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Abstract - Fluctuations of neutron resonance param- 
eters result in the observed distribution of the thermal 
neutron capture cross sections. The statistical approach 
allowing for  quantitative estimates of unknown thermal 
cross sections is presented. The calculated distribution 
of the cross sections is compared with recent data. 

Estimations statistiques de sections efficaces de 
capture de neutrons thermiques 

Resume - Les fluctuations de paramktres de resonance 
neutronique rbultent dans la distribution observke des 
sections efficaces de capture des neutrons thermiques. 
Une methode statistique est presentke ici permettant 
d’estimer quantitativement des sections efficaces ther- 
miques inconnues. La distribution calculde des sections 
efficaces est comparee aux donnkes acquisa recemment. 

Statistische Schatzungen der Einfangquerschnitte 
thermischer Neutronen 

Zusammenfassung - Schwankungen der Neutronenreso- 
nanzparameter fiihren zu der beobachteten Verteifung 
der Einfangquerschnitte thermischer Neutronen. ff ier 
wird ein statistischer Ansatz fur quantitative Schatzun- 
gen unbekannter thermischer Querschnitte aufgezeigt. 
Die berechnete Querschnittsverteilung wird mit neue 
Daten verglichen. 

At thermal energies neutron cross sections can differ by 
several orders of magnitude even for neighboring nuclei, and 
their exact values are unpredictable. This results from (a) var- 
iations of the strength functions from one nuclide to another, 
and (b) random fluctuations of the positions and widths of the 
low-lying resonances that dominate the thermal cross section. 

In Ref. 1, the statistical approach to the thermal cross-sec- 
tion estimates was developed following the idea suggested by 
Gurevich,2 and later independently by Cook and WaL3 

In this Note, we demonstrate that thermal neutron cross 
sections obey some universal distribution in the same way as the 
reduced neutron widths follow the well-known Porter-Thomas 
law. The main points of the statistical approach are discussed 
with respect to its application for practical estimates. We find 
the calculated distribution of thermal capture cross sections to 
be in good agreement with recent data4-6 (see Fig. 1). 

The main idea of the statistical approach is to account for 
the random fluctuations of resonance parameters by introduc- 
ing the universal probabiliry distribution Pr(z ) .  Here, the 
quantity z = u,/u,‘ is the ratio of the actual cross section of 
the reaction r to its “expected” value a,!‘, the latter being calcu- 
lated for each nuclide individually through its own average 
parameters. In particular, the expected value of the thermal 

Fig. 1. The calculated distribution of the thermal neutron cross 
sections P;”(z) compared to data P<*(z). The dashed lines show 
the asymptotic estimates neglecting the fluctuations of the spacings. 
Data include 180 nuclides,“‘ 94 having zero spin I .  The average 
values of I-dependent coefficients are $ + 3 = 0.67 and C? = 1.13. 

capture cross section is expressed through the strength functions 
of s resonances-So for neutrons and S,, for photons: 

A + 1 2  
0; = A 3 (A) . n:. (&/Eo) I’2S0. s,, 

= 0.40 x 108(-.A) A + 1  .So.Syo 

Here, A is the atomic weight of the target nucleus, ET = 0.0253 
eV is the thermal energy, and Eo = 1 eV. In Eq. (1) we assume 
the following: 

1. All reaction widths are equal to the corresponding mean 

2. The energy spacings between the resonances of the same 

3.  The resonances are located symmetrically with respect to 

values. 

spin are constant. 

the zero neutron energy point. 

Equation (1) can also be derived from Eq. ( 5 )  of Ref. 3 in the 
limiting case of narrow resonances (S,  << l ) ,  which is a rather 
good approximation at thermal energies. 

If the resonance parameters were not fluctuating at all, the 
distribution of thermal cross sections could be described by the 
delta function P y ( z )  = 6(z - l ) ,  so that the thermal capture 
cross section would be exactly calculable with Eq. (1). This is 
not the case, however, because the fluctuations transform the 
delta function into a broad distribution P,(z) .  

