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Abstract 
We apply a novel method of uncertainty 

parametrization and analysis to time-series data of 
recent supply and demand projections for the 
United States’ energy sector. Based on 
determinations of the actual uncertainties in past 
forecasts (1983-l 990) of over 170 energy producing 
and consuming sectors of the U. S. economy we 
develop a simple one-parameter model that can be 
used to estimate a probability distribution for future 
projections. 

1 Introduction 

Forecasting future energy consumption is a 
prerequisite for many major economic and policy 
decisions such as how best to reduce carbon dioxide 
emissions to alleviate global warming, or how best to 
stimulate the pace of development of alternate sources of 
energy. Sophisticated modeling systems are used to 
produce the most realistic possible projections. Model 
reliability is limited, however, in part because of the 

unce6ntiesinherentinanypro~tion[11. Theranged 
mcertahty is usually estimated by nmning the model 
first under a set of assumptions deemed the most realistic 
(the Base or Reference case) and then under a few 
seemingly less probable but still reasonable assumptions. 
This procedure is commarly utilized to map out a 
confidence interval c&n summarized by High and LOW 
estimates. The resulting ensembk of estimates, however, 
does not constitute a classical statistical sample, and can 
only be used to obtain a subjective characterization of the 
true probabilities. 

The outputs of energy supply and demand models and 
forecasts are frequently used as input to decision theoretic 
models ar art7 directly cited in policy analysis. Decision 
theory, however, requires that probability values be 
assigned to each alternative before risks and benefits cau 
be compared [21. A lack of formal statistical probability 
distributions for projections or extrapolations is 
enanmtered in a variety of disciplines. and various 
attempts have been made to surmount the msuhing 
difficulties. including the elicitaticar of “subjective 
confiidence intervals” 131 for model parameters. 

It is well known, however, that there is a strong 
tendency for researchers to underestimate uncertainties in 
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results, increasing the probability of “surprises” and 
decreasing the -s of the forecasts 13-51. In this 
paper we build on earlier work la-91 and develop a 
methodtoquautifytbeummtaintyinatime-seriesof 
historical forecasts for which the actual vahles are now 
known or can be estimated (see 1101 for further details). 
The goal here is to apply revised uncer&Q estimates to 
modifyforecastsoffuttneenergysupplyand&mandto 
reflect the prior Level of model accuracy. 

The implicit assumption made in our work is that an 
estimate of the reliability of predictions can be derived 
from an exnmination of the way in which similar 
predictions made in the past actually turned out. Thus. 
this paper divides naturally into two parts: the 
char~txizatial of -ty, particularly for low 
probability events; and application of our method to an 
existing set of fotecasts. 

2 ProbabiWy Distributions 

Uncertainty in energy forecasts is usually presented in 
the form of “reference,” “lower” and “upper” estimates 
(R. L. and U respectively) that are obtained by running 
a model with different sets of exogenous parameters (e.g. 
annual rate of growth or the sire of a c&on emissions 
tax). Following [9,10] we assume that the range of 
parameter variation used by a forecaster represents a 
subjective judgment about the probability that the true 
value T E [L. v]. We will use the convenient 
normalized measure of the deviation of the “old’ 
(previously measured or projected) values, A, from the 
true value, a: x = (a - A)/A. In this paper we will 
determine the actual distlibution of n values from 
historical energy forecasts and show that it can be 
conveniently fit with exponential functions. 

We apply this approach to the largest coherent set of 
US energy forecasts far the year 1990 A.D., the Annual 
Euergy Outlook (AHI) published by the U. S. 
Department of Energy [ll]. We then estimate the 
“credibility intervals” for future projections. The AL!0 is 
compiled using an integrated energy modeling system 
which includes supply modules for oil. coal. gas. and 
electricity markets, and a set of energy demand models. 
The supply models determh~ supply and price for each 

fuel conditional upon consumption levels, while the 
demaud m&Is determine cunsumption conditional upon 
end-use price. ‘Lbe forecasting module solves for market 
equilibrium for each fuel by balancing supply and 
demand to produce au energy balance for each forecast 
year [II]. 

The low, refererrze. and high (L. R. U. respectively) 
sceuariofomcastsareaggregatedbyfuelty-pewithinthe 
supply module, and by end-use within the demand 
module. Over 170 separate supply and demaud sectors 
are inch&d in the model [ill. To assign a probability 
interval to (U - L) we follow the procedure described in 
[93 and construct a normal distribution with mean. 
(L+U)/2. (generally equal to the reference case R) aud 
standard deviation, A, in such a way that the area 
between L and U is equal to a specified probability value, 
a. For a=95%. A+-LY3.92, for a=68%. A=(u-LY2.0, 
and for a-SO%. A=(&LY1.35. We shall use a&% in 
this paper and therefore calculate x=2-CT-R)/(U-L) where 
a is the actual value observed for the year in which L. R, 
U am forecast. This choice of a correspandstotheusual 
practice of splitting the difference between high and low 
estimates and using half this interval as a surrogate for 
the standard deviation. If the reference value, R, does not 
coincide with the mean value, (L+U)/2. then x depends 
on the sign of deviatiao T-R &T-R)/(R-L) for R > T 
and x=(T-R)/(U-R) if R < T with L < R c U assumed for 
both cases. 

