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Geometric Optimization

* Minimize/maximize something subject to
some constraints

* Have seen:
— Linear Programming
— Minimum Enclosing Ball
— Diameter/NN (?)

* All had easy polynomial time algorithms
for d=2
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Today

 NP-hard problems in the plane
— Packing and piercing [Hochbaum-Maass'85]

— TSP, Steiner trees, and a whole lot more
[Arora’96] (cf. [Mitchell’96])

* Best exact algorithms exponential in n

* We will see (1+¢)-approximation
algorithms that run in poly time for any
fixed ¢>0 (so, e.g., n°"# s OK)

« Such an algorithm is called a PTAS
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Packing

* Given: a set C of unit disks
Cq...C,

* Goal: find a subset C" of C
such that:
— All disks in C’ are pair-wise

disjoint

— |C’| 1Is maximized

 How to get a solution of size
2 (1-¢) times optimum ?
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Algorithm
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Algorithm, ctd.

* Impose a grid of granularity k

* For each grid cell a

— Compute C(a) = the set of disks fully
contained in a

— Solve the problem for C(a) obtaining C'(a)
* Report C" =union of C'(a) for all cells a
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Computing c’(a)

* The grid cell a has side length = k
« Can pack at most k? disks into a

 Solve via exhaustive enumeration —
running time O(n“"?)

* This also bounds the total running time
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Analysis

« Approximation factor:
— Consider the optimal collection of disks C
— Shift the grid at random

— The probability that a given ceC not fully contained in
some a is at most

O(1)/k
— The expected number of removed disks is O(|C|/k)
— Setting k=0(1/¢) suffices
 Altogether: running time n©(1/z"2)
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Plercing

* Given: a set C of unit disks
Cq...C,

* Goal: find a set P of points
such that:
—PNec,# @ fori=1...n
— |P] is minimized

 How to get a solution of size
<(1+¢) times optimum ?
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Algorithm, ctd.

* Impose a grid G of granularity k

e For each cell a

— Compute C(a) = the set of disks in C
intersecting a

— Solve the problem for C(a) obtaining P(a)
* Report P=union of P(a) for all cells a
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Computing P(a)

* The grid cell a has side length = k
« Can pierce C(a) using at most k? points
« Sufficient to consider O(n?) choices of
piercing points (for all points in P)
— Compute arrangement of disks in C(a)
— Points in the same cell equivalent
* Solve via exhaustive enumeration —
running time O(n%<"?)
* This also bounds the total running time
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Analysis

* Problem: disks B within distance
1 from the grid boundary

* |f we eliminated all the
occurrences of the disks in B

from all C(a)’s, one could pierce
the remainder with cost at most
OPT(C)

« Suffices to show that the cost of
piercing B is small
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More formally

* Define B(a)=C(a) " B
* The cost of our algorithm is at most
22 OPT(C(a)) <
2. OPT(C(a)-B) + >, OPT(B(a)) =
OPT(C-B) + >, OPT(B(a))

* Also, ), OPT(B(a)) <4 OPT(B), since

— Take the optimal piercing T of B

— Define T(a)= T n B(a)

— We have OPT(B(a)) < |T(a)|

— Also, each element of T appears in <4 sets T(a)
— Thus >, OPT(B(a)) <>, [T(a)| <4 |T| =4 OPT(B)
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Analysis ctd.

« Suffices to show that the cost OPT(B) of
optimally piercing B is O(¢ OPT(C) )

* Let P be the optimum piercing of C

« Shift the grid at random

« All disks in B are pierced by

P=P N (G @ Ball(0,2) )

* The probability that a fixed peP belongs to P’ is
O(1)/k

* The expected |P’| of is O(|P|)/k
— Setting k=0(1/¢) suffices

 Altogether: running time n©(1/z"2)
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Dynamic programming for TSP

 Divide the points using
randomly shifted line
 Enumerate “all” possible

configurations C of crossing
points ?

* For each C, solve the two GZ
recursive problems

* Choose the C that minimizes
the cost
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Analysis

« Structure lemma: for any tour T, there is
another tour T" with cost not much larger
than the cost of T, which has only constant

number of crossing points.
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