6.838: Geometric Computing

Fall 2003

Problem Set 4
Due on Tuesday, December 2

MANDATORY PART

Problem 1. Minkowski Sum
Show that a Minkowski Sum of two convex polygons is convex.

Problem 2. Norms
Show that for any = € R4, ||z||2 < ||z||: < Vd||z]|2.

Problem 3. Fast Approximate Nearest Neighbor
Construct a new data structure for the Approximate Near Neighbor problem in %¢ under
lo norm. Your data structure should have the following parameters:

e Approximation factor: O(d"?)
e Space: O(dn)
e Query time: O(d)

Your data structure can be randomized.

Problem 4. LSH in R¢

In the class, we have seen how to embed {0...M}¢ equipped with /; norm, into the
Hamming space {0,1}M? This automatically yields a randomized data structure solving a
c-approximate Near Neighbor with query time O(dMn'/¢), for c=1+¢ > 1.

Show how to extend the latter data structure so that it works for points in ¢ (again,
the distance is defined by the [; norm). Your data structure should support queries in time
O((d/e)°Mnl/e).

Hint: do NOT try to construct an embedding of (R¢,1;) into ({0...M}% ;). Instead,
try to come up with an algorithmic method for replacing real coordinates by small integers.

OPTIONAL THEORETICAL PART

Problem A. (1,2) — B metrics

In the class, we have seen how to construct an exact embedding of a given metric M =
(X, D), | X| = n, into {”. In this problem we consider embeddings of a special subclass of
metrics called (1,2) — B metrics. A metric is a (1,2) — B metric if it satisfies the following
two very particular conditions:

1. All non-zero distances are either 1 or 2
2. For any point p € X, the number of points ¢ € X such that D(p,q) =1 is at most B.

Show that there is a constant C' such that any metric M satisfying the above conditions
can be embedded exactly into (% where d = C'Blogn.
Hint: Use probabilistic method, similar to the proof of Matousek’s theorem.

Note: You might wonder: why anyone would be interested in (1,2) — B metrics ? It turns out that
it is possible to show that, for a certain constant A > 1, it is NP-hard to find an A-approximate solution
the Traveling Salesman Problem for such metrics (this is a much stronger fact than the NP-hardness of the
ezact TSP showed in the Intro to Algorithms class). This remains true even if B is constant.

The embedding implies that the problem is equally hard even if the metric is induced by n points living

in lo with dimension d = O(logn). So, any A-approximation algorithm for this problem is unlikely to run in
time 22°(9), Otherwise, we would have an algorithm solving an NP-hard problem in time 22°“ = 22°"*" =
2"0(1), i.e., in sub-exponential time, which is conjectured to be impossible.

So, the problem of approximately solving TSP in d-dimensional [, norm suffers from doubly exponential

dependence on d. This is a ”super-curse of dimensionality” !

Problem B. Exact Nearest Neighbor in /..
Design a data structure for the exact Nearest Neighbor problem for R¢ equipped with

the lo, norm. Your data structure should use n°® space and O(dlogn) query time.
Hint: What does a unit ball in [, look like ?

OPTIONAL PROGRAMMING PART

Design a Java applet that animates the Locality-Sensitive Hashing algorithm. Since
high-dimensional displays are still waiting to be invented, the implementation should focus
on point-sets in two dimensions. To make life simpler, the distance between the points should
be measured using the /; norm. The points can be then embedded into Hamming space, as
seen in the lecture.

The applet should enable the following:

e Let the user enter the data points (pretty much as in earlier applets). Each point
should have a distinct label, either a number or a letter. It would be nice if the last
point entered (a “query”) had different color than the others.

e Let the user specifiy the following parameters:

— k: the numbers of bits sampled
— [: the number of hash tables

e For each hash table, display the assignment of points to buckets.

You are welcome to add other features, if you would like to. In particular, it would be
nice if the user could specify r and ¢, and the applet would mark all points as “good”, “bad”
and “in the middle”. Another idea is that the applet suggests the values of [and & (via the
formulas seen in the lecture). But it should not enforce them on the user.

Note: The embedding from /; to Hamming space increases the dimension by a lot. If this
is a problem, you can limit the coordinates to, say, the set {0...31}. The final dimension of

the Hamming space should be displayed somewhere, so that the user knows how to choose
k.

