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Abstract. SAT solvers have been ranked primarily by the time they
take to find a solution or show that none exists. And indeed, for many
problems that are reduced to SAT, finding a single solution is what mat-
ters. As a result, much less attention has been paid to the problem of
efficiently generating all solutions.
This paper explains why such functionality is useful. We outline an ap-
proach to automatic test case generation in which an invariant is ex-
pressed in a simple relational logic and translated to a propositional
formula. Solutions found by a SAT solver are lifted back to the rela-
tional domain and reified as test cases. In unit testing of object-oriented
programs, for example, the invariant constrains the representation of an
object; the test cases are then objects on which to invoke a method under
test. Experimental results demonstrate that, despite the lack of attention
to this problem, current SAT solvers still provide a feasible solution.
In this context, symmetry breaking plays a significant, but different role
from its conventional one. Rather than reducing the time to finding the
first solution, it reduces the number of solutions generated, and improves
the quality of the test suite.

1 Introduction
Advances in SAT technology have enabled applications of SAT solvers in a vari-
ety of domains, e.g., AI planning [11] or software verification [21]. These appli-
cations typically use a solver to find one solution, e.g., one plan that achieves a
desired goal or one counterexample that violates a correctness property. Hence,
most modern SAT solvers are optimized for finding one solution, or showing that
no solution exists. That is also how the SAT competitions [1] rank solvers.

We present a novel application of SAT solvers in software testing. Our appli-
cation requires a solver that can enumerate all solutions. We find it surprising
that most modern SAT solvers, including zChaff [15], BerkMin [8], Limmat [3],
and Jerusat [16], do not support solution enumeration at all, let alone that they
do not optimize enumeration. We hope that our application can motivate re-
search in solution enumeration.

Software testing is the most widely used method for establishing correctness
of programs. It is conceptually simple: just create a test suite, i.e., a set of
test inputs, run them against the program, and check if each output is correct.
However, manually generating test suites is tedious, and automated testing can
significantly reduce the cost of software development and maintenance [2].
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We have developed the TestEra framework [14] for automated specification-
based testing [2] of Java programs. To test a method, the user provides a spec-
ification that consists of a precondition (which describes allowed inputs to the
method) and a postcondition (which describes the expected outputs). TestEra
uses the precondition to automatically generate a test suite of all test inputs up
to a given scope; a test input is within a scope of k if at most k objects of any
given class appear in it. TestEra executes the method on each input, and uses
the postcondition as a test oracle to check the correctness of each output.

TestEra allows users to give specifications as first-order logic formulas. As
an enabling technology, TestEra uses the Alloy toolset. Alloy [9] is a first-order
declarative language based on sets and relations. Alloy Analyzer (AA) [10] is
a fully automatic tool that finds instances of Alloy specifications, i.e., finds
assignments of values to the sets and relations in the specification such that
the formulas in the specification evaluate to true. AA finds an instance by: 1)
translating Alloy specification into boolean satisfiability formula, 2) using an
off-the-shelf SAT solver to find a solution to the formula, and 3) translating the
solution back into sets and relations. AA can enumerate all instances (within a
given scope) using a SAT solver that supports enumeration, e.g., mChaff [15].

TestEra translates Alloy instances into test inputs. Some of these inputs are
isomorphic, i.e., they only differ in the identity of their objects, e.g., two lists
that have the same elements (more precisely isomorphic elements) in the same
order are isomorphic regardless of the identity of the actual nodes in the lists. It
is desirable to consider only non-isomorphic inputs; it reduces the time to test
the program, without reducing the possibility to detect bugs, because isomorphic
test inputs form a “revealing subdomain” [2], i.e., produce identical results. AA
has automatic symmetry breaking [17] that eliminates many isomorphic inputs;
we discuss this further in Section 2.1.

