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Abstract

We initiate the study of sparse recovery problems un-
der the Earth-Mover Distance (EMD). Specifically,
we design a distribution over m × n matrices A, for
m� n, such that for any x, given Ax, we can recover
a k-sparse approximation to x under the EMD dis-
tance. We also provide an empirical evaluation of the
method that, in some scenarios, shows its advantages
over the “usual” recovery in the `p norms.

1 Introduction

In recent years, a new “linear” approach for ob-
taining a succinct approximate representation of n-
dimensional vectors (or signals) has been discovered.
For any signal x, the representation is equal to Ax,
where A is an m × n matrix, or possibly a random
variable chosen from some distribution over such ma-
trices. The vector Ax is often referred to as the mea-
surement vector or linear sketch of x. Although m is
typically much smaller than n, the sketch Ax often
contains plenty of useful information about the signal
x.

A particularly useful and well-studied problem is
that of stable sparse recovery. The problem is typi-
cally defined as follows: for some norm parameters p
and q and an approximation factor C > 0, given Ax,
recover a vector x̂ such that

(1) ‖x− x̂‖p ≤ C · Errqk(x)

where Errqk(x) = mink-sparse x′ ‖x− x′‖q. Note
that we say that x′ is k-sparse if it has at most
k non-zero coordinates. Sparse recovery has ap-
plications to numerous areas such as data stream
computing [Mut03, Ind07] and compressed sens-
ing [CRT06, Don06], notably for constructing imag-
ing systems that acquire images directly in com-
pressed form (e.g., [DDT+08, Rom09]). The prob-
lem has been a subject of extensive study over the
last few years, with the goal of designing schemes
that enjoy good “compression rate” (i.e., low values

of m) as well as good algorithmic properties (i.e., low
encoding and recovery times). It is known by now1

that there exist matrices A and associated recovery
algorithms that produce approximations x̂ satisfying
Equation (1) with `p = `q = `1, constant approxima-
tion factor C and sketch length m = O(k log(n/k));
it is also known that this sketch length is asymptoti-
cally optimal [DIPW10, FPRU10]. Results for other
combinations of `p/`q norms are known as well.

However, limiting the error measures to variants
of `p norms is quite inconvenient in many applica-
tions. First, the distances induced by `p norms are
typically only quite raw approximations of the per-
ceptual differences between images. As a result, in
the field of computer vision, several more elaborate
notions have been proposed (e.g., in [RTG00, Low04,
Lyu05, GD05]). Second, there are natural classes
of images for which the distances induced by the `p
norm are virtually meaningless. For example, con-
sider images of “point clouds”, e.g., obtained via as-
tronomical imaging. If we are given two such images,
where each point in the second image is obtained via
small random translation of a point in the first im-
age, then the `p distance between the images will be
close to the largest possible, even though the images
are quite similar to each other.

Motivated by the above considerations, we initiate
the study of sparse recovery under non-`p distances.
In particular, we focus on the Earth-Mover Distance
(EMD) [RTG00]. Informally, for the case of two-
dimensional ∆ × ∆ images (say, x, y : [∆]2 → R+)
which have the same `1 norm, the EMD is defined as
the cost of the min-cost flow that transforms x into
y, where the cost of transporting a “unit” of mass
from pixel p ∈ [∆]2 of x to a pixel q ∈ [∆]2 of y is
equal to the `2 distance2 between p and q. Earth-

1In particular, a random Gaussian matrix [CRT06] or a ran-
dom sparse binary matrix ([BGI+08], building on [CCFC02,
CM04, CM06]) has this property with overwhelming probabil-
ity. See [GI10] for an overview.

2One can also use the `1 distance. Note that the two dis-
tances differ by at most a factor of

√
2 for two-dimensional

images.
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Mover Distance and its derivatives are popular met-
rics for comparing similarity between images, feature
sets, etc. [RTG00, GD05].

We define sparse recovery under EMD in a way sim-
ilar to sparse recovery under `p norms (as per Eq. 1).
Specifically, the goal is to construct a distribution
over m × n matrices A, n = ∆2, such that for any
vector x, given Ax, one can reconstruct a vector x̂
such that

EMD(x, x̂) ≤ C · ErrEMD
k (x)

with constant probability, where ErrEMD
k (x) =

mink-sparse x′ EMD(x, x′).
Discussion and connections. What does sparse

recovery with respect to the EMD distance mean?
As it turns out, the task has the following natural in-
terpretation. Let x′ be the minimizer of EMD(x, x′)
over all k-sparse vectors. Then one can observe that
the non-zero entries of x′ correspond to the cluster
centers in the best k-median3 clustering of x. More-
over, for each such center c, the value of x′

c is equal
to the total weight of pixels in the cluster centered
at c. Thus, a solution to the k-median problem can
provide a solution to our sparse recovery problem as
well.

