Algorithms for Streaming Data

Piotr Indyk
Streaming Data

- Problems defined over points \(P = \{ p_1, \ldots, p_n \} \)
- The algorithm sees \(p_1 \), then \(p_2 \), then \(p_3 \), …
- Key fact: it has limited storage
 - Can store only \(s << n \) points
 - Can store only \(s << n \) bits (need to assume finite precision)

\[p_1 \ldots p_2 \ldots p_3 \ldots p_4 \ldots p_5 \ldots p_6 \ldots p_7 \ldots \]
Example - diameter
Problems

• Diameter
• Minimum enclosing ball
• l_2 norm of a high-dimensional vector
Diameter in l^d_∞

- Assume we measure distances according to the l_∞ norm
- What can we do?
Diameter in l_∞, ctd.

- From previous lecture we know that
 $\text{Diam}_\infty(P) = \max_{i=1 \ldots d'} \left[\max_{p \in P} p_i - \min_{p \in P} p_i \right]$
- Can maintain max/min in constant space
- Total space = $O(d')$
- What about l_1?
Diameter in l_1

- Let $f : l_1^d \rightarrow \ell_\infty^{2^d}$ be an isometric embedding
- We will maintain $\text{Diam}_\infty(f(P))$
 - For each point p, we compute $f(p)$ and feed it to the previous algorithm
 - Return the pair p,q that maximizes $||f(p) - f(q)||_\infty$
- This gives $O(2^d)$ space for l_1^d
- What about l_2?
Diameter in l_2

- Let $f: l_2^d \rightarrow l_\infty^{d'}$, $d' = O(1/\varepsilon)^{(d-1)/2}$, be a $(1+\varepsilon)$-distortion embedding.
- Apply the same algorithm as before.
- Parameters:
 - Space: $O(1/\varepsilon)^{(d-1)/2}$
Minimum Enclosing Ball

• Problem: given $P=\{p_1\ldots p_n\}$, find center o and radius $r>0$ such that
 – $P \subseteq B(o,r)$
 – r is as small as possible

• Solve the problem in l_∞

• Generalize to l_1 and l_2 via embeddings
MEB in l_∞

- Let C be the hyper-rectangle defined by max/min in every dimension.
- Easy to see that min radius ball $B(o,r)$ is a min size hypercube that contains C.
- Min radius = min side length/2.
- How to solve it in l_2?
MEB in l_2

• Firstly, assume $(1+\varepsilon) \approx 1$
• Let $f: l_2^d \rightarrow l_\infty^{d'}$ be an “almost” isometric embedding
• Algorithm:
 – For each point p, compute $f(p)$
 – Maintain $\text{MEB}_\infty B'(o',r)$ of $f(p_1) \ldots f(p_n)$
 – Compute o such that $f(o) = o'$
 – Report $B(o,r)$
Problem

• There might be NO o such that $f(o) = o'$
• If it was the case, then we would always have MEB radius = Diameter/2, which is not true:

• The problem is that f is into, not onto
The Correct Version

• Algorithm:
 – Maintain the min/max points $f(p_1)\ldots f(p_{2d'})$, two points per dimension
 – Compute MEB $B(o,r)$ of $p_1\ldots p_{2d'}$
 – Report $B(o,r(1+\varepsilon))$
Correctness

MEB radius for P

$= \text{Min } r \text{ s.t. } \exists o \ P \subseteq B(o,r)$

$\approx \text{Min } r \text{ s.t. } \exists o \ f(P) \subseteq B(f(o),r)$

$= \text{Min } r \text{ s.t. } \exists o \ \{f(p_1)\ldots f(p_{2d'})\} \subseteq B(f(o),r)$

$\approx \text{Min } r \text{ s.t. } \exists o \ \{p_1\ldots p_{2d'}\} \subseteq B(o,r)$

$= \text{MEB radius for } \{p_1\ldots p_{2d'}\}$

- Total error at most $(1+\varepsilon)^2$
- In reality, at most $(1+\varepsilon)$
Digression: Core Sets

- In the previous slide we use the fact that in l_∞, for any set P of points, there is a subset P' of P, $|P'|=2d'$, such that $\text{MEB}(P')=\text{MEB}(P)$
- P' is called a “core-set” for the MEB of P in l_∞
- For more on core-sets, see the web page by Sariel Har-Peled
Maintaining l_2 norm of a vector

- Implicit vector $x = (x_1, \ldots, x_n)$
- Start with $x = 0$
- Stream: sequence of pairs (i, b), meaning $x_i = x_i + b$
- Goal: maintain (approximately) $||x||_2$
Motivation

- Consider a set of web pages, stored in some order
- Two pages are “similar” if they link to the same page
- Note that each page is similar to itself
- Want to know the number of pairs of similar web pages
- Web pages stored sequentially on a disk
Connection to l_2 norm

- Let $\text{In}(i)$ be the # in-links to page i
- $\text{Out}(i)$ be the # out-links of page i
- $\text{Out}(i)$ is easy to compute, $\text{In}(i)$ is not
- We want to compute
 $$\frac{1}{2} \sqrt{\sum \text{In}(i) (\text{In}(i)+1)} = \frac{1}{2} \left[\sum \text{In}(i)^2 + \sum \text{In}(i) \right]$$
- Every time we see link to i: $\text{In}(i) := \text{In}(i) + 1$
Approximate Algorithm

• Algorithm:
 – Computes a \((1+\varepsilon)\)-approximation to \(||x||_2\) with probability \(1-P\)
 – Stores \(O(\log(1/P)/\varepsilon^2)\) numbers
Algorithm

- From JL lemma, it suffices to maintain Ax for “random” A, since $\|Ax\| \approx \|x\|
- Assume
 - we have Ax
 - Need to compute Ay, where $y=x$ except for $y_i=x_i+b$
- Use linearity:
 $$Ay = A(y-x)+Ax = A(be_i)+Ax = b a^i + Ax$$
Pseudo-randomness

• In practice: use $A[i,j] = \text{Normal}(\text{RND}(i,j))$

• In theory: one can use bounded space random generators to generate A using only $O(\log n \times \log(1/P)/\varepsilon^2)$ random numbers