We initially used TestEra to check several Java programs. TestEra exposed
bugs in a naming architecture for dynamic networks [12] and a part of the
Alloy-alpha analyzer [14]; these bugs have now been corrected. We have also
used TestEra to systematically check methods on Java data structures, such as
from the Java Collection Framework [20]. More recently, we have applied TestEra
to test a C++ implementation of a fault-tree solver [7] and a system for data
management in distributed environments (industrial study covered by a NDA).

We already presented TestEra [14] as an application of SAT solvers in soft-
ware testing. This paper makes the following new contributions:

– We describe a compelling application of SAT solvers that suggests that so-
lution enumeration is an important feature that merits research in its own
right. To the best of our knowledge, this is the first such application.

– We provide a set of formulas that can be used to compare different solvers in
their enumeration. According to the categorization for SAT competitions [1],
our formulas fall into the (satisfiable) “industrial” benchmarks.

– We show how TestEra users can completely break symmetries, such that
each solution of a boolean formula that encodes test inputs corresponds to
a non-isomorphic input.
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Fig. 1. Basic TestEra framework

2 TestEra

Figure 1 illustrates the main components of the TestEra framework. Given a
method precondition in Alloy, TestEra uses AA to generate all instances that
satisfy the precondition. TestEra automatically concretizes these instances to
create Java objects that form the test inputs for the method under test. TestEra
executes the method on each input and automatically abstracts each output
to an Alloy instance. TestEra then uses AA to check if this instance satisfies
the postcondition. If it does not, TestEra reports a concrete counterexample,
i.e., an input/output pair that violates the correctness specification. TestEra
can graphically display the counterexample, e.g., as a heap snapshot, using the
visualization facility of AA.

2.1 Symmetry Breaking
AA adapts symmetry-breaking predicates [6] to reduce the total number of in-
stances generated—the original boolean formula that corresponds to the Alloy
specification is conjoined with additional clauses in order to generate only a
few instances from each isomorphism class [17]. There is a trade-off, however:
the more clauses that AA generates, the more symmetries AA breaks, but the
boolean formula also becomes larger, and it can become too large so that solv-
ing takes more time, although there are fewer instances. The goal of symmetry
breaking in AA was to make the analysis faster and not to generate exactly
non-isomorphic instances. Therefore, with default symmetry breaking, AA can
significantly reduce the number of instances, but it is not always optimal, i.e., it
sometimes generates more than one instance from some isomorphism classes.

AA has a special support for total orders: for each set {a1, . . . , an} of n
elements that is declared to have a total order, AA generates only one order
{〈a1, a2〉, 〈a2, a3〉, . . . , 〈an−1, an〉}, out of n! (isomorphic) orders. This support
has been used for faster analysis. We show in Section 3.1 how TestEra and Alloy
users can also use total orders to constrain specifications such that AA generates
exactly one instance from each isomorphism class. Conceptually, the idea is to
conjoin Alloy specification with additional constraints such that AA generates,
from each isomorphism class, only the instance that is the smallest with respect
to the total orders on the sets whose elements appear in the instance.
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3 Example

We next show a simple example that illustrates the use of TestEra. Consider the
following Java code that declares a binary tree and its removeRoot method:
package testera.example;
class BinaryTree {

Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child

}

void removeRoot() { ... }
}

Each object of the class BinaryTree represents a binary tree; objects of the inner
class Node represent nodes of the trees. For these classes, TestEra produces the
following Alloy specification:
module testera/example/BinaryTree
sig BinaryTree {
root: option Node,
size: Integer }

sig Node {
left: option Node,
right: option Node }

The declaration module names the specification. The keyword sig introduces a
signature, i.e., a set of indivisible atoms. We use Alloy atoms to model objects
of the corresponding classes. Each signature can have field declarations that
introduce relations between atoms. By default, fields are total functions; size

is a total function from BinaryTree to Integer, where Integer is a predefined
signature. The modifier option is used for partial functions (and the modifier
set for general relations); e.g., root is a partial function from BinaryTree to
Node. Partiality is used to model null: when the Java field root of some object
b has the value null, i.e., points to no object, then the function root does not
map the atom corresponding to b to any other atom.

