Segment Intersection

Piotr Indyk
Segment Intersection

- Segment intersection problem:
 - Given: a set of n distinct segments $s_1\ldots s_n$, represented by coordinates of endpoints
 - Goal (I): detect if there is any pair $s_i \neq s_j$ that intersects
 - Goal (II): report all pairs of intersecting segments
Segment intersection

• Easy to solve in $O(n^2)$ time
• …which is optimal for the reporting problem:
• However:
 – We will see we can do better for the detection problem
 – Moreover, the number of intersections P is usually small.

Then, we would like an output sensitive algorithm, whose running time is low if P is small.
Result

• We will show:
 – $O(n \log n)$ time for detection
 – $O((n + P) \log n)$ time for reporting

• We will use Binary Search Trees

• Specifically: Line sweep approach
Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only vertical-horizontal intersections exist
Orthogonal segments

• Sweep line:
 – A *vertical line* sweeps the plane from left to right
 – It “stops” at all “important” x-coordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 – Invariant: all intersections on the left side of the sweep line have been already reported
Orthogonal segments ctd.

• We maintain sorted y-coordinates of H-segments currently intersected by the sweep line (using a balanced BST T)
• When we hit the left point of an H-segment, we add its y-coordinate to T
• When we hit the right point of an H-segment, we delete its y-coordinate from T
Orthogonal segments ctd.

- Whenever we hit a V-segment (with coordinates $y_{\text{top}}, y_{\text{bottom}}$), we report all H-segments in T with y-coordinates in $[y_{\text{top}}, y_{\text{bottom}}]$.
Algorithm

• Sort all V-segments and endpoints of H-segments by their x-coordinates – this gives the “trajectory” of the sweep line
• Scan the elements in the sorted list:
 – Left endpoint: add segment to T
 – Right endpoint: remove segment from T
 – V-segment: report intersections with the H-segments stored in T
Analysis

- **Sorting**: $O(n \log n)$
- **Add to/delete from T**:
 - $O(\log n)$ per operation
 - $O(n \log n)$ total
- **Processing V-segments**:
 - $O(\log n)$ per intersection
 - $O(P \log n)$ total
 - Can be improved to $O(P + n \log n)$
- **Overall**: $O(P + n \log n)$ time
The “general” case

• Assumption: all coordinates of endpoints and intersections distinct
 • In particular:
 – No vertical segments
 – No three segments intersect at one point
• More general case in the book
Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all “important” x-coordinates, i.e., when it hits endpoints or intersections
- Do not know the intersections in advance!
- The list of important x-coordinates is constructed and maintained dynamically
Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- **Cannot keep the values of y-coordinates of the segments!**
- Instead, we will maintain their *order*. I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections.
Algorithm

- Initialize the “vertical” BST V (to “empty”)
- Initialize the “horizontal” priority queue H (to contain the segments’ endpoints sorted by x-coordinates)
- Repeat
 - Take the next “event” p from H:
 // Update V
 - If p is the left endpoint of a segment, add the segment to V
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p
Algorithm ctd.

// Update H

– For each new pair of neighbors s and s' in V:
 • Check if s and s' intersect on the right side of the sweep line
 • If so, add their intersection point to H
 • Remove the possible duplicates in H
• Until H is empty
Analysis

- Initializing \(H: O(n \log n) \)
- Updating \(V: \)
 - \(O(\log n) \) per operation
 - \(O((P+n) \log n) \) total
- Updating \(H: \)
 - \(O(\log n) \) per intersection
 - \(O(P \log n) \) total
- Overall: \(O((P+n) \log n) \) time
Correctness

- All reported intersections are correct
- Assume there is an intersection not reported. Let \(p=(x,y) \) be the first such unreported intersection (of \(s \) and \(s' \))
- Let \(x' \) be the last event before \(p \). Observe that:
 - At time \(x' \) segments \(s \) and \(s' \) are neighbors on the sweep line
 - Since no intersections were missed till then, \(V \) maintained the right order of intersecting segments
 - Thus, \(s \) and \(s' \) were neighbors in \(V \) at time \(x' \). Thus, their intersection should have been detected
Demo

• Segment intersection

http://www.lupinho.de/gishur/html/Sweeps.html#segment
Other Sweep-line Algorithms

- Polygon triangulation
- Voronoi diagrams
- Kinetic algorithms