Sparse Recovery Using Sparse (Random) Matrices

Piotr Indyk MIT

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic

Linear Compression

(learning Fourier coeffs, linear sketching, finite rate of innovation,

compressed sensing...)

• Setup:

- Data/signal in n-dimensional space : x
 E.g., x is an 256x256 image ⇒ n=65536
- Goal: compress x into a "sketch" Ax ,
 where A is a m x n "sketch matrix", m << n

Requirements:

- Plan A: want to recover x from Ax
 - Impossible: undetermined system of equations
- Plan B: want to recover an "approximation" x* of x
 - Sparsity parameter k
 - Informally: want to recover largest k<<n coordinates of x
 - Formally: want x* such that

$$||x^*-x||_{p} \le C(k) \min_{x'} ||x'-x||_{q}$$

over all x' that are k-sparse (at most k non-zero entries)

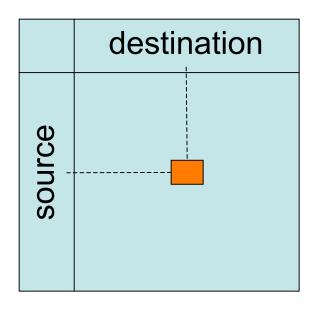
Want:

- Good compression (small m=m(k,n))
- Efficient algorithms for encoding and recovery
- Why linear compression?

k = 0.1n

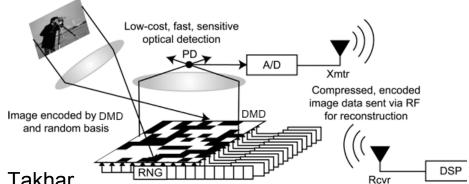
Application I: Monitoring Network Traffic Data Streams

- Router routs packets
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic matrix x[.,.]
 - Easy to update: given a (src,dst) packet, increment
 X_{src,dst}
 - Requires way too much space!
 (2³² x 2³² entries)
 - Need to compress x, increment easily
- Using linear compression we can:
 - Maintain sketch Ax under increments to x, since $A(x+\Delta) = Ax + A\Delta$
 - Recover x* from Ax



Applications, ctd.

Single pixel camera



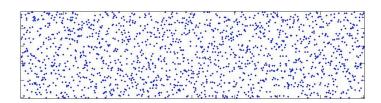
[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, Kelly, Baraniuk'06]

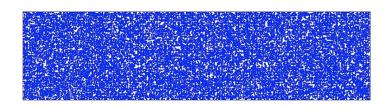
Pooling Experiments

[Kainkaryam, Woolf'08], [Hassibi et al'07], [Dai-Sheikh, Milenkovic, Baraniuk], [Shental-Amir-Zuk'09]

Constructing matrix A

- "Most" matrices A work
 - Sparse matrices:
 - Data stream algorithms
 - Coding theory (LDPCs)
 - Dense matrices:
 - Compressed sensing
 - Complexity/learning theory (Fourier matrices)





- "Traditional" tradeoffs:
 - Sparse: computationally more efficient, explicit
 - Dense: shorter sketches
- Goal: the "best of both worlds"

Prior and New Results

Paper	Rand.	Sketch	Encode	Column	Recovery time	Approx
	/ Det.	length	time	sparsity		

Scale: Excellent Very Good Good Fair

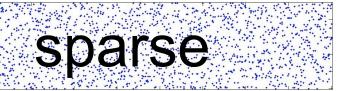
Prior and New Results

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CCF'02], [CM'06]	R	k log n	n log n	log n	n log n	12 / 12
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	12 / 12
[CM'04]	R	k log n	n log n	log n	n log n	l1 / l1
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	l1 / l1
[CRT'04] [RV'05]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n ^c	12 / 11
	D	k log ^c n	n log n	k log ^c n	n ^c	12 / 11
[GSTV'06] [GSTV'07]	D	k log ^c n	n log ^c n	log ^c n	k log ^c n	l1 / l1
	D	k log ^c n	n log ^c n	k log ^c n	k² log ^c n	12 / 11
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	l1 / l1
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n ^c	12 / 11
[NV'07], [DM'08], [NT'08], [BD'08], [GK'09],	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * log	12 / 11
	D	k log ^c n	n log n	k log ^c n	n log n * log	12 / 11
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	l1 / l1

Recovery "in principle" (when is a matrix "good")

dense

VS.



Restricted Isometry Property (RIP) * - sufficient property of a dense matrix A:

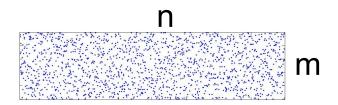
$$\Delta$$
 is k-sparse $\Rightarrow ||\Delta||_2 \leq ||A\Delta||_2 \leq C ||\Delta||_2$

- Holds w.h.p. for:
 - Random Gaussian/Bernoulli: m=O(k log (n/k))
 - Random Fourier: $m=O(k \log^{O(1)} n)$
- Consider m x n 0-1 matrices with d ones per column
- Do they satisfy RIP?
 - No, unless $m=\Omega(k^2)$ [Chandar'07]
- However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-Karloff-Strauss'08]:

$$\Delta$$
 is k-sparse \Rightarrow d $(1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$

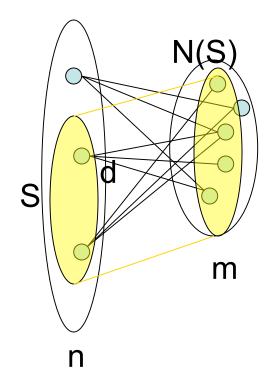
Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