The method removeRoot has only the implicit this argument, which is a
BinaryTree. We consider a simple specification for this method: both precondi-
tion and postcondition require only that this satisfy the representation invariant
(also known as class invariant) [13] for BinaryTree. A predicate that checks the
invariant is typically called repOk (or checkRep) [13]. For BinaryTree, this predi-
cate requires that the graph of nodes reachable from root indeed be a tree (i.e.,
have no cycles) and that the size be correct; in Alloy, it can be written as follows:
fun BinaryTree::repOk() {
all n: this.root.*(left + right) {

n !in n.^(left + right) // no directed cycle
sole n.~(left + right) // at most one parent
no n.left & n.right } // distinct children

this.size = #(this.root.*(left + right)) } // size is consistent

The Alloy function repOk records constraints that can be invoked elsewhere in the
specification. This function has only the implicit this argument, introduced with
‘::’. The function body has two formulas. They are within (outer) curly braces,
and thus implicitly conjoined. The first formula, which has three subformulas,
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constrains this to be a valid binary tree. The expression left + right denotes
the union of relations left and right; the prefix operator ‘*’ is reflexive transitive
closure, and the dot operator ‘.’ is relational composition. The entire root.*(left

+ right) denotes the set of all nodes reachable from root. The quantifier all

denotes for universal quantification: the formula all n: S { F } holds iff the
formula F holds for each element in the set S. The operators ‘^’, ‘~’, and ‘&’ denote
transitive closure, transpose, and intersection, respectively. The formulas sole S

and no S hold iff the set S has “at most one” and “no” elements, respectively.
If all nodes n are not reachable from itself, have at most one parent, and have
distinct children, then the underlying graph is indeed a tree. The second formula
constrains this to have the correct size; ‘#’ denotes set cardinality.

We add the function repOk to the above Alloy specification to obtain the entire
specification for removeRoot’s inputs. The Alloy command run repOk for N but

1 BinaryTree instructs the Analyzer to find an instance for this specification,
i.e., the valuation of signatures (sets) and relations that make the function repOk

evaluate to true. The parameter N needs to be replaced with a specific constant
that determines the scope, i.e., the maximum number of atoms in each signature,
except those mentioned in the but clause. In our example, N determines the
maximum number of Nodes, and the instance has only one BinaryTree. Note that
one instance has one tree (with several nodes) corresponding to this argument,
but we further instruct AA to generate all instances, effectively generating all
trees with up to the given number of nodes.

In the first phase, TestEra uses AA to generate all (non-isomorphic) in-
stances. In the second phase, TestEra operates on each instance in turn: 1) trans-
lates it to appropriate Java test input by creating objects (of classes BinaryTree

and Node) that correspond to the atoms in the instance and setting the object
fields to correspond to the relations in the instance; 2) executes removeRoot on
the obtained test input; 3) translates the resulting Java objects back into an
Alloy instance by translating the values of object fields into relations; and 4)
evaluates the postcondition on this translated output and the original input in-
stance. (In general, a postcondition can refer to both input and output, but our
simplified example considers only output.) If the code contains a bug that can
be observed for one of these trees, e.g., the code does not decrement the number
of nodes after deleting the root, TestEra readily exposes the bug.

In the sequel, we focus on test input generation. To compare different ways
for generation, we consider test inputs of size exactly N . To this end, we add to
the specification the following:
fact Connected { BinaryTree.root.*(left+right) = Node }

A fact is a formula that puts more constraints on the instances: running a
function finds instances that satisfy the function body conjoined with all the
facts in the specification. Connected states that the set of nodes reachable from
BinaryTree is the same as the universe of Nodes, whose cardinality is exactly N .

For illustration, consider N = 5. There are 14 non-isomorphic trees with five
nodes [18]. If we use AA without any symmetry breaking, AA generates 1680
instances/trees, i.e., for each of the 14 isomorphism classes, AA generates all 120
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distinct trees corresponding to the 5! permutations/labelings of the five nodes. If
we use AA with symmetry breaking [17], we can tune how many symmetries to
break. With the default value of symmetry breaking, AA generates 17 trees with
five nodes. If we increase symmetry breaking, AA generates exactly 14 trees.

