises the 
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probabiity distribution is Gaussian. On a logarithmic scale 

this curve is parabolic while the exponential curves ( ) x I 
> 0) are linear. As shown in Fii 2, at u-1 Gaussian 
distribution unmtes the probability of extreme 

events (x25) by several orders of magnitude. 
The normal (u = 0) and exponential (I( > distributions 1) 

are members of a single-parameter family of curves (see 
Figure 2). For quick estimates for u 2 1. x 2 3. one can 
use the approximation e-lx1 K0.7n + ‘.@. In this framework 
the parametric uncertainty can be quantified by analyzing 
the record of prior projections and estimating the value of 
u. Our previous analysis shows that 1( - 1 for physical 
constants and 1( - 3 far current models of population 
growth and forecasts of the U.S. energy supply and 

demand 13-61. Thus, while u is not the same for different 
types of forecasts, these data exhibit a consistent 
functional fat-m that can be easily computed from a set of 
past projections and subsequent measurem entsofthetrue 
values. 

3 Parametrization of the Distribution of 
Uncertainties in the Forecasts 

Uncertainty in future forecasts is defined less formally 
than uncertainty in physical measumme nts. Ill this section 
we develop an algorithm for analysis of the distribution of 
x values derived from hitical forecasts. We estimate the 
standard deviation A of an equivalent normal distribution 
and then draw the empirical probability distributions of the 
deviations of the old forecasts from the true values 
normalized by A. A comparison of the empirical &quency 
of large deviations from the predicted values with the 
normal distribution allows au analogy with the well- 
understood case of stochastic uncertainties. 

Uncertainty in the forecasts is usually presented in the 
form of “reference,” “lower” and “upper” estimates (RR, L. 
and U respectively) tbat ate obtained by running a model 
with different sets of exogenous parameters (e.g. the 
annual rate of growth or the size of a carbon emissions 
tax). The range of scatter around the reference value R 
does not formally define a Gaussian standard deviation 

because the fundamental uncmtahties involved (e.g. the 
rate of future econumic growth) am frequently not 
stochastic. However. it is reasonable to assume that the 
range of parameter variation presented by a forecaster 
represents a subjective judgment [1.291 about the 
probability that the true value T E IL. VI. Generally, 
lower and upper bounds present what is believed to be au 
“envelope” most lily to bracket the true value aud 
in&de the majority of possible outcomes. 

The standard deviation of the equivalent normal 
distribution is calculated as follows: 

a) Specify the subjective probability a that the true 
valw will lie between the low Q and high (v) esti- 
mates. We assumed a=68%; larger values of a increase 
the discrepancy between the Gaussian model and that 
calculated by this method. 

b) Draw an equivalent normal distribution that would 
have a specified cumulative probability a between L and 
U. For a = 68% the standard deviatim of the equivalent 
normal distribution is (‘U - L)/z. Therefore this choice of 
u corresponds to the usual practice of splitting the 
uncertainty range in half and using it as a surrogate of 
standard deviation 

c) If the reference value (R) is not in the middle of the 
(L. U) interval use two separate normal distributions 
truncated at zero: “left half” for (L, R) interval and 
“right half’ for (R, U) interval each having a/2 as the 
cumulative probability. 

The new (inflated) confidence intervals are calculated 
by estimating u from the historical data and calculatiug 
the new low (LN) and new high (UN) limits as follows: 

LN=R-Z(R-L) 
UN=R+Z(U-R) 

where the inflation factor Z can be read from the curves 
inFigure2.Forthea confidence interval, Z is the ratio 
of 1 x(u) I/ 1 x(11=0) 1 ,*. For a=095 this gives: Z = 1.9; 
3.0; 4.1; and 5.2 for u = 1. 2. 3.4 respectively. 

Note that in estimating u values we assumed u=68% 
for the old forecasts but for the current projections we 
assume a=95%. In this way we account for the 
(hopefully) improved reliability of more recent forecasts. 
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Had we assumed u=95% for the old forecasts. the derived 
standard deviatimrs would be two times smaller and all x 
values would be two times larger. The resulting u values 
and the corresponding inflation factors would be also 
larger than the ones we used. 

