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Abstract 2 False-positive results in case-control studies 

The 95% confidence intervals for the Risk Ratios (RR) 

reported in epidemiological studies reflect only sampling 
errors and do not include uncertainty caused by 
misclassification and confounding. Analysis of 
uncertainties in epidemiological studies can be improved 
using Monte Carlo simulations. For case-control studies, 
we show how diflerential misclass@cation of exposure 

status increases the probability of getting a statistically 

signtj?cantfalsepositive result. The misclassification error 

is relatively more important when several studies are 
pooled together. Simulations enable the uncertainties in 
epidemiologic results to be reported similarly to natural 
science where systematic and statistical uncertainties are 
carefully combined. We illustrate this by showing how 
false positives can result from misclasstfication. 

1 Introduction 

The 95 % confidence intervals (95 % CI) for Risk Ratios 

commonly reported in epidemiological literature account 

only for one component of uncertainty, namely the 

random sampling errors caused by the finite number of 

subjects. They describe the statistical precision but tell the 

reader nothing about the validity of the results. 

Investigators always try to minimize the uncertainties 

caused by various possible biases (coming from such 

sources as selection, differential misclassification, and 
confounding), but they do not attempt to quantify the 
effect of the residual biases on uncertainty in the results. 

Such biases can be viewed as analogues of systematic 

errors in physical measurements. 

The quality of data available to researchers in 

observationarl studies is generally lower than the quality 

of data used in experimental science [l]. Unaccounted 

systematic errors probably occur more often in 

observational1 studies than in physical measurements 
[2-41. This is particularly so in multiple studies with 

slightly elevated risks where the signal-to-noise ratio is 

small (e.g. Ienvironmental tobacco smoke). The relative 

magnitude of random and systematic errors can differ 

from study to study; one can expect that systematic 

errors are more important for large studies when 95 % CT 

are narrow. To illustrate how residual biases can cause 

false-positive results in olbservational studies, Shlyakhter 

[4] has performed Monte Carlo simulations of 

case-control studies. Simulations were performed of 

1,000 case-control studies “conducted” on the population 

exposed to a nonharmful agent so that the “true” odds 

ratio OR= 1 (odds ratio is the measure of relative risk in 

case-control studies). The question asked was bow often 

do the 95% confidence intervals cover this true value 

under different assumptions about the fraction of subjects 

for whom exposure status has been misclassified? A 

population sample was considered with 10,000 exposed 

and 10,000 nonexposed subjects and it was assumed that 

both groups have the same small probability, p =O. 01, of 

contracting the disease. For each “case-control study,‘” 
computer simulated the immbers in four cells of the 2x2 

table: exposed cases, a, exposed controls, b, nonexposed 
cases, c, and nonexposed controls, d. 
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The effects of misclassification were simulated by moving 

a random fraction of subjects across the cells of the 2x2 

table. More specifically, it was assumed that the observed 

numbers in each cell are a,, b,, c,, dI. Here a, =a +r,c, 

c, = c(1 -r,), 6, = b +r&, dI =d(l -rJ and r,, r2 are random 

numbers representing the fractions of misclassified 

subjects among cases and controls. 

It was assumed that rl follows normal distribution with 

zero mean and standard deviation ERR truncated at zero 

so that only positive values of r, were allowed. Therefore 

all truly exposed cases were classified correctly but some 

nonexposed cases were classified as exposed. For r, a 

non-truncated normal distribution with zero mean and 

same standard deviation ERR was assumed. This means 

that exposed and nonexposed controls are equally likely 

to give wrong answers about their exposure history. 

Different distributions for cases and controls account for 

the tendency of cases to better recall (and sometimes to 

exaggerate) their exposure history as compared with 

controls. Note that each simulated study has its own 

fraction of misclassified subjects; parameter ERR 

determines only the average rate of misclassification. 

The simulated odds ratio was calculated as OR = a,d,/b,c, ; 

the upper and lower bounds of 95% CI were calculated 

as: ORpxp(~I.96(l/a,+l/b,+I/c,+l/d,)”2). It is easily 
seen that the comparable x value for each study becomes 

ln(RR)/SE(ln(RR)). Accordingly x was calculated as 

x = ln(OR)/SE(ln(OR)) = ln(OR)/(I /a, + 1 /b, + 1 /c, + 1 /d,)‘12 

and the cumulative distribution of x values was plotted. 

The results of 1,000 trials are presented in Figure 1. For 

ERR=O.Ol the Monte Carlo calculation follows a 
Gaussian distribution - as it should. Even for a relatively 
small traction of misclassification (ERR=O. 1) the tails 

extend far beyond the Gaussian distribution and the 95% 

CI corresponds to Z= 3.8 standard deviations instead of 

Z= 1.96 for the Gaussian curve. Moreover, Gaussian 

distribution gives only 1.451Q4 for probability of errors 

larger than 3.8 standard deviations. 

3 Study Size 

The effects of differential misclassification are more 

important for large studies where random errors are 

relatively small. This is illustrated in Figure 2 where the 

probability of false positive findings is shown for 

individual studies with different numbers of cases and 

controls. Fixed 10 % rate of differential misclassification 

was assumed (ERR=O.l). For n=lO, random errors 

dominate and the distribution is close to Gaussian. 

