Point Location

(most slides by Sergi Elizalde and David Pritchard)
Definition

• Given: a planar subdivision S
• Goal: build a data structure that, given a query point, determines which face of the planar subdivision that point lies in
• Details: planar subdivision given by:
 – Vertices, directed edges and faces
 – Perimeters of polygons stored in doubly linked lists
 – Can switch between faces, edges and vertices in constant time
First attempt

- Want to divide the plane into easily manageable sections.
- Idea: Divide the graph into slabs, by drawing a vertical line through every vertex of the graph.
- Given the query point, do binary search in the proper slab.
Analysis

- **Query time**: $O(\log n)$
- **Space**: $O(n^2)$
- As a few people in the audience observed, the space can be reduced to $O(n)$ by using “persistent” data structures. See 6.854, Lecture 5 for details.
Second attempt

- Too much splitting!
- Idea: stop the splitting lines at the first segment of the subdivision
- We get a trapezoidal decomposition $T(S)$ of S
- The number of edges still $O(n)$
Assumptions/Simplifications

• Add a bounding box that contains S
• Assume that the x-coordinates of coordinates and query are distinct
 1. Randomly rotate the plane, or
 2. Use lexicographic order
Answering the query

• Build a decision tree:
 – Leaves: individual trapezoids
 – Internal nodes: YES/NO queries:
 • *point query*: does q lie to the left or the right of a given point?
 • *segment query*: does q lie above or below a given line segment?
Decision tree: Example
DT Construction: Overview

1. Initialization: create a T with the bounding box R as the only trapezoid, and corresponding DT D

2. Compute a random permutation of segments $s_1 \ldots s_n$

3. For each segment s_i:
 A. Find the set of trapezoids in T properly intersected by s_i
 B. Remove them from T and replace them by the new trapezoids that appear because of the insertion of s_i
 C. Remove the leaves of D for the old trapezoids and create leaves for the new ones + update links
Some notation

Segments $\text{top}(\Delta)$ and $\text{bottom}(\Delta)$:
Some notation, ctd.

Points $\text{leftp}(\Delta)$ and $\text{rightp}(\Delta)$:

Each Δ is defined by $\text{top}(\Delta)$, $\text{bottom}(\Delta)$, $\text{leftp}(\Delta)$, $\text{rightp}(\Delta)$
Some notation, ctd.

- Two trapezoids are *adjacent* if they share a vertical boundary.
- How many trapezoids can be adjacent to Δ?
Adding new segment s_i

- Let $\Delta_0 \ldots \Delta_k$ be the trapezoids intersected by s_i (left to right)
- To find them:
 - Δ_0 is the trapezoid containing the left endpoint p of s_i – find it by querying the data structure built so far
 - Δ_{j+1} must be a right neighbor of Δ_j
Updating T

- Draw vertical extensions through the endpoints of s_i that were not present, partitioning $\Delta_0 \ldots \Delta_k$
- Shorten the vertical extensions that now end at s_i, merging the appropriate trapezoids
Updating D

- Remove the leaves for $\Delta_0 \ldots \Delta_k$
- Create leaves for the new trapezoids
- If Δ_0 has the left endpoint p of s_i in its interior, replace the leaf for Δ_0 with a point node for p and a segment node for s_i (similarly with Δ_k)
- Replace the leaves of the other trapezoids with single segment nodes for s_i
- Make the outgoing edges of the inner nodes point to the correct leaves
Analysis

- **Theorem:** In the expectation we have
 - Running time: $O(n \log n)$
 - Storage: $O(n)$
 - Query time $O(\log n)$ for a fixed q
Expected Query Time

• Fix a query point \(q \), and consider the path in \(D \) traversed by the query.

• Define
 – \(S_i = \{s_1, s_2, ..., s_i\} \)
 – \(X_i \) = number of nodes added to the search path for \(q \) during iteration \(i \)
 – \(P_i \) = probability that some node on the search path of \(q \) is created in iteration \(i \)
 – \(\Delta_q(S_i) \) = trapezoid containing \(q \) in \(T(S_i) \)

• From our construction, \(X_i \leq 3 \); thus \(E[X_i] \leq 3P_i \)

• Note that \(P_i = Pr[\Delta_q(S_i) \leftrightarrow \Delta_q(S_{i-1})] \)
Expected Query Time ctd.

• What is $P_i = \Pr[\Delta_q(S_i) <> \Delta_q(S_{i-1})]$?
• Backward analysis: How many segments in S_i affect $\Delta_q(S_i)$ when they are removed?
• At most 4
• Since they have been chosen in random order, each one has probability $1/i$ of being s_i
• Thus $P_i \leq 4/i$
• $E[\sum_i X_i] = \sum_i E[X_i] \leq \sum_i 3P_i \leq \sum_i 12/i = O(\log n)$
Expected Storage

• Number of nodes bounded by $O(n) + \sum_{i} k_{i}$, where $k_{i} =$ number of new trapezoids created in iteration i

• Define $d(\Delta, s)$ to be 1 iff Δ disappears from $T(S_{i})$ when s removed from S_{i}

• We have $\sum_{s \in S_{i}} \sum_{\Delta \in T(S_{i})} d(\Delta, s) \leq 4|T(S_{i})| = O(i)$

• $E[k_{i}] = [\sum_{s \in S_{i}} \sum_{\Delta \in T(S_{i})} d(\Delta, s)]/i = O(1)$
Expected Time

• The time needed to insert s_i is $O(k_i)$ plus the time needed to locate the left endpoint of s_i in $T(S_i)$

• Expected running time $= O(n \log n)$
Extensions

• Can obtain worst-case $O(\log n)$ query time
 – Show $O(\log n)$ for a fixed query holds with probability $1 - 1/(Cn^2)$ for large C
 – There are $O(n^2)$ truly different queries