3.1 Complete Symmetry-Breaking using Total Order

We next show how to use the special support that AA has for total orders to
completely break all symmetries in our example. AA’s standard library of models
provides a polymorphic signature Ord[t]. Each instantiation of Ord with some set
(Alloy signature) t imposes a total order on the elements in t. In consequence,
these elements are not indistinguishable any more, and AA does not break any
symmetries on that set. However, AA considers only one total order, instead of
(#t)! possible total orders.

In addition to the definition of total order, AA’s standard library also pro-
vides several Alloy functions for totally-ordered sets. We use two of those func-
tions in the following fact:
fact BreakSymmetries {
all b: BinaryTree {

all n: b.root.*(left + right) {
n.left.*(left + right) in OrdPrevs(n) // library function that instantiates Ord[Node]
n.right.*(left + right) in OrdNexts(n) } }

The function OrdPrevs, respectively OrdNexts, returns the set of all elements that
are smaller, respectively larger, than the given element. The fact requires that
all trees in the instance (the example instances have only one tree) have nodes
in an in-order [5]: the nodes in the left, respectively right, subtree of the node n

are smaller, respectively larger, than n with respect to the Ord[Node] order. Note
that the comparisons are for node identities, not for the values in the nodes. (For
simplicity of illustration, our example does not even have values.)

We add the above fact to the specification for binary trees so that each
instance can have nodes in only one order, effectively eliminating isomorphic in-
stances. Indeed, AA now generates exactly 14 non-isomorphic trees, as expected.
In general, the user can break all symmetries by: 1) declaring that each set has
a total order and 2) defining a traversal that linearizes the whole instance. The
combination of the linearization and the total orders gives a lexicographic order
that is used to compare instances.

4 Results

We next present some performance results for solution enumeration obtained
with mChaff [15]. Table 1 presents the results for a set of benchmark formulas
that represent structural invariants. Each benchmark is named after the class
for which data structures are generated; the structures also contain objects from
other classes.

BinaryTree is our running example. LinkedList is the implementation of
linked lists in the Java Collections Framework, a part of the standard Java li-
braries. This implementation uses doubly-linked, circular lists that have a size
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manual symmetry breaking automatic symmetry breaking
benchmark size #prim #vars #clauses #sols time #vars #clauses #sols time

7 114 3165 10375 429 6.46 3439 10786 1866 7.45
BinaryTree 8 146 4504 15216 1430 40.46 4831 15682 10286 64.40

9 182 7775 29618 4862 548.69 8141 30103 60616 1049.93
7 191 2834 9834 877 1.04 3559 11021 26551 35.38

LinkedList 8 242 3837 14007 4140 4.76 4432 14939 356276 736.30
9 299 5852 24411 21147 36.52 6629 25630 / mem.
7 263 7578 22095 35 110.42 8076 22842 1160 69.09

TreeMap 8 331 10578 30896 64 254.13 11265 31930 4185 583.62
9 407 16111 51115 122 741.55 17017 52482 16180 3873.99
7 373 7540 28881 1716 31.52 8270 29918 3172 30.04

HashSet 8 473 10392 41430 6435 151.42 11102 42342 15011 167.30
9 585 15380 63308 24310 511.51 16277 64441 73519 1587.72
6 72 704 1611 13139 5.10

HeapArray 7 90 884 2128 117562 62.62
8 110 1084 2735 1005075 1171.64

Table 1. Performance. All times are in seconds (of total elapsed wall-clock time); the experiments
were performed on a 1.8 GHz Pentium 4 processor. For sizes larger than presented, enumeration of
solutions for automatically constructed symmetry-breaking predicates takes longer than 1 hour.

field and a header node as a sentinel node [5]. (Linked lists also provide methods
that allow them to be used as stacks and queues.) TreeMap implements the Map

interface using red-black trees [5]. Each node has a key and a value. (Setting
all value fields to null corresponds to the set implementation in java.util.-

TreeSet.) HashSet implements the Set interface, backed by a hash table [5].
This implementation builds collision lists for buckets with the same hash code.
HeapArray is an array-based implementation of heap (priority queue) data struc-
ture [5]. (HeapArrays are similar to array-based stacks and queues, as well as
java.util.Vectors, so the results presented here are similar to those results.)