Expanders



- A bipartite graph is a (k,d(1-ε)) expander if for any left set S, |S|≤k, we
 have |N(S)|≥(1-ε)d |S|
- Objects well-studied in theoretical computer science and coding theory
- Constructions:
 - Probabilistic: m=O(k log (n/k))
 - Explicit: m=k quasipolylog n
- High expansion implies RIP-1:

 Δ is k-sparse \Rightarrow d $(1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$ [Berinde-Gilbert-Indyk-Karloff-Strauss'08]



Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1

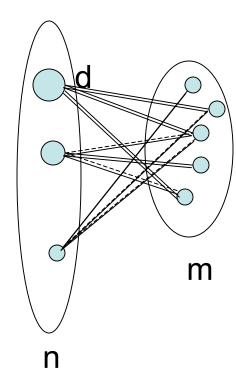
Want to show that for any k-sparse
 [∆] we have

$$d(1-\varepsilon) \|\Delta\|_{1} \le \|A\Delta\|_{1} \le d\|\Delta\|_{1}$$

- RHS inequality holds for any ∆
- LHS inequality:
 - W.I.o.g. assume

$$|\Delta_1| \ge \dots \ge |\Delta_k| \ge |\Delta_{k+1}| = \dots = |\Delta_n| = 0$$

- Consider the edges e=(i,j) in a lexicographic order
- For each edge e=(i,j) define r(e) s.t.
 - r(e)=-1 if there exists an edge (i',j)<(i,j)
 - r(e)=1 if there is no such edge
- Claim 1: $||A\Delta||_1 \ge \sum_{e=(i,j)} |\Delta_i| r_e$
- Claim 2: $\sum_{e=(i,j)} |\Delta_i| r_e \ge (1-\epsilon) d||\Delta||_1$



Recovery: algorithms

Matching Pursuit(s)

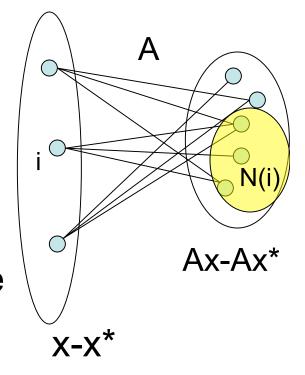
- Iterative algorithm: given current approximation x*:
 - Find (possibly several) i s. t. A_i "correlates" with Ax-Ax*. This yields i and z s. t.

$$||x^*+ze_i-x||_p << ||x^*-x||_p$$

- Update x*
- Sparsify x* (keep only k largest entries)
- Repeat
- Norms:
 - p=2 : CoSaMP, SP, IHT etc (RIP)
 - p=1 : SMP, SSMP (RIP-1)
 - p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse Matching Pursuit

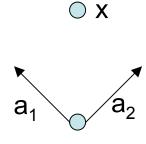
- Algorithm:
 - $x^* = 0$
 - Repeat T times
 - Repeat S=O(k) times
 - Find i and z that minimize* ||A(x*+ze_i)-Ax||₁
 x* = x*+ze_i
 - Sparsify x*
 (set all but k largest entries of x* to 0)
- Similar to SMP, but updates done sequentially

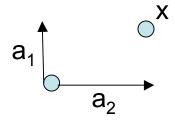


^{*} Set $z=median[(Ax^*-Ax)_{N(i)}]$. Instead, one could first optimize (gradient) i and then z [Fuchs'09]

SSMP: Approximation guarantee

- Want to find k-sparse x* that minimizes ||x-x*||₁
- By RIP1, this is approximately the same as minimizing ||Ax-Ax*||₁
- Need to show we can do it greedily

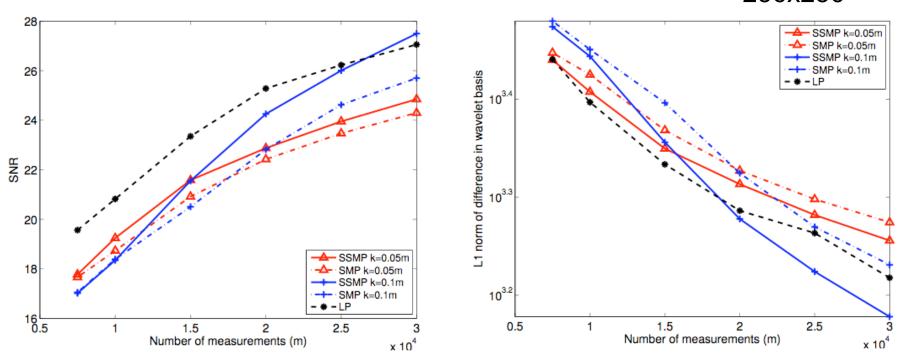




Supports of a₁ and a₂ have small overlap (typically)

Experiments

256x256



SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

SSMP: Running time

• Algorithm:

- $x^* = 0$
- Repeat T times
 - For each i=1...n compute* z_i that achieves

$$D_i = min_z ||A(x^* + ze_i) - b||_1$$

and store D_i in a heap

- Repeat S=O(k) times
 - Pick i,z that yield the best gain
 - Update $x^* = x^* + ze_i$
 - Recompute and store D_i for all i' such that N(i) and N(i') intersect
- Sparsify x*
 (set all but k largest entries of x* to 0)
- Running time:

$$T [n(d+log n) + k nd/m*d (d+log n)]$$

$$= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]$$