There has been prior work on the k-median prob-
lem in the streaming model under insertions and dele-
tions of points [FS05, Ind04]. Such algorithms uti-
lize linear sketches, and therefore implicitly provide
schemes for approximating the k-medians of x from
a linear sketch of x (although they do not neces-
sarily provide the cluster weights, which are needed
for the sparse recovery problem). Both algorithms
yield a method for approximating the k-medians from
Ω(k2) measurements. Our result gives a constant ap-
proximation to the k-medians problem without the
quadratic dependence on k.

2 Algorithms

On a high level, our approach is to reduce the sparse
recovery problem under EMD to sparse recovery un-
der `1. The reduction is performed by using a “pyra-
mid” mapping P [IT03, GD05] (building on [Cha02]),
which provides a multi-resolution representation of
the image. The mapping P is defined as follows.
First we impose log ∆ + 1 nested grids Gi on [∆2].
For each i = 0 . . . s, s = log ∆, the grid Gi is a parti-
tion of the image into cells of side length 2i. For each

3For completeness, in our context the k-median is de-
fined as follows. First, each pixel p ∈ [n]2 is interpreted
as a point with weight xp. Then the goal is to find a set
C ⊂ [n]2 of k “medians” that minimizes the objective function∑

p∈[n]2 minc∈C ‖p− c‖2xp.

i, we define a mapping Pi such that each entry in Pix
corresponds to a cell c in Gi, and its value is equal to
the sum of coordinates of x falling into c. The final
mapping P is defined as

Px = [20P0x, 2
1P1x, . . . , 2

sPsx]

It is known [Cha02, IT03] that (a randomized
version of) the mapping P has the property that
‖Px − Py‖1 approximates EMD(x, y) up to some
(super-constant) factor. In our case we need only
a weaker property, namely that for any x there is an
O(ks)-sparse z such that ‖Px− z‖1 ≤ DErrEMD

k (x).
Building on [FS05] we can show that this property
holds for a constant D. It follows that we can find
a k-sparse approximation to x under EMD by find-
ing an O(ks)-sparse approximation to Px under `1.
This can be achieved using roughly O(ks log ∆) =
O(k log2 ∆) measurements using known techniques.

However, thanks to the properties of the mapping
P , there is space for improvement. First, if the vector
x is non-negative, so is Px; this constrains the space
of potential solutions. Second, we can exploit the par-
ticular form of vectors Px. Specifically, the coordi-
nates of Px have the following hierarchical structure:
the coordinates are organized into a full r-ary tree for
r = 22, and each internal node is twice the sum of its
children. Moreover, if x is k-sparse, then the non-zero
coefficients of Px are connected in a tree-like fashion.
This enables us to constrain the sparsity patterns of
the recovered approximation to Px, in a manner sim-
ilar to model-based compressive sensing [BCDH10].

By incorporating these constraints into the sparse
recovery algorithms, we significantly reduce the num-
ber of necessary measurements. Specifically, our al-
gorithm augments the SSMP algorithm from [BI09]
in the following manner. The SSMP algorithm pro-
ceeds by performing incremental updates to its cur-
rent solution (say, z), interleaved with periodic spar-
sification of z, i.e., zeroing out all but its top k en-
tries. Our modified version follows the same outline.
However during the sparsification process, it imposes
the following constraints (i) the coefficients should be
non-negative and (ii) the non-zero entries should have
a tree structure. That is, the sparsification process
greedily computes a connected tree of O(k) coeffi-
cients, and zeros out all other coefficients.

3 Empirical evaluation

We performed preliminary experiments investigating
the proposed approach4. For the data vectors x

4Source code for the experiments is available from
http://web.mit.edu/ecprice/www/papers/allerton10/
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Figure 1: Example of a synthetic image used in our
experiments. The image resolution is 128 x128, and
the number of clusters k is equal to 5. The standard
deviation of the clusters is equal to 1.

we used synthetic “star-like” images, generated from
mixtures of Gaussians placed in random positions of
an image, with a prespecified width (i.e., standard
deviation). An example image is given in Figure 1.

The results are presented in Figure 2. For three
different algorithms, it shows the cluster center esti-
mation error as a function of the number of mea-
surements m. The three algorithms are as fol-
lows (i) sparse recovery applied to Px, incorporating
the aforementioned positivity and tree-sparsity con-
straints; (ii) “standard” sparse recovery applied to
Px; and (iii) standard sparse recovery on x. We used
SSMP [BI09] as a basis for all three algorithms.

One can observe that the algorithm (i) provides
non-trivial results for much lower values of m than
the other two algorithms. Moreover, when all three
algorithms can be used, the algorithm (i) typically
yields much lower estimation error.
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