We show results for several size values for each benchmark. All scope pa-
rameters are set exactly to the given size; e.g., all lists have exactly the given
number of nodes and the elements come from a set with the given size. For
each size, we use mChaff to enumerate solutions for two CNF formulas: 1) one
with symmetry-breaking predicates generated automatically (using the default
values of the Alloy Analyzer) and 2) one with symmetry-breaking predicates
added manually to Alloy specifications (as described in Section 3.1). We tabu-
late the number of primary variables, the total number of variables, the number
of clauses, the number of solutions, and the time it takes to generate all solutions.

For BinaryTree, LinkedList, TreeMap, and HashSet, the numbers of non-isomor-
phic structures appear in the Sloane’s On-Line Encyclopedia of Integer Se-
quences [18]. For all sizes, formulas with manually added symmetry-breaking
predicates have as many solutions as the actual number of structures, which
shows that these predicates eliminate all symmetries. (For this comparison, we
generated inputs with exactly the given size; for software testing in practice, we
generate all inputs up to the given size.) For HeapArray, no symmetry-breaking
is required: two array-based heaps are isomorphic iff they are identical.

In all cases with symmetry breaking, formulas with automatic symmetry
breaking have more solutions than formulas with manual symmetry breaking.
Also, in most cases it takes longer to generate the solutions for formulas with
automatic symmetry breaking; a simple reason for this is that enumerating a
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larger number of solutions usually takes a larger amount of time. However, note
that it is not always the case: for HashSet and TreeMap of size seven, it takes
less time to enumerate more solutions. This illustrates the general trade-off in
(automatic) symmetry breaking: adding more symmetry-breaking predicates can
reduce the number of (isomorphic) solutions, but it makes the boolean formula
larger, which can increase the enumeration time. The Alloy Analyzer allows
users to tune symmetry breaking; we have experimented with different parameter
values and the default values seem to achieve a sweet spot for our benchmarks.

Note that we do not present numbers for LinkedList of size nine with auto-
matic symmetry breaking; for this formula mChaff runs out of 2 GB of memory.
This suggests that the scheme for clause learning in mChaff [15] may need to
be modified when enumerating all solutions. If there is no effective pruning or
simplification of clauses added in order to exclude the already found solutions,
complete solution enumeration can become infeasible. For all other benchmark
formulas, mChaff is able to enumerate all solutions, even when there are more
than a million of them. Test inputs that correspond to these solutions, for the
sizes from the table, are sufficient to achieve complete code and branch cover-
age [2] for methods in the respective Java classes.

We next discuss the use of Binary Decision Diagrams (BDDs), instead of
SAT solvers, for solution enumeration. We considered BDDs because they make
it easier to read off all solutions, once there’s a BDD for a formula. However,
constructing a BDD can take long time (and exponential space). We have briefly
experimented with the CUDD [19] BDD package. We constructed BDDs bottom-
up, using automatic variable reordering via sifting [4], from the boolean DAGs
from which the CNFs were produced. For all benchmarks, the BDD approach
scaled poorly; BDD construction timed out for nontrivial sizes (over five).

5 Conclusions

We have presented a novel application of SAT solvers in software testing. Our
application requires a solver that can enumerate all satisfying assignments; each
assignment provides a (non-isomorphic) input for the program. The experimental
results indicate that it is feasible to use a SAT solver to systematically generate
structurally complex inputs that would be hard to generate manually. We hope
that our work provides motivation for exploring efficient solution enumeration
in modern SAT solvers.
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