3 Results 

We analyzed the AEO projections for 1990 made in 
1983.1985. and 1987 that consisted of 182.185. and 177 
energy producing or consu&q sectors of the U.S. 
economy respectively. The variation in the number of 
sectors resulted because tk low and high projectim 
coincided in some cases, and no corresponding 
tmcdainty range could be derived. In 47, 50. ark-l 47 
cases respectively, the x value exceeded 100; we 
conservatively assumed that this was not simply 
parametric uncertainty and omitted these cases. For all 
remainingcasesthexvalueswemcalculatedandthe 
frequency distributions analyzed. 

Figure l(a) demonstrates that tbe distribution of signed 
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xvalues is approximately symmetric with respect to zero; 
there is no large systematic bias (e.g. a gross 
underestimation of energy consumption in all or many 
sectors). The correlation structure of the ceaors between 
the 1983-1985.1985-1987, and 1983-1987 AEO forecasts 
for 1990 are showu in Figures l(b) - (d), respectively. 
The scattergrams ale for signed X values less than 10. 
The largest linear correlation corzfficiex& r = 0.55, is 
observed between the 1983 and 1985 forecasts. The lack 
ofconsistenttrendsinthescattergramsofxvaluesafter 
the earliest model years is good evidence that the 
forecasts are g-rally independent. 

Fv 2 shows the cumulative probability distributions 
of 1 x 1 for the projections made for 1990 in 1983.1985, 
and 1987 together with the Gaussian and exponential 
distributions. The the empirical distributions are 
strikhgly similar. The similarity could be due in part to 
the modest carelation between the 1983 and 1985 
forecasts (Figure l(b)) although the lack of any such 
correlation between either of the later two forecasts 
(Figmes l(c) and (d)) suggests that this is not the case. 
Although the absolute error in forecasts made in 1987 for 
1990 is somewhat smaller than made in 1983 for 1990, 
therangeof UIlcertainty is also smaller so that probability 
of “large” deviations Felative to the observed uncertainty 
is roughly the same as for the other two years. Initially 
we expected that energy farecasts for aggregated sectors 
of economy would be more reliable than projections for 
individual sectors. However, we found this not to be the 
case (Figure 2, heavy dahzd line). 

To illustrate how the exponential fuuctional form 
might arise consider a set of estimates with the mean A 
and standard deviation A (see [91 for further details). 
Assume that the mean is unbiased but that the estimate 
of A is randomly biased by systematic errors with a 
distributionf(t). The distribution for x = (a - A)/A is then 
no longer a simple Gaussian, but cau be written instead 
as a compound distribution p(x) = r,-, f(t)exp[-x2/2t”ldtit. 
It appears that if fit) is sufficiently broad so that at 
large t: f(t) = 
exp(-t?h?) then we fmd that p(x) a exp(- IxI/u). The 
new parameter, 24, is the relative uncertainty in the 
original standard deviation, A. 

The normal (u = 0) aud exponential distributions (u > 

1) are members of a single-parameter family of curves 
shown in Figure 3. In this framework the parametric 
uncertaiutycanbequ&ifiedbyanalyzingtherecordof 
price projections and estimating the value of u. The 
cumulative probability functions for u 2 1. x Ir 3. can be 
approximated with e-lxlxo.‘.’ + O? Our previous analysis 
showsthatu-1for~ysicalcoastantsandu-3for 
current models of popuhtion growth [6-91. Thus, while 
u is not necessarily the same far diffmt types of 
forecasts, these data exhibit a consistent functional form 
thatcanbe~~~framasetdpastprojectiansand 
subsequent measurem ents0fthetl-WVti.l~. 

4 Application to Existing Forecasts 

Our method can be applied to current and futme AEO 
energy projections by inflating the estimated uncerhnty 
range with u = 3, conesponding roughly to an inflation 
by a factor of four (see the caption of Figure 4 for 
computational details). Far example: in the current (1992) 
AEO the total U.S. production from nuclear power 
projected for the year 2010 is 6.9 Quads with U aud L 
estimates set at 7.5 and 6.7 Quads, respectively [ill. We 
assume that this range corresponds to the 95% confidence 
interval of the forecaster. 

Note that iu estimating u values we assumed a=68% 
for the old forecasts but for the current projections we 
assume ~~95%. In this way we aaxnmt for the 
(hopefully) improved reliability of mane recent fomasts. 
Had we assumed a=95% for the old farecasts. the 
derived standard deviations would be two times smaller 
and all x values would be two times larger. The resulting 
u values aud the comzspondhg inflation factors would be 
also larger than the oues we used. 

