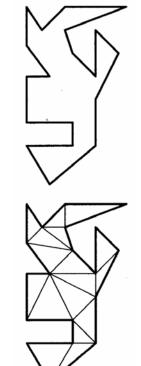
Polygon Triangulation

(slides partially by Daniel Vlasic)

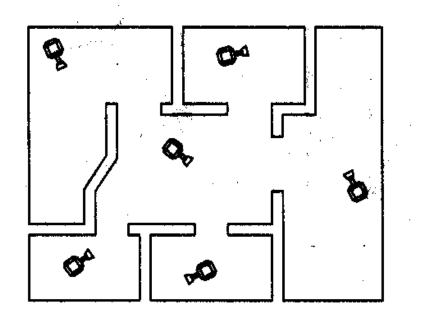
Triangulation: Definition

- Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals
- Diagonal: an open line segment that connects two vertices of P and lies in the interior of P
- Triangulations are usually not unique



Motivation: Guarding an Art Gallery

- An art gallery has several rooms
- Each room guarded by cameras that see in all directions
- Want to have few cameras that cover the whole gallery



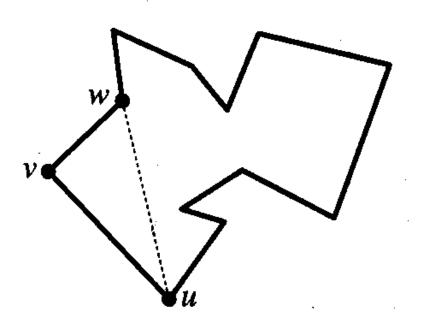
Triangulation: Existence

- Theorem:
 - Every simple polygon admits a triangulation
 - Any triangulation of a simple polygon with n vertices consists of exactly n-2 triangles
- Proof:
 - Base case: n=3
 - 1 triangle (=*n*-2)
 - trivially correct

Inductive step: assume theorem holds for all m<n

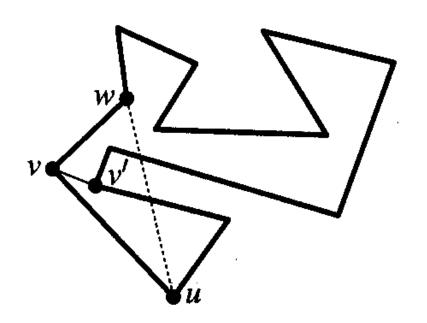
Inductive step

- First, prove existence of a diagonal:
 - Let v be the leftmost vertex of P
 - Let *u* and *w* be the two neighboring vertices of
 - If open segment *uw* lies inside *P*, then *uw* is a diagonal



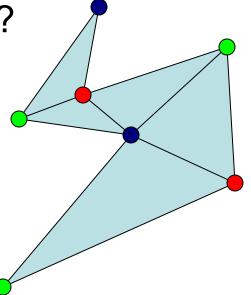
Inductive step ctd.

- If open segment *uw* does not lie inside *P*
 - there are one or more vertices inside triangle uvw
 - of those vertices, let v' be the farthest one from uw
 - segment vv' cannot intersect any edge of P, so vv' is a diagonal
- Thus, a diagonal exists
- Can recurse on both sides
- Math works out: (n1-2) + (n2-2) = (n1+n2-2)-2



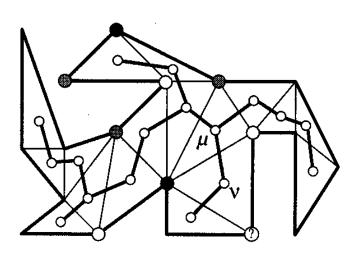
Back to cameras

- Where should we put the cameras ?
- Idea: cover every triangle
 - 3-color the nodes (for each edge, endpoints have different colors)
 - Each triangle has vertices with all 3 colors
 - − Can choose the least frequent color class $\rightarrow \lfloor n/3 \rfloor$ cameras suffice
 - There are polygons that require [n/3] cameras



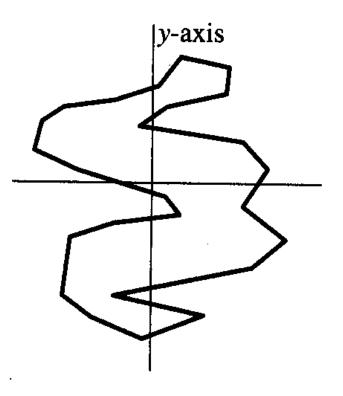
3-coloring Always Possible

- Simple inductive argument (Ilya)
- More complex, but linear-time algorithm:
 - Take the dual graph G
 - This graph has no cycles
 - Find 3-coloring by DFS traversal of G:
 - Start from any triangle and 3-color its vertices
 - When reaching new triangle we cross an already colored diagonal
 - Choose the third color to finish the triangle



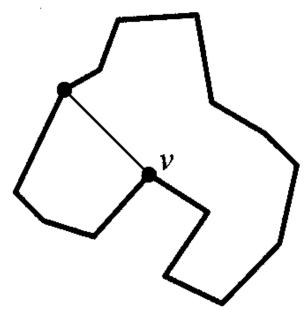
How to triangulate fast

- Partition the polygon into y-monotone parts, i.e., into polygons P such that an intersection of any horizontal line L with P is connected
- Triangulate the monotone parts