An exact analytical expression for P,(z) can be obtained in 
the equidistant resonance model that takes into account the 
Porter-Thomas distribution for the reduced neutron widths and 
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the random position of the thermal energy point between the 
resonances.’ At large z, P,(z) isa 

I +  1 I 
21+1 9 g2=-  2 1 + 1  ’ gl = ~ 

where I is the spin of the target. 

mation: 
At small z up to z = 1,  one can use the following approxi- 

Now let us make some historical notes. The first term in the 
asymptotic Eq. (2) was obtained long ago by Gurevich’ [with- 
out the factor ( 2 / ~ ) ” ~  = 0.8 rising due to the fluctuations in 
the reduced neutron widths unknown at that time]. Later, 
Musgrove’ derived the analytic expressions for the thermal 
cross-section moments. For the realistic values of S, (S, << 1 1, 
the extremely large variances made “useful predictions of the 
absorption probability for thermal neutrons impossible.”’ 
(Note that in our model the variance of thermal cross sections 
is infinite, but this does not prevent quantitative predictions of 
the probability to find the unknown thermal cross section 
within the given range.) Cook and Wall3 used the Monte Carlo 
simulation of the thermal capture cross sections to obtain 
P,(z).They did not take into account, however, the random 
position of the first resonance and the fluctuations of spacings 
between the adjacent resonances. Analytic expression for P,(z) 
(neglecting the fluctuations of resonance spacings) was first 
derived in Ref. 1. 

The Wigner distribution of resonance spacings was taken 
into account by the Monte Carlo simulation of the cross sec- 
tions. In Fig. 1, the calculated distribution is given, which 
accounts for 400 resonances. Estimates, based on asymptotic 
formulas (2 )  and (3), which neglect the fluctuations of spacings, 
are presented for comparison. It can be seen from the figure 
that these simple formulas are sufficiently accurate. Thus, we 
recommend using Eqs. (2) and (3) for the approximate estimates 
of the probability of the possible deviations of the actual cross 
sections U, from their expected values Q,*. 

In Ref. 1, the calculated distribution P,(z) was compared 
with data4*’ for 105 nuclei for which both the thermal neutron 
capture cross sections and average parameters are known. 
Because of an insufficient number of such nuclides, we were 
forced to compare not the probabilities P,(z) but rather the 
cumulative distribution functions 

A compilation6 containing far more complete and reliable data 
became available recently, so we can extend our statistics to 180 
nuclides ( A  2 40) and obtain the probability distribution P,(z) 
itself. 

We conclude that the agreement of the calculated thermal 
cross-section distribution PTH(z) with experiment is rather 
satisfactory (Fig. I ) ,  although splitting of data into z intervals 
still remains too coarse for detailed comparison. 

Eq. (2), the erroneous coef_ficients of Eq. (22) of Ref. 1 :ere 
corrected. Besides, the term 1/(8Z2) must be replaced by 5/(8Z2).  

Fluctuations of neutron resonance parameters following 
from the statistical model8 are responsible for the broad distri- 
bution of the thermal capture cross sections. This distribution 
is observed experimentally. Hence, the statistical approach can 
be applied to the excited states located near the neutron bind- 
ing energy for all medium and heavy nuclei. The probability 
distribution P, ( z ) ,  together with Eq. ( l) ,  can be used for the 
quantitative estimates of the probability to find the unknown 
thermal cross section within the given limits. 
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Abstract - An algorithm is derived for  implementing 
nodal-transport methods in multidimensional geome- 
tries more efficiently than with current algorithms. The 
cellwise storage and computational penalties of the 
nodal methods are reduced significantly. Central pro- 
cessing unit time is reduced two to four times over the 
direct nodal algorithm with a constant surface- f lux 
approximation, and the number of coefficients required 
is reduced two fold. The corresponding reductions are 
even greater when the new algorithm is utilized in the 
linear surface f lux nodal method. Results of testing in 
two- and three-dimensionaI rectangular geometry are 
presented. 