Based an u=3 in our compound exponential model we 
then forecast the 95% confidence interval to be from U 
= 9.4 to L = 6.2 Quads, as shown in Figure 4. This 
greatly decreased confidence wsts that without 
significant revision and recalibration it is prudent to apply 
the same skepticism to current and future AEO forecasts. 
These are shown in Figure 4 for three production sectors 
(crude oil. nuclear power and renewables) and three 
consumption sectors (liquified natural gas, coal, aud 
residential electricity). The history of past projections 
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suggests that the production from renewable sources 
(Figure 4(c)) in 2010 AD is expected to lie between 8 
and 12.5 Quads, and may not fall within the parameter 
range 9.8 - 10.8 Quads of AEG analysis. Even this 
estimate is likely to be ovetconfident because of rapid 
developments in this enviromnemally benign production 
sector. 

The revised projections for coal consumption (Figure 
4(e)) are hresting in that the AEO forecasts aheady 
assume some negative environmental pressure on the coal 
industry. We find that in 1992. with no greenhouse gas 
regulations in effect, b = -2.91. This suggests that the 
latest AEO model does not incaporate the uncertainty 
over whether industry can develop new coal technologies 
in the present mcmtain atmosphere. 

While domestic crude oil production has declined by 
almost 20% in the last decade, natural gas and in 
particular liquified natural gas (LNG) production and 
consumption (Figure 4(d)) increased sharply. Although 
the major causes are a decline in readily available oil 
reserves and an increase of known natural gas reserves 
respectively, the trend was iu part driven by changes in 
demand and industry regulatory structure to the point that 
current production and delivery capacity is in excess of 
demand [ll]. The AEO model did not anticipate the 
variability in the demand forLNG: we found that xLNG = 
7.3 for the period 1983 - 1990. 

5 Discussion and Applications 

An examination of past trends in measured values 
permits a characterization of the uncertainty and 
overconfidence in model parameters. Measurements 
from what is generally taken to be the “fundamental 
science” particle physics, provides a useful baseline case 
because physical constants do not change with time [ 121. 
For a time-series set of measurements of elementary 
particle properties we previously 17.81 found u y 1. This 
value might be a reasonable lower limit on the 
uncertainty expected to appear in models involving 
substantial structural uncertainty. 

Economic and environmentaI forecasts involve both 
parametric uncertainty in the models and evolution over 
time of the system. Diit ‘ground truth” measurements 

are available as we pass the target date of an old set of 
forecasts. For energy forecasts and projections of 
population growth [6,7,9] we find that the observed long 
tails a~ welI fit by simple exponential functions with one 
additional parameter. II. which can be interpreted as the 
ratio of unsuspected systematic ernxs to the recognized 
uncertainties. Estimation of u fa: specifii data sets 
provides a measure of the parametric confidence intervals 
that are applicable in scenario planning particularly when 
we are interested in probabiity estimates for events 
expected to lie far from the mean. 

It is interesting to note that u values for three sets of 
projectiaas of the U.S. energy consumption for 1990 
made in 1983.1985, and 1987 that encompass a range of 
different sectors all converge on 1( m 3. Furthermore, 
aggregating several sectors together, does not improve the 
situation. This suggests that although the absolute error 
in the 1987 to 1990 forecasts is smaller than in 1983 to 
1990 forecasts, “degree of overconfidence”, appears 
roughly the same. Note, that the purpose of this exercise 
is not to criticize the AEO; it is. in fact, a remarkably 
useful and sophisticated model. In fact we use the AEG 
model because a careful set of high, reference and low 
estimates are incl~, a practice that all forecasters 
should be required to emulate. Ovemonfidence is 
evidently endemic in model efforts. The goal here is to 
illustrate the problem and suggest methods to correct for 
this tendency. 
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Figure 1: (a) Probability dlstrlbutlon of signed xvalues for Annual Energy Outlook projections. The 
data is an accumulation of the 1993,1995 and 1997 values and is truncated at 14 + 8. (b) cross- 
correlation scattergram between the 1993 and 1995 (19934995) AEO forecasts for signed xvalues 
less than 10; (c) scattergram between the 19954997 AEO forecasts for 1990; (d) scattergram 
between the 19934997 AEO forecasts for 1990. The data demonstrate that there is no significant 
correlation between the 1993 and 1997, and 1995 and 1987 AEO forecasts. The two earllest AEO 
models, from 1993 and 1985, are moderately correiated (linear correlation coefficient, r = 055). 
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Figure 2: Annual Energy Outlook projections. The presentation Is as in Figure 1: 1983 to 1990 
(heavy dotted Ilne); 1985 to 1990 (dashed line); 1987 to 1 gQ0 (solid Me), totals (heavy dashed line); 
compound exponential distrtbution with &3, e -1xi12*7 (0.7~3*0.6=2.7’), (heavy solid line); Gaussian 
(thin soild line with vertical markers). 

Figure 3: One-parameter set of probability distrlbutlons of deviations: parameter u defines the 
uncertainty in the standard deviation t of the Gausslan distribution. The values of u are indicated 
In the figure. The curves demonstrate the continuum of probablllty dlstrlbutions: from Gaussian 
(u=(I) to exponential (u B 1). 
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