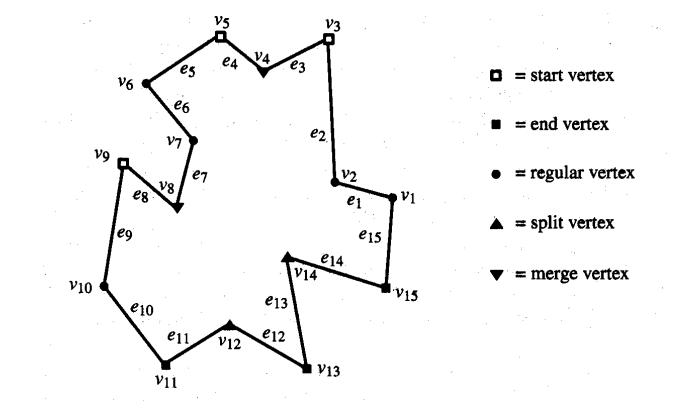


Monotone partitioning

- Line sweep (top down)
- Vertices where the direction changes downward<>upward are called *turn vertices*
- To have y-monotone pieces, we need to get rid of turn vertices:
 - when we encounter a turn vertex, it might be necessary to introduce a diagonal and split the polygon into pieces



Vertex Ontology

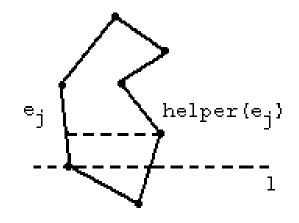


Adding diagonals

- To partition *P* into y-monotone pieces, get rid of split and merge vertices
 - add a diagonal going upward from each split vertex
 - add a diagonal going downward from each merge vertex
- Where do the edges go ?

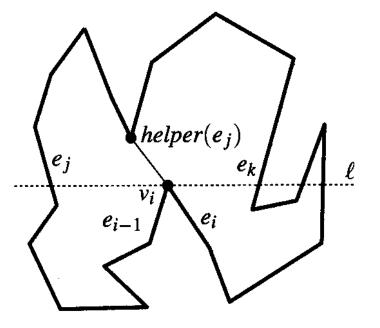
Helpers

 Let helper(e_j) be the lowest vertex above the sweep-line such that the horizontal segment connecting the vertex to e_j lies inside P



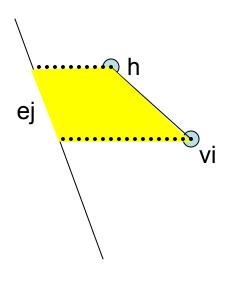
Removing Split Vertices

- For a split vertex v_i, let e_j be the edge immediately to the left of it
- Add a diagonal from v_i to helper(e_j)
- Question: does the new edge intersect any existing one ?



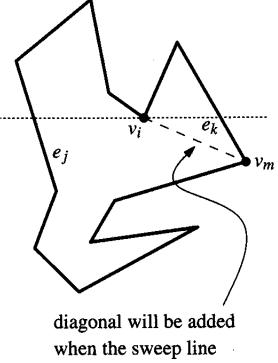
Proof

- Recall:
 - vi is the split vertex
 - ej is the edge to the left of vi
 - h = helper(ej)
- The segment h-vi does not intersect any other boundary segment because:
 - The dotted segments do not intersect any polygon boundaries, by def. Same holds for ej.
 - If there was any polygon segment intersecting h-vi, one of its endpoints would have to be inside the yellow region
 - Take the lowest point p in the region which is an endpoint of some segment. By assumptions, this point has a unique y-coordinate.
 - Thus, a left ray starting from p hits ej without touching any other edge. Thus, p is a candidate for a helper of ej.
 - Any helper of ej must lie inside the yellow region, and p is the lowest such point.
 - Thus, p is a helper a contradiction.
- Note: the edges added earlier are, for the above purposes, considered to be the boundary edges



Removing Merge Vertices

- For a merge vertex v_i, let e_j be the edge immediately to the left of it
- *v_i* becomes *helper(e_j)* once we reach it
- Whenever the *helper(e_j)* is replaced by some vertex *v_m*, add a diagonal from *v_m* to *v_i*
- If v_i is never replaced as helper(e_j), we can connect it to the lower endpoint of e_j

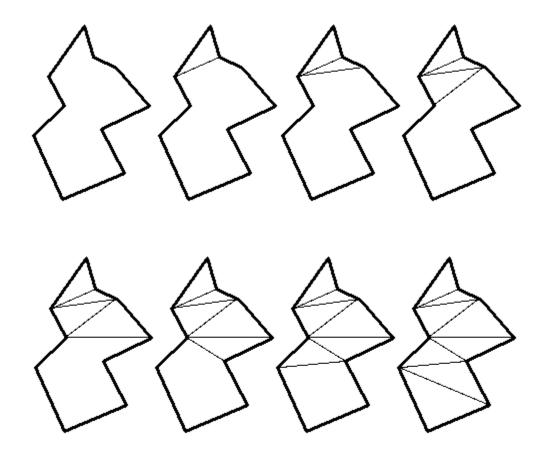


reaches v_m

The algorithm

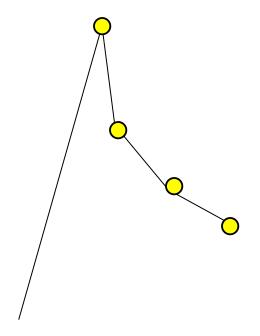
- Use plane sweep method
 - move sweep line downward over the plane (need to sort first)
 - halt the line on every vertex
 - handle the event depending on the vertex type
 - events:
 - edge starts (insert into a BST)
 - edge ends (add a diagonal if the helper is a merge vertex, remove from BST)
 - edge changes a helper (add a diagonal if old helper was a merge vertex)
 - new vertex is a split vertex (must add a diagonal)
- Time: O(n log n)

Triangulating monotone polygon



Triangulating monotone polygons

- Single pass from top to bottom
- Keeps removing triangles
- Invariants:
 - Top vertex convex
 - Other vertices form a concave chain



Altogether

- Can triangulate a polygon in O(n log n) time
- Fairly simple O(n log*n) time algorithms
- Very complex O(n) time algorithm