Closest Pair

Piotr Indyk

October 30, 2003

Lecture 17: Closest Pair

Closest Pair

- Find a closest pair among $p_1 \dots p_n \in \mathbb{R}^d$
- Easy to do in O(dn²) time
 - For all p_i ≠p_j, compute ||p_i p_j|| and choose the minimum
- We will aim for better time, as long as d is "small"
- For now, focus on d=2

Divide and conquer

• Divide:

- Compute the median of xcoordinates
- Split the points into P_L and P_R , each of size n/2
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)

Combine

- Let $k=\min(k_1,k_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance < k
- Suffices to look at points in the 2k-width strip around the median line

 \bigcirc

 \bigcirc

 \bigcirc

Scanning the strip

- Sort all points in the strip by their y-coordinates, forming q₁...q_r, r ≤ n.
- Let y_i be the y-coordinate of q_i
- For i=1 to r
 - j=i-1
 - While $y_i y_j < d$
 - Check the pair q_i,q_j
 - j:=j-1

Analysis

- Correctness: easy
- Running time is more involved
- Can we have many q_i's that are within distance k from q_i?
- No
- Proof by packing argument

Analysis, ctd.

Theorem: there are at most 7 q_j 's such that $y_i - y_j \le k$. **Proof:**

- Each such q_i must lie either in the left or in the right k× k square
- Within each square, all points have distance distance ≥ k from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i)

Packing bound

- Proving "4" is not obvious
- Will prove "5"
 - Draw a disk of radius k/2 around each point
 - Disks are disjoint
 - The disk-square intersection has area $\geq \pi (k/2)^2/4 = \pi/16 k^2$
 - The square has area k^2
 - Can pack at most $16/\pi \approx 5.1$ points

Running time

- Divide: O(n)
- Combine: O(n log n) because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points
 Then combine takes only O(n)
- We get T(n)=2T(n/2)+O(n), so T(n)=O(n log n)

Higher dimensions

- Divide: split P into P_L and P_R using the hyperplane x=t
- Conquer: as before
- Combine:
 - Need to take care of points with x in [t-k,t+k]
 - This is essentially the same problem, but in d-1 dimensions
 - We get:
 - T(n,d)=2T(n/2)+T(n,d-1)
 - T(n,1)=O_d(1) n
 - Solves to: T(n,d)=n log^{d-1} n

Closest Pair with Help

- Given: P={p₁...p_n} of points from R^d, such that the closest distance is in (t,c t]
- Goal: find the closest pair
- Will give an $O((c\sqrt{d})^d n)$ time algorithm
- Note: by scaling we can assume t=1

Algorithm

- Impose a cubic grid onto R^d, where each cell is a 1/√d×1/√d cube
- Put each point into a bucket corresponding to the cell it belongs to
- Diameter of each cell is ≤1, so at most one point per cell
- For each p∈ P, check all points in cells intersecting a ball B(p,c)
- At most (2√dc)^d such cells

How to find good t?

- Repeat:
 - Choose a random point p in P
 - Let $t=t(p)=D(p,P-\{p\})$
 - Impose a grid with side t'< t/($2\sqrt{d}$), i.e., such that any pair of adjacent cells has diameter <t
 - Put the points into the grid cells
 - Remove all points whose all adjacent cells are empty
- Until P is empty

Correctness

- Consider t computed in the last iteration
 - There is a pair of points with distance t
 - There is no pair of points with distance t' or less*
 - We get c=t/t'~ $2\sqrt{d}$

*And never was, if the grids are nested

Running time

- Consider t(p₁)...t(p_m)
- An iteration is lucky if t(p_i) ≥ t for at last half of points p_i
- The probability of being lucky is $\geq 1/2$
- Expected #iterations till a lucky one is ≤ 2
- After we are lucky, the number of points is ≤ m/2
- Total expected time = 3^d times O(n+n/2+n/4+...+1)