Linear Programming in Higher Dimensions

Piotr Indyk
Linear Programming

Maximize: \[c_1 x_1 + c_2 x_2 + \cdots + c_d x_d \]

Subject to: \[a_{1,1} x_1 + a_{1,2} x_2 + \cdots + a_{1,d} x_d \leq b_1 \]
\[a_{2,1} x_1 + a_{2,2} x_2 + \cdots + a_{2,d} x_d \leq b_2 \]
\[\vdots \]
\[a_{n,1} x_1 + a_{n,2} x_2 + \cdots + a_{n,d} x_d \leq b_n \]
Linear Programming in 2D

October 21, 2003

Lecture 16: Linear Programming in Higher Dimensions
An Infeasible Linear Program
An Unbounded LP
Incremental Algorithm

• Choose two constraints and initialize the solution
• Add new constraints one by one, keeping track of current optimum
Probability of update at round i

Fix first i constraints:

Update only if the ith constraint is one of the two *defining constraints*

$$P \leq \frac{2}{i - 2}$$
Expected Run–Time Analysis

Expected time spent updating:

\[
E\left[\sum_{i=3}^{n} T_i \right] = \sum_{i=3}^{n} E[T_i] = \sum_{i=3}^{n} P(\text{Update at round } i) O(i)
\]

\[
\leq \sum_{i=3}^{n} \frac{2}{i-2} O(i) = O(n)
\]
What about $d > 2$?

- Incrementally add new constraints
- Probability of update: $d / (i-d)$
- On update: solve d-dimensional

 \[T(d,n) \leq O(dn) + \sum_{i=d+1}^{n} \frac{d}{i-d} T(d-1,i-1) \]

 \[T(d,n) = O(d!n) \]
This Lecture

• $O(d!n)$ is not optimal:
 – $O(d^2n + d^{O(1)}d)$ [Clarkson]
 – A reduction from (n,d) –LP to a small number of $(O(d^2),d)$ –LP’s

• Extensions:
 – $n^{O(\sqrt{d})}$ [Kalai, Matousek–Sharir–Welzl]
 – $O(d^2n + d^{O(\sqrt{d})})$ [combined]
Notation

- H: set of n constraints
- $v(H)$: optimum subject to H
- A basis B for H: minimal set of constraints such that $v(B) = v(H)$
- We have $|B| = d$
Random Sampling I

• SolveLP1(H):
 – G=∅
 – Repeat:
 • R=random subset of H, |R|=r
 • v= SolveLP(G+R)
 • V=set of constraints in H violated by v
 • If |V| ≤ t, then G=G+V
 – Until V=∅

• Correctness ?
• Running time analysis ?
Analysis

• Each time we augment G, we add to G a new constraint from the basis B of H
 – If v did not violate any constraint in B, it would be optimal
 – So V must contain an element from B, which was not in G earlier

• We can augment G at most d times

• The number of constraints in the recursive call is $|R| + |G| \leq r + dt$

• What is the probability of augmentation?
Sampling Lemma

Lemma: The expected number of constraints \(V \) that violate \(v(G+R) \) is at most \(nd/r \).

Proof:

- Define a 0/1 random variable \(d(R,h) \), which is \(=1 \) iff \(h \) violates \(v(G+R) \)
- Need to bound

\[
E_{R} [\sum_{h} d(R,h)] = \sum_{|R|=r} \sum_{h} d(R,h) / \#R \\
= \sum_{|Q|=r+1} \sum_{h \in Q} d(Q-\{h\},h) / \#R \\
= [\#Q * (r+1) / \#R] * \Pr_{Q,h \in Q} [d(Q-\{h\},h)] \\
\leq n * d/(r+1)
\]
Analysis

• $t=2nd/r \rightarrow$ expected # iterations per augmentation is constant

• Number of constraints in the recursive call is $r+O(d^2n/r) = O(r)$ for $r=dn^{1/2}$

• Total expected time

$$T_{LP_1}(n) \leq 2d \cdot T_{LP}(dn^{1/2}) + O(d^2n)$$
Analysis ctd.

- Can use Seidel’s algorithm for LP
- This gives us $O(d^2 n + d^* d \cdot n^{1/2} \cdot d!)$
- We get better time if $\text{LP} = \text{LP2}$
- Idea: reduce the sample size
Random Sampling II

• **SolveLP2(**H**):**
 – \(G=\emptyset\)
 – Repeat:
 • \(R=\text{random subset of } H, \ |R|=r\)
 • \(v=\text{SolveLP}(R)\)
 • \(V=\text{multiset} \text{ of constraints in } H \text{ violated by } v\)
 • If \(|V| \leq t\), then \(H=H+V\)
 – Until \(V=\emptyset\)

• As before, set \(t=2^*|H|d/r\)
 → augmentation performed with prob. \(>1/2\)
Need to bound \#augmentations

- Fix a basis B for H
- On the one hand:
 - In one iteration, the multiplicity of at least one constraint in B is doubled
 - In kd iterations, $|B| \geq 2^k$
- On the other hand:
 - In one iteration, $|H|$ increases by $\leq 2 |H|d/r$
 - After kd iterations:
 $|B| \leq |H| \leq n (1 + 2d/r)^{kd} \leq n \exp(2kd^2/r) = n \exp(2d^2/r)^k$
- Therefore, the total number of iterations is $O(dk)$, if k such that $2^k > n \exp(2d^2/r)^k$
Analysis, ctd.

\[2^k > n \exp(2d^2/r)^k \]

- Set \(r = 4d^2 \rightarrow 2^k > n (e^{1/2})^k \)
- We get \(k = O(\log n) \)
- The total number of iterations is \(O(d \log n) \)
Total Time

• The expected time
 \(T_{LP2}(n) = d \log n \left[T_{LP}(4d^2) + dn \right] \)

• Plug in Seidel into LP2
 \(T_{LP2}(n) = O(d \log n \left(d^2 d! + dn \right)) \)

• Plug in LP2 into LP1
 \(T_{LP1}(n) = O(2d \left[d \log n \left(d^2 d! + d^2 n^{1/2} \right) \right] + d^2 n) \)

• After some cleaning
 \(T_{LP1}(n) = O(d^4 d! \log n + d^2 n) = O(d^5 d! + d^2 n) \)