Closest Pair

Piotr Indyk

Closest Pair

- Find a closest pair among $p_{1} \ldots p_{n} \in R^{d}$
- Easy to do in $\mathrm{O}\left(\mathrm{dn}^{2}\right)$ time
- For all $p_{i} \neq p_{j}$, compute $\left\|p_{i}-p_{j}\right\|$ and choose the minimum
- We will aim for better time, as long as dis "small"
- For now, focus on $d=2$

Divide and conquer

- Divide:
- Compute the median of x coordinates
- Split the points into $P_{\llcorner }$and P_{R}, each of size $n / 2$
- Conquer: compute the closest pairs for P_{L} and P_{R}
- Combine the results (the hard part)

Combine

- Let $\mathrm{k}=\min \left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$
- Observe:
- Need to check only pairs which cross the dividing line
- Only interested in pairs within distance < k
- Suffices to look at points in the $2 k$-width strip around the median line

Scanning the strip

- Sort all points in the strip by their y-coordinates, forming $\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{r}}, \mathrm{r} \leq \mathrm{n}$.
- Let y_{i} be the y-coordinate of q_{i}
- For $\mathrm{i}=1$ to r
- j=i-1
- While $y_{i}-y_{j}<d$
- Check the pair q_{i}, q_{j}
- $\mathrm{j}:=\mathrm{j}-1$

Analysis

- Correctness: easy
- Running time is more involved
- Can we have many q;'s that are within dístance k from q_{i} ?
- No
- Proof by packing
 argument

Analysis, ctd.

Theorem: there are at most 7
q_{j} 's such that $y_{i}-y_{j} \leq k$.
Proof:

- Each such $q_{i j}$ must lie either
 in the left or in the right $\mathrm{k} \times \mathrm{k}$ square
- Within each square, all points have distance distance $\geq k$ from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_{i})

Packing bound

- Proving " 4 " is not obvious
- Will prove "5"
- Draw a disk of radius k/2 around each point
- Disks are disjoint
- The disk-square intersection has area $\geq \pi(k / 2)^{2} / 4=\pi / 16 k^{2}$
- The square has area k^{2}
- Can pack at most $16 / \pi \approx 5.1$ points

Running time

- Divide: O(n)
- Combine: O(n log n) because we sort by y
- However, we can:
- Sort all points by y at the beginning
- Divide preserves the y-order of points

Then combine takes only O(n)

- We get $T(n)=2 T(n / 2)+O(n)$, so $T(n)=O(n \log n)$

Higher dimensions

- Divide: split P into P_{L} and P_{R} using the hyperplane $x=t$
- Conquer: as before
- Combine:
- Need to take care of points with x in $[t-k, t+k]$
- This is essentially the same problem, but in d-1 dimensions
- We get:
- $T(n, d)=2 T(n / 2)+T(n, d-1)$
- $T(n, 1)=O_{d}(1) n$
- Solves to: $T(n, d)=n \log ^{d-1} n$

Closest Pair with Help

- Given: $P=\left\{p_{1} \ldots p_{n}\right\}$ of points from R^{d}, such that the closest distance is in ($\mathrm{t}, \mathrm{c} \mathrm{t}$]
- Goal: find the closest pair
- Will give an $O\left((c \sqrt{ } d)^{d} n\right)$ time algorithm
- Note: by scaling we can assume $t=1$

Algorithm

- Impose a cubic grid onto R^{d}, where each cell is a $1 / \sqrt{d} \times 1 / \sqrt{d}$ cube
- Put each point into a bucket corresponding to the cell it belongs to
- Diameter of each cell is ≤ 1, so at most one point per cell

- For each $p \in P$, check all points in cells intersecting a ball $\mathrm{B}(\mathrm{p}, \mathrm{c})$
- At most (2Vdc)d such cells

How to find good t?

- Repeat:
- Choose a random point p in P
- Let $t=t(p)=D(p, P-\{p\})$
- Impose a grid with side $t^{\prime}<t /(2 \sqrt{ } d)$, i.e., such that any pair of adjacent cells has diameter <t
- Put the points into the grid cells
- Remove all points whose all adjacent cells are empty
- Until P is empty

Correctness

- Consider t computed in the last iteration
- There is a pair of points with distance t
- There is no pair of points with distance t' or less*
- We get c=t/t' $\sim 2 \sqrt{ } d$
*And never was, if the grids are nested

Running time

- Consider $t\left(p_{1}\right)$...t $\left(p_{m}\right)$
- An iteration is lucky if $t\left(p_{i}\right) \geq t$ for at last half of points p_{i}
- The probability of being lucky is $\geq 1 / 2$
- Expected \#iterations till a lucky one is ≤ 2
- After we are lucky, the number of points is $\leq \mathrm{m} / 2$
- Total expected time $=3^{\text {d }}$ times $\mathrm{O}(\mathrm{n}+\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1)$