4 Analysis of Population Projections 

The data base of population projections provides an 
opporhmity both to test our method by calculating the 
cumulative probability distribution for past estimates and 
to compare the results to existing census figures. From this 
analysis we hope to develop a picture of the uncerkty in 
the projections of future population growth. We analyzed 
United Nations population projections for the year 1985 
that can save as the set of “exact” values. a. made in 

1972 1101. The population data base includes projections 
from 164 nations with population exceeding 100.000 
presented in the form of “high” and ‘medium” and “low” 
variants for each nation Data for 31 cotmtries was 
excluded due to extreme errors (up to j x 1 = 300) that 
resulted from unanticipated international migration (fre- 
quently war refugees between relatively small nations), 
reliability questions surrounding particular census efforts, 
and cIear cases of politically motivated reporting bias. 
Data for 133 nations satisfying the criteria ( x ) < 10 are 
included in the present study. 

Because ah the population estimates come from an 
authoritative source, namely the United Nations, it might 
be expected that systematic errors would be small, 
representing a well-calibrated model. The uncerknty, 
however is very large, characterized by -3. Data for 37 
industrialiied cmmtria where data are generally more 
reliable (see Figure 3) show slightly less surprise and are 
well described by exponential with u-3. 

Gur method can be applied to curtent population 
projectiars by inflating the estimated uncerknty range by 
a numerical factor of about four. This results in revised 
95% confidence intervals. For example, the UN 
projections 1101 for population of France in the year 2005 

give the lower estimate I-=57.% million. reference value 
R=58.86 million, and the upper value Ua59.65 million. 
Conservatively assuming that this range represents 95% 
subjective confidence interval of the forecasters. the new 
95% lower limit (LN) and upper limit (UN) can be 
obtained as LN=R-4.1 *(R-L)= 55.20 million, 
UN=R+4.1. (U-R)=62.11 million. The factor 4.1 can be 
read from Figute 2; it is the ratio of x values carespond- 
ing to cumulative probability value S=O.O5 for u=O 
(x,,,=l.%) and u=3 (x,,=8.2). Incidentally, for 1972 
PFojections for the French population in 1985 x=-5.3 so 
that large deviations fran the previous projections for this 
country almdy OccmTed. 

5 Sea-level Rise 

EMmating changes in global sea-level due to 
greenhouse warming is a natural application of this 
technique of uncerknty chamcterization. The causal 
sequence leading to sea-level rise is as following: 
population -> emxgy production -> CO, emissions -> 
greenhouse warming -> sea-level rise. Roughly speaking. 
one can present the sea-level rise as a product of five 
factors: 

h-Population. (B) . t-&g . (+$ (-$ 

(7) 

The first factor is the world population; the second factor 
is energy production per capita; the third factor is CO, 
emissions per unit energy production; the fourth factor is 
temperature inmase AT per unit rise in CO,; the fifth 
factor is sea-level rise per unit temperature increase AT. 
For each factor there are uncertainties in the respective 
models. In particular the last two factors include 
uncertainties in physical models of climate system and 
sea-level that our analysis suggests should be prudently 
described by u-l. We shall illustrate the effect of 
expanded confidence intervals by application of our 
method to the results of Oerlemans 1111 who assumed 
Gaussian uncertainties in the physical model for sea-level 
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rise. He used a simple fit to temperature perturbation 
based on a ‘Business-as-Usual” [121 scenario for the 
emission of gme&use gases: T = cz(t - 1850)‘. where t 
istime,a=27x108”Kyr’3andAis35%ofthemean. 
The uncertainty in individual contributions to changes in 
sea-level are characterized by independent normal 
probability distributions, heace: A2 = A2* + A’, + A2- 
+ A2,, + A2aP + internal variability. The subscripts refer 
to the effect of glaciers. the Antarctic. Greenland and West 
Antarctic ice sheets and thermal expansion of sea water. 
Letusassumethattheunsuspectederrorsinhismodel 
(which describes the complex properties and interactions 
oficesheetsandoceanwater)arenosmallerthanthosein 
measurements from nuclear and particle physics. This 
ignores uncertainties in other factors and therefore 
provides only a lower estimate of the true uncertainty. 

