
October 30, 2003 Lecture 17: Closest Pair 1

Closest Pair

Piotr Indyk

October 30, 2003 Lecture 17: Closest Pair 2

Closest Pair

• Find a closest pair among p1…pn ∈Rd

• Easy to do in O(dn2) time
– For all pi pj, compute ||pi – pj|| and choose

the minimum

• We will aim for better time, as long as d is
“small”

• For now, focus on d=2

October 30, 2003 Lecture 17: Closest Pair 3

Divide and conquer

• Divide:
– Compute the median of x-

coordinates
– Split the points into PL and

PR, each of size n/2

• Conquer: compute the
closest pairs for PL and PR

• Combine the results (the
hard part)

October 30, 2003 Lecture 17: Closest Pair 4

Combine

• Let k=min(k1,k2)
• Observe:

– Need to check only pairs which
cross the dividing line

– Only interested in pairs within
distance < k

• Suffices to look at points in
the 2k-width strip around the
median line

k1

k2

2k

October 30, 2003 Lecture 17: Closest Pair 5

Scanning the strip

• Sort all points in the strip
by their y-coordinates,
forming q1…qr, r n.

• Let yi be the y-coordinate
of qi

• For i=1 to r
– j=i-1
– While yi-yj < d

• Check the pair qi,qj
• j:=j-1

d

October 30, 2003 Lecture 17: Closest Pair 6

Analysis

• Correctness: easy
• Running time is more

involved
• Can we have many

qj’s that are within
distance k from qi ?

• No
• Proof by packing

argument

k

October 30, 2003 Lecture 17: Closest Pair 7

Analysis, ctd.

Theorem: there are at most 7
qj’s such that yi-yj k.

Proof:
• Each such qj must lie either

in the left or in the right k× k
square

• Within each square, all
points have distance
distance k from others

• We can pack at most 4 such
points into one square, so
we have 8 points total (incl.
qi)

qi

October 30, 2003 Lecture 17: Closest Pair 8

Packing bound

• Proving “4” is not obvious
• Will prove “5”

– Draw a disk of radius k/2
around each point

– Disks are disjoint
– The disk-square intersection

has area (k/2)2/4 = /16 k2

– The square has area k2

– Can pack at most 16/ 5.1
points

October 30, 2003 Lecture 17: Closest Pair 9

Running time

• Divide: O(n)
• Combine: O(n log n) because we sort by y
• However, we can:

– Sort all points by y at the beginning
– Divide preserves the y-order of points
Then combine takes only O(n)

• We get T(n)=2T(n/2)+O(n), so
T(n)=O(n log n)

October 30, 2003 Lecture 17: Closest Pair 10

Higher dimensions

• Divide: split P into PL and PR using the
hyperplane x=t

• Conquer: as before
• Combine:

– Need to take care of points with x in [t-k,t+k]
– This is essentially the same problem, but in d-1

dimensions
– We get:

• T(n,d)=2T(n/2)+T(n,d-1)
• T(n,1)=Od(1) n

– Solves to: T(n,d)=n logd-1 n

October 30, 2003 Lecture 17: Closest Pair 11

Closest Pair with Help

• Given: P={p1…pn} of points from Rd, such
that the closest distance is in (t,c t]

• Goal: find the closest pair

• Will give an O((c√d)d n) time algorithm
• Note: by scaling we can assume t=1

October 30, 2003 Lecture 17: Closest Pair 12

Algorithm

• Impose a cubic grid onto
Rd, where each cell is a
1/√d×1/√d cube

• Put each point into a
bucket corresponding to
the cell it belongs to

• Diameter of each cell is
1, so at most one point

per cell
• For each p∈P, check all

points in cells
intersecting a ball B(p,c)

• At most (2√dc)d such
cells

October 30, 2003 Lecture 17: Closest Pair 13

How to find good t ?

• Repeat:
– Choose a random point p in P
– Let t=t(p)=D(p,P-{p})
– Impose a grid with side t’< t/(2√d), i.e., such

that any pair of adjacent cells has diameter <t
– Put the points into the grid cells
– Remove all points whose all adjacent cells are

empty

• Until P is empty

October 30, 2003 Lecture 17: Closest Pair 14

Correctness

• Consider t computed in the last iteration
– There is a pair of points with distance t

– There is no pair of points with distance t’ or
less*

– We get c=t/t’~ 2√d

*And never was, if the grids are nested

October 30, 2003 Lecture 17: Closest Pair 15

Running time

• Consider t(p1)…t(pm)
• An iteration is lucky if t(pi) t for at last half

of points pi

• The probability of being lucky is 1/2
• Expected #iterations till a lucky one is 2
• After we are lucky, the number of points is

m/2
• Total expected time = 3d times

O(n+n/2+n/4+…+1)