However, for n > 100, random errors fall below 10 % and 

systematic errors become most important. 

4 Pooled studies 

Monte Carlo simulations can also help in understanding 

of uncertainties when several studies are pooled together. 

As before, we simulate studies conducted on the 

population exposed to a nonharmful agent so that the 

“true” odds ratio OR=l. We ask the following question: 

for a given fraction of subjects with misclassified 

exposure status, how does pooling several studies 

together affect the probability that the 95% confidence 
intervals cover this true value? 

We consider a population sample with 10,000 exposed 

and 10,000 nonexposed subjects and assume that both 

groups have the same small probability, p=O.Ol, of 

contracting the disease. For the i-th “case-control study, ’ 

we simulate the “true” numbers of exposed cases, aj, 

exposed controls, b,, nonexposed cases, ci, and 

nonexposed controls, dj and the “apparent” numbers, ali, 
b?,, cri, d,i; the difference between “true” and “apparent” 
numbers accounts for exposure misclassification. For 

each study, we then calculate the simulated odds ratio, 

ORi =a,,d,/b,,c,,, the upper and lower bounds of 95 % CI: 

ORiexp(f1.96(l/a,,+l/b,,+l/c,i+l/d,J”2). 

Summary estimate of OR from n studies pooled together 

is calculated as follows. First, we assign to each study a 

weight, wi=l/var(ln(ORJ); wi is inverse of the squared 
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width of the 95 % CI on the log scale. These weights are 

used in calculation of the summary odds ratio OR and 
95 % cz [S]: ln(OR) = (Cw,ln(OR,))lCw,, 
l/var(Zn(OR)) =C(l/var(ln(ORJ). 

We calculate the normalized deviation from the null value, 

x = ln(OR)/SE(ln(OR)), and plot the cumulative distribution 

of x values. A set of pooled studies will produce false- 

positive results if the apparent value of pooled estimate 

Zn(OR) is more than its two standard errors away from the 

null value. Results of 1,000 trials for individual studies 

(n= 1) and combinations of n=5, n= 10 and n=30 studies 
assuming 5% misclassification rate (ERR=0.05) are 

presented in Figure 3. Probability of a statistically 

significant false positive finding, x > 2, increases from 

12% for n= 1 to 28% for n=S, to 40% for n= 10, and to 

70% for n=30. For comparison, a second set of 

simulations was conducted assuming 2 % misclassification 

rate (ERR=0.02). Results are presented in Figure 4. The 

effect of pooling several studies together is less dramatic 

than in Figure 3 but still large. Probability of a 
statistically significant false positive finding, increases 

from4% forn=l to6% forn=5, tolO% forn=lO,and 

to 24% for n=30. 

5 Summary 

Interpretation of the results of observational studies and 

their use in regulatory risk assessment becomes 
progressively more difficult as epidemiologists deal with 

smaller risk ratios. Currently, the reported 95% 

confidence intervals reflect only sampling errors and do 

not formally include uncertainty caused by 

misclassification and confounding. This makes it hard to 

describe an overall uncertainty in the epidemiological 

result. We apply techniques of Monte Carlo simulation to 

the analysis of the effects of systematic uncertainties in 
case-control studies with slightly elevated risk ratios. We 
show that even a small fraction of subjects with 

misclassified exposure status (differential among cases and 

controls) can cause a considerable fraction of statistically 

significant, but false positive, results. The effect of 

differential misclassification is more important for large 

studies where random errors are relatively small and 

when several studies are pooled: upon pooling, the 

statistical uncertainty is reduced but the misclassification 

uncertainty stays approximately constant. 
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Figure 1: Results of Monte Carlo simulations illustrating the effect of exposure misclassification on the 

frequency of false-positive results in case-control studies. Cumulative probability that apparent 

normalized logarithm of the odds ratio, (OR), x=lnlORI/SEltnlORll exceeds given value is shown for 

several values of the parameter ERR. This parameter represents the average fraction of subjects with 

misclassified exposure status (see Section 2 for details). The true value of OR= I (the risk is not 

elevated). Studies that produce values x>2 are false-positive because the lower bound of the 95% 

confidence interval (95%CI) for OR is above the true value OR= 1. 

1 

0.01 

n= 10 and 
Cumulative 

Gaussian 
(solid line 

w/markers) 

I  I  I  I  

. . . . . . . . . .  / .  

. . . . . . . . . .  . ; .  

__....... :. 

---+ 

) n=i,OOO 
I 

-2 -I 0 1 2 3 4 5 6 7 
x= In(OR)/SE(ln(OR)) 

Figure 2: Probability of false positive findings for individual studies with n cases and n controls. Fixed 

10% rate of differential misclassification was assumed (ERR= 0.1). Systematic errors are more 

important for large studies where errors caused by random sampling are relatively small. 
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Figure 3: Probability of false positive findings in case control studies for indiividual studies (n = 1) and 

combinations of n = 5, n = 10, and n = 30 studies assuming that exposure status was differentially 

misclassified for 5% of subjects (ERR=0.05). 
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Figure 4: Probability of false positive findings in case control studies for indlividual studies (n = 1) and 

combinations of n = 5, n = 10, and n = 30 studies assuming that exposure status was differentially 
misclassified for 2% of subjects (ERR=0.02). 
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