Q&mans projects sea-level rises with errors comparable 
to the estimates themselves: 33 f 32 cm in 2050 and 65 f 
57 cm in 2100 [ 111. Extreme sea-level rise, of perhaps 150 
cm in 50 years. is of prime regulatory concern. A 
comparison of Gaussian and exponential threshold 
probabilities for sea-level rise by 2050 aud 2100 A.D. is 
presented in Figure 4. We find that the Gerlemans’ 
Gaussian model siguificantly underestimates the true 
probability distribution. 

6 Summary 

Fundamental physical constants appearing in the laws of 
nature am generally considered to be the most reliably 
known parameters, yet analysis of the history of 
measurement error and bias indicates widespread 
overconfidence in the accur~y of our knowledge. Similar 
effects are even more striking in energy and population 
projections. The approach taken here, that of estimating 
the parameter u, provides a “quick and dirty” method to 
quantify the uncertainties in scientific models. Gur 
findings suggest that the parametric uncer&ty of curmnt 
models could be quantified by analyzing the record of 
prior projections and estimating the value of u. From the 

Figures 1 and 3 we see that u - 1 for physical carstauts 
and u - 3 for current models of population growth. It is 
thegoalofthispapertoencourageotherresearchersto 
quantify the predictive capabilities of their models by 
utilizing the historid trends in parameter values from 
previous studies. 
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Figure 1: Probability of unexpected results in physical measurements. The plots depict the 
cumulative probability, S(x)=J,“p(t)dt, that new measurements, a, will be at least 1 xl standard 
deviations, A, away from the old results, A; 1 x 1 I (a - AJA as defined In the text. The cumulatfve 
probability distrlbutfons of 1x1 are shown for the five data sets: elementary partldes data (heavy 
sotid line); magnetic moments and Ilfetlmes of excited nuclear states (respectively heavy centered 
line and heavy dotted We), neutron scattering lengths (heavy dashed line), and average neutron 
resonance parameters (solid line). Also shown is the Gaussian cumulative curve (light solid line 
with markers). Gee [5] for further detalls. 
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Figure 2: One-parameter family of probabtltty distributions. u quanttftes the uncertainty in the Figure 2: One-parameter family of probabtltty distributions. u quanttftes the uncertainty in the 
standard devlatlon of the Gausstan dlstrlbution (Eqs. (43)). The values of u are indicated in the standard devlatlon of the Gausstan dlstrlbution (Eqs. (43)). The values of u are indicated in the 
figure. The curves demonstrate the continuum of probablllty dlstrfbutfons: from Gausslan (MI) to figure. The curves demonstrate the continuum of probablllty dlstrfbutfons: from GaussJan (uug) to 
exponential (u s 1). exponential (u s 1). 
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Figure 3: Populatlon proJections. The plots depict the cumulative probablllty, S(x)=J,“p(t)dt, that true 
values (T) will be at lsast 1 x 1 standard devlatluns (A) away from the reference value of old 
proljections (R). The population data bass Is descrlbsd In the text. The cumulative pmbabfllty 
dlstrlbutlons of 1x1 are shown for the total dataset of 133 countries (heavy sdld Ilne) and for a 
subset of 37 Industrlallxed countries (heavy dashed line). Also shown Is the Gaussfan curve (Ilght 
solld line wlth ma&srs) and the curve ue3 from Figure 2 (Ilght sofld llns). 

threshold rise (cm) 

Figure 4: ProjectIons of sea-level rfse for 2050 AD. and 2100 AD. The probability of a sea-level 
rlss greater than a glven threshold are plotted for the normal probablllty (20!50: thin solld line; 2100: 
&In dashed line) and for the exponential dlstrlbutlon e- x I Ina which approximates ths curve lc31 In 
flgure 2. (2050: hsavy solld line; 2100: heavy dashed line). Our flt to Os~Iemairs’ calculation for 2050 
A.D. results In seslevsl dse of 33 f 26 cm, and for 2100 66 f 48 cm. The uncertainty In pammster 
values does not preclude a fall In sea-level (a negative sea-level rlsei). 
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