Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

• Given a set of \(n \) points, build a data structure that for any query rectangle \(R \), reports all points in \(R \)
Kd-trees [Bentley]

- Not the most efficient solution in theory
- Everyone uses it in practice
- Algorithm:
 - Choose x or y coordinate (alternate)
 - Choose the median of the coordinate; this defines a horizontal or vertical line
 - Recurse on both sides
- We get a binary tree:
 - Size: $O(N)$
 - Depth: $O(\log N)$
 - Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node v corresponds to a region $\text{Reg}(v)$.
Kd-tree: Range Queries

1. Recursive procedure, starting from $v=\text{root}$

2. Search (v,R):
 a) If v is a leaf, then report the point stored in v if it lies in R
 b) Otherwise, if $\text{Reg}(v)$ is contained in R, report all points in the subtree of v
 c) Otherwise:
 • If $\text{Reg}(\text{left}(v))$ intersects R, then Search($\text{left}(v),R$)
 • If $\text{Reg}(\text{right}(v))$ intersects R, then Search($\text{right}(v),R$)
Query demo
Query Time Analysis

- We will show that Search takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points
 - The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$
 - We just need to bound the number of nodes v such that $\text{Reg}(v)$ intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of $\text{Reg}(v)$
 - Will make a gross overestimation: will bound the number of $\text{Reg}(v)$ which are crossed by any of the 4 horizontal/vertical lines
Query Time Continued

• What is the max number $Q(n)$ of regions in an n-point kd-tree intersecting (say, vertical) line?
 – If we split on x, $Q(n)=1+Q(n/2)$
 – If we split on y, $Q(n)=2*Q(n/2)+2$
 – Since we alternate, we can write $Q(n)=3+2Q(n/4)$

• This solves to $O(n^{1/2})$
Analysis demo
A Faster Solution

• Query time: $O(\log^2 n + P)$
• Space: $O(n \log n)$
Idea I: Ranks

• Sort x and y coordinates of input points

• For a rectangle $R=\left[x_1, x_2\right] \times \left[y_1, y_2\right]$, we have point $(u, v) \in R$ iff

 $\begin{align*}
 &\text{succ}_x(x_1) \leq \text{rank}_x(u) \leq \text{pred}_x(x_2) \\
 &\text{succ}_y(y_1) \leq \text{rank}_y(v) \leq \text{pred}_y(y_2)
 \end{align*}$

• Thus we can replace

 $\begin{align*}
 &\text{Point coordinates by their rank} \\
 &\text{Query boundaries by succ/pred; this adds } O(\log n) \text{ to the query time}
 \end{align*}$
Dyadic intervals

• Assume \(n \) is a power of 2. Dyadic intervals are:
 – \([1,1]\), \([2,2]\) ... \([n,n]\)
 – \([1,2]\), \([3,4]\) ... \([n-1,n]\)
 – \([1,4]\), \([5,8]\) ... \([n-3,n]\)
 –
 – \([1...n]\)

• Any interval \(\{a...b\} \) can be decomposed into \(O(\log n) \) dyadic intervals:
 – Imagine a full binary tree over \(\{1...n\} \)
 – Each node corresponds to a dyadic interval
 – Any interval \(\{a...b\} \) can be “covered” using \(O(\log n) \) sub-trees
Range Trees

• For each level $l=1 \ldots \log n$, partition x-ranks using level-l dyadic intervals
• This induces vertical strips
• Within each strip, construct a BST on y-coordinates
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Query procedure

• Consider query $R = X \times Y$
• Partition X into dyadic intervals
• For each interval, query the corresponding strip BST using Y
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem
Approximate Nearest Neighbor (ANN)

- **Given:** a set of points P in the plane
- **Goal:** given a query point q, and $\epsilon > 0$, find a point p' whose distance to q is at most $(1+\epsilon)$ times the distance from q to its nearest neighbor
Our “solution”

• We will “solve” the problem using kd-trees…
• …under the assumption that all leaf cells of the
 kd-tree for P have bounded aspect ratio
• Assumption somewhat strict, but satisfied in
 practice for most of the leaf cells
• We will show
 – $O(\log n/\varepsilon^2)$ query time
 – $O(n)$ space (inherited from kd-tree)
ANN Query Procedure

- Locate the leaf cell containing \(q \)
- Enumerate all leaf cells \(C \) in the increasing order of distance from \(q \) (denote it by \(r \))
 - Update \(p' \) so that it is the closest point seen so far
 - Note: \(r \) increases, \(\text{dist}(q,p') \) decreases
- Stop if \(\text{dist}(q,p') < (1 + \epsilon) \times r \)
Analysis

• Running time:
 – All cells C seen so far (except maybe for the last one) have diameter $> \epsilon * r$
 – …Because if not, then $p(C)$ would have been a $(1 + \epsilon)$-approximate nearest neighbor, and we would have stopped
 – The number of cells with diameter $\epsilon * r$, bounded aspect ratio, and touching a ball of radius r is at most $O(1/\epsilon^2)$