Algorithms for Streaming Data

Piotr Indyk
Streaming Data

- Problems defined over points $P=\{p_1, \ldots, p_n\}$
- The algorithm sees p_1, then p_2, then p_3, ...
- Key fact: it has limited storage
 - Can store only $s<<n$ points
 - Can store only $s<<n$ bits (need to assume finite precision)

\[p_1 \ldots p_2 \ldots p_3 \ldots p_4 \ldots p_5 \ldots p_6 \ldots p_7 \ldots \]
Example - diameter
Problems

• Diameter
• Minimum enclosing ball
• l_2 norm of a vector
Diameter in l^d_{∞}

• Assume we measure distances according to the l_{∞} norm
• What can we do?
Diameter in l_∞, ctd.

- From previous lecture we know that
 \[\text{Diam}_\infty(P) = \max_{i=1 \ldots d'} \left[\max_{p \in P} p_i - \min_{p \in P} p_i \right] \]
- Can maintain max/min in constant space
- Total space = $O(d')$
- What about l_1?
Diameter in l_1

- Let $f : l_1^d \rightarrow l_\infty^{2^d}$ be an isometric embedding
- We will maintain $\text{Diam}_\infty(f(P))$
 - For each point p, we compute $f(p)$ and feed it to the previous algorithm
 - Return the pair p,q that maximizes $\|f(p) - f(q)\|_\infty$
- This gives $O(2^d)$ space for l_1^d
- What about l_2?
Diameter in l_2

- Let $f: l_2^d \rightarrow l_\infty^{d'}$, $d' = O(1/\varepsilon)^{(d-1)/2}$, be a $(1+\varepsilon)$-distortion embedding
- Apply the same algorithm as before
- Parameters:
 - Space: $O(1/\varepsilon)^{(d-1)/2}$
 - Time: ?
Minimum Enclosing Ball

• Problem: given $P = \{p_1 \ldots p_n\}$, find center o and radius $r > 0$ such that

 $P \subseteq B(o,r)$

 r is as small as possible

• Solve the problem in l_∞

• Generalize to l_1 and l_2 via embeddings
MEB in l_∞

- Let C be the hyper-rectangle defined by max/min in every dimension.
- Easy to see that min radius ball $B(o,r)$ is a min size hypercube that contains C.
- Min radius = min side length/2.
- How to solve it in l_2?
MEB in l_2

• Firstly, assume $(1+\varepsilon) \approx 1$
• Let $f:l_2^d \rightarrow l_\infty^{d'}$ be an “almost” isometric embedding
• Algorithm:
 – For each point p, compute $f(p)$
 – Maintain $\text{MEB}_\infty B'(o',r)$ of $f(p_1)\ldots f(p_n)$
 – Compute o such that $f(o) = o'$
 – Report $B(o,r)$
Problem

• There might be NO o such that f(o)=o’
• If it was the case, then we would always have MEB radius=Diameter/2, which is not true:

• The problem is that f is into, not onto
The Correct Version

• Algorithm:
 – Maintain the min/max points \(f(p_1) \ldots f(p_{2d'}) \), two points per dimension
 – Compute MEB \(B(o,r) \) of \(p_1 \ldots p_{2d'} \)
 – Report \(B(o,r) \)
Correctness

MEB radius for P

$= \text{Min } r \text{ s.t. } \exists o \ P \subseteq B(o,r)$

$\approx \text{Min } r \text{ s.t. } \exists o \ f(P) \subseteq B(f(o),r)$

$= \text{Min } r \text{ s.t. } \exists o \ \{f(p_1) \ldots f(p_{2d'})\} \subseteq B(f(o),r)$ [see next slide]

$\approx \text{Min } r \text{ s.t. } \exists o \ \{p_1 \ldots p_{2d'}\} \subseteq B(o,r)$

$= \text{MEB radius for } \{p_1 \ldots p_{2d'}\}$

• Total error at most $(1+\varepsilon)^2$
• In reality, at most $(1+\varepsilon)$
Digression: Core Sets

• In the previous slide we use the fact that in l_∞, for any set P of points, there is a subset P' of P, $|P|=2d'$, such that $\text{MEB}(P')=\text{MEB}(P)$

• P' is called a “core-set” for the MEB of P in l_∞

• For more on core-sets, see the web page by Sariel Har-Peled
Maintaining l_2 norm of a vector

- Implicit vector $x = (x_1, \ldots, x_n)$
- Start with $x = 0$
- Stream: sequence of pairs (i, b), meaning $x_i = x_i + b$
- Goal: maintain (approximately) $||x||_2$
Motivation

• Consider a set of web pages, stored in some order
• Two pages are “similar” if they link to the same page
• Note that each page is similar to itself
• Want to know the number of pairs of similar web pages
Connection to l_2 norm

• Let
 – $\text{In}(i)$ be the # in-links to page i
 – $\text{Out}(i)$ be the # out-links of page i

• $\text{Out}(i)$ is easy to compute, $\text{In}(i)$ is not

• We want to compute

$$\frac{1}{2} \sum_i \text{In}(i) (\text{In}(i)+1) = \frac{1}{2} [\sum_i \text{In}(i)^2 + \sum_i \text{In}(i)]$$

• Every time we see link to i: $\text{In}(i):=\text{In}(i)+1$
Approximate Algorithm

- We will use roughly $O(\log(1/P)/\varepsilon^2)$ numbers, where $1-P$ is the probability of successful estimation.
Algorithm

• From JL lemma, it suffices to maintain Ax for “random” A, since $\|Ax\| \approx \|x\|$

• Assume
 – we have Ax
 – Need to compute Ay, where $y = x$ except for $y_i = x_i + b$

• Use linearity:
 $$Ay = A(y - x) + Ax = A(be_i) + Ax = b a^i + Ax$$
Pseudo-randomness

- In practice: use $A[i,j]=\text{Normal}(\text{RND}(i,j))$
- In theory: one can use bounded space random generators to generate A using only $O(\log n \times \log(1/P)/\varepsilon^2)$ random numbers